UCRL-51009

THE USE OF SHOCK WAVES
IN THE VAPORIZATION OF METALS

Thomas J. Ahrens
Parl A. Urtiew

MS. date: August 5, 1971

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use
would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
THE USE OF SHOCK WAVES IN THE VAPORIZATION OF METALS

Abstract

Explosively induced shock waves in aluminum, iron, strontium, lithium, thorium, uranium, and barium are capable of vaporizing appreciable quantities of these metals. When plane shock waves are incident upon porous samples, they will induce vaporization in aluminum, iron, strontium, thorium, and barium. Although Mach stem shocks act on a smaller selective mass of material, they will induce sufficient entropy to vaporize uranium and lithium. When a Mie-Grüneisen equation of state is assumed, it is found that for a given plane explosive system an initial porosity exists that will optimize the shock-induced entropy production in a metal. The optimum initial distention that will result in maximum post-shock entropy is found to vary between 1.6 and 2.0 times the volume of the crystal for several of the metals examined.

Introduction

The possible use of explosively induced shock waves to produce large masses of vaporized metal is examined in this report. Shock-wave induction of metal gas appears to be a relatively simple method for releasing various metal species in the upper atmosphere from ionospheric sounding rockets. Observations of the reactions that take place between the metallic species and the ambient atmospheric species, and of the relative populations of species that result from such metallic vapor releases, can be made using either airborne or ground-based spectroscopic instruments.

The high available energy density of military high explosives (1 kcal/g), as well as the relative ease with which a large fraction of this energy density (approximately 20%) may be imparted to a metal target, make the possible application of the shock-wave method for the sudden production of metal vapor a potentially attractive technique. In addition to the intrinsic thermal (random direction) velocities imparted to the resulting high-entropy gas cloud, the shock interaction and following rarefaction wave will induce a net flow field (with peak velocities of approximately 10 km/sec) in the gas cloud. High explosives may be employed in this context in either one-dimensional plane-wave or dimensional Mach-stem geometries. In the plane-wave geometry the explosive can be detonated in contact with the
sample, thus directly imparting a shock wave to the metal; or plane-flowing detonation gases can accelerate a flyer plate, which in turn may be used to shock the sample upon impact. As is demonstrated in the next section, the plane technique is simpler and it can vaporize metals such as iron, thorium, strontium, barium, and aluminum. However, metals such as lithium and uranium are difficult to vaporize by this technique. For these metals the Mach-stem method appears to be the only one available, and it has the limitation that it vaporizes less material.

A Mach stem is a shock discontinuity that is formed when two shock waves approach each other at an angle. If the angle between the wave fronts is zero, a simple head-on collision of shocks occurs that produces high temperatures and vaporization, but no net flow of the induced gas. By increasing the incidence angle, regular oblique reflection will take place until some angle is reached where reflection becomes irregular and Mach-stem reflection begins.

The purpose of this report is to provide design criteria for the construction of shock-vaporization experiments. Specifically, the report examines pertinent experimental parameters, and it provides some design data used to select initial porosities, types, and speeds for explosively driven plates and Mach stems. The driver plates and Mach stems are capable of inducing shocks that will either completely or partially vaporize aluminum, iron, lithium, barium, strontium, thorium, and uranium.

Plane-Wave Vaporization

For the following calculations it is assumed that a quantity of an explosive such as 9404 (plastic bonded HMX) is plane-detonated to accelerate a flyer plate to speeds in the 4 to 5 km/sec range (see Fig. 1). The flyer plate either impacts the metal to be vaporized directly, or it impacts an impedance-matching driver plate upon which the sample is placed. In determining the conditions required for vaporization as a result of shock compression and subsequent rarefaction, it is assumed that all the entropy production results only from the shock compression process. In essence then, it is assumed that the rarefaction process is isentropic. In principle it is possible that the total entropy within a control volume could increase during the rarefaction process (and the process remain strictly adiabatic); however, it is assumed that any increase in entropy upon

![Fig. 1. Shot assembly for the plan-wave experiment.](image-url)
rarefaction will be small compared to the shock-induced entropy.

Thus the tactic followed is to calculate the entropy increase resulting from shock compression of both initially single-crystal density and initially porous metals. Entropy production in porous metals is investigated because, although for a given explosive system the maximum shock pressure that may be achieved is lower than that achievable in a similar sample, with initially single-crystal density the specific entropy production may under certain conditions be greater than for the solid sample. Since we are assuming that, upon rarefaction from the high pressure shock state, entropy is conserved (isentropic release), the entropy increase with temperature near or at ambient pressure is also calculated. Of specific interest are the values of the entropy of the liquid metal at the point of incipient boiling, i.e., the start of vaporization, and the entropy for complete vaporization. According to arguments given by Zeldovich and Raizer, the internal energy achieved by the metallic elements in the region of the vapor-liquid critical point are on the order of twice their binding energy. From this they conclude that metals achieving entropies appropriate to this state will, upon expansion, ultimately be completely vaporized. Therefore, by equating calculated

Fig. 2. Thermodynamic diagram representing various paths for vaporization.
entropies in the high-pressure shock state with those achieved by increasing the temperature at ambient pressure, the range of states in the solid that have sufficient entropy to result in incipient, partial, or complete vaporization upon isentropic pressure release may be determined.

The behavior upon being shocked to high pressure of a metal with various initial porosities is illustrated in Fig. 2. When samples initially having the single-crystal molar volume, point 0', are singly shocked, they achieve states such as D along the principal Hugoniot curve.

In the present calculations, initial equation-of-state data in the form of smoothed principal Hugoniot curves and calculated shock temperatures are assumed. Several nearly equivalent methods for smoothing experimental Hugoniot data and carrying out the shock temperature calculations have been reported, e.g., Zeldovich and Raizer, Rice et al., and Walsh and Christian. In addition, the Debye model is assumed to describe the solid's thermal properties at temperatures substantially below the Debye temperature. However, over most of the temperature range of interest, the solid has achieved the Dulong-Petit specific heat value, and thus this assumption is of little consequence.

To relate changes in thermal pressure with the changes in thermal energy content of the compressed solid, the Mie-Grüneisen equation of state is assumed. Thus γ, the Grüneisen parameter is given by

$$\gamma = \frac{V}{\frac{\partial p}{\partial V}}$$

where p is pressure and E is internal energy. The assumption that

$$\gamma = \gamma(V)$$

is demonstratively inadequate, particularly at very high shock-induced temperatures. Although in the present report we employ only the assumption embodied by Eq. (2), we discuss the difficulty that arises from this assumption later in this section.

In the calculation of shock-induced entropy production we employ, at each volume, the Dugdale-MacDonald (Grover et al.) values of γ where it has been specified in the published reduction of the Hugoniot data. For several metals where $\gamma(V)$ is not explicitly given, we used the assumption that γ/V remains a constant with compression; the zero-pressure

Calculation of Entropy Upon Shocking Solid and Porous Metals

In the calculation of shock-induced entropy production we employ, at each volume, the Dugdale-MacDonald (Grover et al.) values of γ where it has been specified in the published reduction of the Hugoniot data. For several metals where $\gamma(V)$ is not explicitly given, we used the assumption that γ/V remains a constant with compression; the zero-pressure
value of this quantity is adopted. In any case we use this assumption to estimate the variation of the Debye temperature, \(\theta \), with compression. We note that if the Debye model for the phonon spectral density is assumed, it follows that

\[
\gamma = -\partial \ln \theta / \partial \ln V, \tag{3}
\]

which upon integration yields

\[
\theta = \theta_0 \exp[\gamma(1 - V/V_0)], \tag{4}
\]

where \(\theta_0 \) and \(V_0 \) are the Debye temperature and molar volume at the reference state. In order to calculate entropy at Hugoniot points such as \(D, D' \) and \(D'' \) (Fig. 2), it is convenient to initially calculate the entropy along the principal Hugoniot, \(O'D \) via the thermodynamic path, \(O'OCP \). This calculation is straightforward, as the entropy increase along \(OC \)—the \(0^\circ \)K isotherm—is zero by the third law. Thus the entropy increase occurs only at constant volume along \(CD \) and is given by

\[
dS_{CD} = \int_0^{T_h} \frac{C_V'(\theta/T)}{T} dT, \tag{5}
\]

where \(C_V \) is the specific heat at constant volume. Since the results of this integral for a Debye solid are tabulated by Furukawa and Douglas, in practice a simple look-up and interpolation routine is employed (see the appendix). Shock temperatures, \(T_h \), for each metal studied, have been taken from the literature and are given later in the section on "Entropy Production in Porous Metals by Plane Shocks." Alternately, the entropy increase along \(CD \) can be calculated from the empirical formula (derived from the Debye model)

\[
S_{CD} = 5.9587 \ln(T_h/\theta) + 1.3296 + \frac{\theta}{T_h} \left[0.000322 + \frac{\theta}{T_h} \left(0.024386 + \frac{\theta}{T_h} \right) - 0.0007624 \right. \\
+ \frac{\theta}{T_h} \left[9.3 \times 10^{-5} - \frac{\theta}{T_h} \right] \\
\times 3.835 \times 10^{-6} \right] \text{cal/mole} \text{ } ^\circ \text{K}. \tag{6}
\]

For shock temperatures greater than 10, we assume a value for \(C_V \) of 3R (where R is the gas constant). The entropy increase is then given by

\[
\Delta S_{CD} = 21.65 + 3R \ln \left(\frac{T_h}{10^6} \right) \text{cal/mole} \text{ } ^\circ \text{K}, \tag{7}
\]

where the constant 21.65 is the entropy at 10(\(\theta/T \)). As can be seen in Tables 3 and 4, the calculated entropies along the principal Hugoniot for aluminum and iron are very close to those that were calculated by a fundamentally equivalent procedure by McQueen et al. for similar-density iron and aluminum alloys. Probably due to the marked dilution of uranium by molybdenum (refer to Table 7), the agreement between the present uranium calculation and the results for U/Mo is relatively poor.

To calculate the Hugoniot pressures achieved at a given molar volume by metals with different initial porosities, we employ the Rankine-Hugoniot equation for conservation of energy,

\[
E_x = E_0 + \frac{1}{2} p_x (mV_0 - V), \tag{8}
\]

and the Mie-Grüneisen equation,

\[
P_x - p_y = \frac{\gamma}{\nu} (E_x - E_y), \tag{9}
\]

where \(E_x \) and \(p_x \) and \(E_y \) and \(p_y \) are the internal energies and shock pressures associated with two shock states achieved.
at the same molar volume. E_0 is the internal energy at the reference state, which for porous metals is assumed to be independent of initial porosity. Thus the surface energy associated with the initial distention of the sample is assumed to be negligible compared to the pertinent shock energies. We further assume that the porous metal is sufficiently fine-grained so that upon being encompassed by a shock, individual particles come to thermal equilibrium on a time scale comparable to the shock rise-time (approximately 0.01 μsec). Also implicit in this formulation is the assumption that the shock pressures of interest greatly exceed the crushing strength of the initial sample pore structure.

If a porous sample with an initial molar volume $m_0 V_0$ is shocked to a specific volume, V, the resulting Hugoniot pressure, p_m, is related to the pressure along the principal Hugoniot, p_h, at the same volume by

$$p_m = p_h \left[1 + \frac{(m - 1)V_0}{V} \right] \times [2\gamma - m V_0/V + 1]^{-1}. \quad (10)$$

In the case where the material of interest has a very large initial distention, a problem arises in the calculation of the Hugoniot at such points as E and E' (see Fig. 2). At these points the Hugoniot assumes a slope of $-\infty$, and at higher pressures the shock pressure becomes double valued with respect to volume. In general this situation will occur at pressures above which the condition

$$m = \frac{V}{\gamma V_0} (2 + \gamma) \quad (11)$$

is satisfied. Above this point the simple Mie-Grüneisen equation cannot be applied. As discussed earlier in this section, this has restricted our calculations to a lower range of porosities in several metals.

The shock temperature in the initially porous solid is related to the temperature along the principal Hugoniot at the same volume by

$$T_m = \frac{(p_m - p_h)V}{3\gamma R}, \quad (12)$$

where we have assumed that above all principal Hugoniot temperatures of interest, the specific heat has assumed the Dulong-Petit value. Within this same assumption, at a given volume the increase in entropy of the initially porous sample is given by

$$S_{D-D'} = 3R \ln \left(\frac{T_m}{T_h} \right). \quad (13)$$

Calculation of Entropy Required for Vaporization

The entropy increase required to produce incipient vaporization (i.e., raise a metal to the boiling point) at standard pressure is given in Table 1, where it has been collected from data presented in several thermodynamic tabulations. Generally the uncertainties in the entropies at ambient pressure are less than those calculated along the Hugoniot. Aside from experimental uncertainties in the shock data themselves, the major uncertainties in the Hugoniot entropies arise from the lack of direct knowledge of the high-pressure Grüneneisen parameter and the degree to which the Mie-Grüneneisen equation describes reality. Uncertainties
Table 1. Thermal properties of metals pertinent to shock-induced melting and vaporization

<table>
<thead>
<tr>
<th>Element</th>
<th>Entropy at STP (cal/mol·°K)</th>
<th>Temp (°K)</th>
<th>Entropy, incipient melting (cal/mol·°K)</th>
<th>Entropy, complete melting (cal/mol·°K)</th>
<th>Entropy, incipient boiling (cal/mol·°K)</th>
<th>Temp (°K)</th>
<th>Entropy, complete vaporization (cal/mol·°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>6.77</td>
<td>333</td>
<td>14.30</td>
<td>17.06</td>
<td></td>
<td>2793</td>
<td>25.38</td>
</tr>
<tr>
<td>Fe</td>
<td>6.52</td>
<td>1809</td>
<td>22.02</td>
<td>23.84</td>
<td></td>
<td>3136</td>
<td>29.89</td>
</tr>
<tr>
<td>Ba</td>
<td>7.106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>12.76</td>
<td>2028</td>
<td>29.18</td>
<td>31.08</td>
<td></td>
<td>5061</td>
<td>41.13</td>
</tr>
<tr>
<td>U</td>
<td>12.02</td>
<td>1405</td>
<td>27.04</td>
<td>28.40</td>
<td></td>
<td>4107</td>
<td>41.58</td>
</tr>
<tr>
<td>Pb</td>
<td>15.55</td>
<td>601</td>
<td>20.19</td>
<td>22.10</td>
<td></td>
<td>2023</td>
<td>30.60</td>
</tr>
<tr>
<td>Sr</td>
<td>12.50</td>
<td>1041</td>
<td>20.77</td>
<td>22.10</td>
<td></td>
<td>1657</td>
<td>28</td>
</tr>
<tr>
<td>Li</td>
<td>7.00</td>
<td>454</td>
<td>9.67</td>
<td>11.25</td>
<td></td>
<td>1615</td>
<td>20.10</td>
</tr>
</tbody>
</table>

Data were taken from Ref. 7 for all elements except Sr, whose data were taken from Ref. 9.

in the entropy along the Hugoniot, reflecting uncertainties in \(\gamma \), are generally on the order of \(\pm 10\% \), but these can approach \(\pm 20\% \) or more for large compressions, except for the case of aluminum and iron, for which high-pressure data for \(\gamma \) are reported (Anderson et al.; McQueen et al.).

The entropy increases upon being brought to the boiling point have only recently been determined in the case of barium and thorium. The values given in Table 1 are (except for the case of strontium) taken from the recent revision of the thermodynamic properties given by Hultgren et al. We have used the entropy calculated for high temperatures at 1 atm realizing that this value will provide a moderate overestimate of the shock strength required to deliver metal gas in a vacuum.

Flyer Plate Impact Velocities Required for Shock Vaporization

The highest flyer plate velocities achievable by the suggested explosive system shown in Fig. 1 are in the 4-5 km/sec range, depending ultimately on the ratio of the mass per unit area of explosive to that of the flyer plate. A modest increase in velocity, to perhaps 6 km/sec, can probably be achieved by using the multiple-staging technique described by Balchan. This latter technique will, of course, sharply reduce the total mass of the final flyer plate.

The shock entropies that can be achieved by either a single-stage technique (in which a high-impedance flyer plate, presumably tungsten or palladium, directly impacts the sample) or a simple system (using a driver plate of shock impedance intermediate between the flyer and sample) have been calculated and are discussed in the next section.
Entropy Production in Porous Metals by Plane Shocks

Theoretical Hugoniots for various initial sample porosities and the resulting entropies achieved with different flyer-plate systems are calculated using the relations given in the previous section with Fortran IV program ENT in the appendix. Although it is unlikely that aluminum flyer plates would be used for any optimum system, they are considered because the shock state induced by a 2024 aluminum flyer plate, impacting at a given velocity, closely approximates the free-surface velocity of an aluminum driver plate that might be used in a real system. Hugoniot data for the flyer plate materials, fitted to a third-order polynomial in the pressure-particle velocity plane are taken from the compilation of McQueen et al. 6

The entropies, shock pressures, and shock particle velocities achieved along the principal and porous Hugoniots for aluminum, iron, thorium, uranium, strontium, and lithium are shown in Tables 2 through 8. Entropies achievable in each of these materials with 2024 aluminum, iron, or tungsten flyer (or, of course, driver) plates are shown in Figs. 3(a,b,c) to 9(a,b,c) as a function of initial distention. Hugoniot data for pure aluminum and pure uranium are inferred by correcting the data for 2024 alloy and U/Mo alloy (McQueen et al. 5) for initial density. Data for thorium is reported by McQueen and Marsh. 14 Unpublished data (McQueen and Marsh) for barium and strontium was reduced by Rogers. 15 The reduction of the data of Rice 16 carried out by Grover, is employed for lithium.

As can be seen in Figs. 3 through 9, it appears that, within the context of the Mie-Grüneisen theory, for a given flyer-plate material and impact velocity, an optimum initial porosity of the target exists, such that the shock-induced entropy is a maximum. In some cases the degree of initial porosity is critical (e.g., for aluminum and iron, Figs. 3 and 4) to the achievement of partial vaporization.

ALUMINUM

The results shown in Figs. 3(b) and 3(c) demonstrate that the optimum vaporization for 4- or 5-km/sec impacts is approximately m = 1.6 for iron and closer to m = 1.7 or m = 1.8 for tungsten flyer plates. However, only approximately 5% vaporization results from the impact of a 5-km/sec tungsten plate into a material for which m = 1.6. Calculations for larger initial porosities should be carried out above the point where the Hugoniot becomes double valued. This is outside the context of the Mie-Grüneisen assumption.

IRON

Similarly, optimum initial distentions required for vaporization for 4- to 5-km/sec iron and tungsten flyer plates (see Figs. 4(b) and 4(c)) are, respectively, m = 1.6 and 1.7. Vaporization is not achieved with a 5-km/sec aluminum flyer plate (see Fig. 4(a)). Approximately 10% vaporization is achieved upon the impact of a 5-km/sec plate into a material for which m ≈ 1.7. The impact of an 8-km/sec plate will result in approximately 30% vaporization.
Table 2. Shock-wave parameters and thermodynamic states for pure aluminum.

<table>
<thead>
<tr>
<th>Distention ratio (V_{dist}/V_0)</th>
<th>Compression (V/V_0)</th>
<th>Shock pressure (Mbar)</th>
<th>Principal Hugoniot shock temp (°K)</th>
<th>Grüneisen ratio</th>
<th>Debye temp (°K)</th>
<th>Shock-particle velocity (km/sec)</th>
<th>Entropy* (cal/mol-°K)</th>
<th>Porous Hugoniot shock temp (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.9039</td>
<td>0.100</td>
<td>374.0</td>
<td>1.808</td>
<td>424.2</td>
<td>0.596</td>
<td>7.38 (7.18)</td>
<td>374.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.9039</td>
<td>0.128</td>
<td>374.0</td>
<td>1.808</td>
<td>424.2</td>
<td>1.186</td>
<td>13.10</td>
<td>4556.4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9039</td>
<td>0.179</td>
<td>374.0</td>
<td>1.808</td>
<td>424.2</td>
<td>1.815</td>
<td>17.55</td>
<td>2637.3</td>
</tr>
<tr>
<td>1.6</td>
<td>0.9039</td>
<td>0.297</td>
<td>374.0</td>
<td>1.808</td>
<td>424.2</td>
<td>2.768</td>
<td>22.29</td>
<td>4508.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8424</td>
<td>0.200</td>
<td>568.0</td>
<td>1.885</td>
<td>478.7</td>
<td>1.080</td>
<td>8.40 (8.18)</td>
<td>1597.9</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8424</td>
<td>0.262</td>
<td>568.0</td>
<td>1.885</td>
<td>478.7</td>
<td>1.863</td>
<td>15.97</td>
<td>560.9</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8424</td>
<td>0.381</td>
<td>568.0</td>
<td>1.885</td>
<td>478.7</td>
<td>2.603</td>
<td>21.11</td>
<td>4201.9</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8424</td>
<td>0.695</td>
<td>568.0</td>
<td>1.885</td>
<td>478.7</td>
<td>4.415</td>
<td>26.64</td>
<td>10866.9</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7980</td>
<td>0.300</td>
<td>707.0</td>
<td>1.596</td>
<td>524.2</td>
<td>1.400</td>
<td>9.78 (9.54)</td>
<td>707.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7980</td>
<td>0.400</td>
<td>707.0</td>
<td>1.596</td>
<td>524.2</td>
<td>2.441</td>
<td>17.93</td>
<td>2771.9</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7980</td>
<td>0.602</td>
<td>707.0</td>
<td>1.596</td>
<td>524.2</td>
<td>3.661</td>
<td>23.37</td>
<td>6812.0</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7980</td>
<td>1.209</td>
<td>707.0</td>
<td>1.596</td>
<td>524.2</td>
<td>5.991</td>
<td>29.52</td>
<td>19416.1</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7636</td>
<td>0.400</td>
<td>968.0</td>
<td>1.527</td>
<td>561.6</td>
<td>1.071</td>
<td>11.22 (10.94)</td>
<td>968.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7636</td>
<td>0.542</td>
<td>968.0</td>
<td>1.527</td>
<td>561.6</td>
<td>2.059</td>
<td>19.46</td>
<td>3588.1</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7636</td>
<td>0.840</td>
<td>968.0</td>
<td>1.527</td>
<td>561.6</td>
<td>4.448</td>
<td>25.09</td>
<td>9927.5</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7636</td>
<td>1.867</td>
<td>968.0</td>
<td>1.527</td>
<td>561.6</td>
<td>7.602</td>
<td>31.84</td>
<td>30236.7</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7358</td>
<td>0.500</td>
<td>1268.0</td>
<td>1.472</td>
<td>593.7</td>
<td>2.211</td>
<td>12.46 (12.24)</td>
<td>1268.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7358</td>
<td>0.687</td>
<td>1268.0</td>
<td>1.472</td>
<td>593.7</td>
<td>3.435</td>
<td>20.71</td>
<td>13325.4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7358</td>
<td>1.096</td>
<td>1268.0</td>
<td>1.472</td>
<td>593.7</td>
<td>5.190</td>
<td>26.49</td>
<td>5504.6</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7358</td>
<td>2.709</td>
<td>1268.0</td>
<td>1.472</td>
<td>593.7</td>
<td>9.306</td>
<td>33.87</td>
<td>45990.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6839</td>
<td>0.750</td>
<td>2290.0</td>
<td>1.368</td>
<td>658.6</td>
<td>2.962</td>
<td>15.36 (14.97)</td>
<td>2290.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6839</td>
<td>1.060</td>
<td>2290.0</td>
<td>1.368</td>
<td>658.6</td>
<td>4.500</td>
<td>23.19</td>
<td>8521.4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6839</td>
<td>1.807</td>
<td>2290.0</td>
<td>1.368</td>
<td>658.6</td>
<td>6.920</td>
<td>29.24</td>
<td>23532.6</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6839</td>
<td>6.113</td>
<td>2290.0</td>
<td>1.368</td>
<td>658.6</td>
<td>14.397</td>
<td>36.44</td>
<td>110110.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6472</td>
<td>1.000</td>
<td>3540.0</td>
<td>1.294</td>
<td>708.8</td>
<td>3.113</td>
<td>17.51 (17.06)</td>
<td>3540.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6472</td>
<td>1.447</td>
<td>3540.0</td>
<td>1.294</td>
<td>708.8</td>
<td>5.541</td>
<td>25.04</td>
<td>12517.7</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6472</td>
<td>2.816</td>
<td>3540.0</td>
<td>1.294</td>
<td>708.8</td>
<td>8.541</td>
<td>31.34</td>
<td>38022.4</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6472</td>
<td>13.712</td>
<td>3540.0</td>
<td>1.294</td>
<td>708.8</td>
<td>21.969</td>
<td>43.06</td>
<td>256711.9</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6244</td>
<td>1.200</td>
<td>4684.0</td>
<td>1.249</td>
<td>741.8</td>
<td>4.084</td>
<td>18.91 (18.42)</td>
<td>4684.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6244</td>
<td>1.766</td>
<td>4684.0</td>
<td>1.249</td>
<td>741.8</td>
<td>6.133</td>
<td>26.24</td>
<td>18027.5</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6244</td>
<td>3.339</td>
<td>4684.0</td>
<td>1.249</td>
<td>741.8</td>
<td>9.790</td>
<td>32.72</td>
<td>47591.0</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6244</td>
<td>30.707</td>
<td>4684.0</td>
<td>1.249</td>
<td>741.8</td>
<td>33.288</td>
<td>47.79</td>
<td>595573.5</td>
</tr>
</tbody>
</table>

*Values in parentheses were calculated by McQueen et al. (1970).

BARIUM

Because of the large compressions achieved for this metal, the Grüneisen parameter uncertainties are large. This and the uncertainty in the thermochemical data indicate that the present calculation should be accepted only on a very tentative basis. Taken at face value, the calculations indicate that 4- to 5-km/sec aluminum flyer plates will partially vaporize this metal for both $m = 1.0$ and $m = 1.2$ distentions. Iron and tungsten flyer plates should achieve vaporizations of approximately 50% at these speeds for distentions of $m = 1.2$ or greater.

THORIUM

The uncertainty in the boiling point of this metal gives rise to considerable uncertainty about the entropy required for incipient vaporization. For a 5-km/sec aluminum flyer plate the optimum distention
Table 3. Shock-wave parameters and thermodynamic states for pure iron.

<table>
<thead>
<tr>
<th>Distention ratio ((V/V_0))</th>
<th>Compression ((V/V_0))</th>
<th>Shock pressure ((\text{Mbar}))</th>
<th>Principal Hugoniot shock temp ((^\circ\text{C}))</th>
<th>Grünelsen ratio</th>
<th>Debye temp ((^\circ\text{C}))</th>
<th>Shock particle velocity ((\text{km/sec}))</th>
<th>Entropy (^\circ\text{cal mol}^{-1}\text{K}^{-1})</th>
<th>Porous Hugoniot shock temp ((^\circ\text{C}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.8803</td>
<td>0.200</td>
<td>416.0</td>
<td>1.488</td>
<td>214.2</td>
<td>0.552</td>
<td>11.92</td>
<td>11.05</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8803</td>
<td>0.246</td>
<td>416.0</td>
<td>1.488</td>
<td>214.2</td>
<td>1.002</td>
<td>18.27</td>
<td>1208.4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8803</td>
<td>0.321</td>
<td>416.0</td>
<td>1.488</td>
<td>214.2</td>
<td>1.457</td>
<td>22.55</td>
<td>2478.4</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8803</td>
<td>0.450</td>
<td>416.0</td>
<td>1.488</td>
<td>214.2</td>
<td>2.051</td>
<td>26.54</td>
<td>4843.8</td>
</tr>
<tr>
<td>1.8</td>
<td>0.8803</td>
<td>0.807</td>
<td>416.0</td>
<td>1.488</td>
<td>214.2</td>
<td>3.074</td>
<td>31.32</td>
<td>10796.8</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8215</td>
<td>0.400</td>
<td>657.0</td>
<td>1.388</td>
<td>236.6</td>
<td>0.954</td>
<td>14.03</td>
<td>14 (14.06)</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8215</td>
<td>0.499</td>
<td>657.0</td>
<td>1.388</td>
<td>236.6</td>
<td>1.552</td>
<td>21.61</td>
<td>2315.1</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8215</td>
<td>0.664</td>
<td>657.0</td>
<td>1.388</td>
<td>236.6</td>
<td>2.133</td>
<td>26.29</td>
<td>5149.5</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8215</td>
<td>0.893</td>
<td>657.0</td>
<td>1.388</td>
<td>236.6</td>
<td>3.138</td>
<td>30.67</td>
<td>10724.2</td>
</tr>
<tr>
<td>1.8</td>
<td>0.8215</td>
<td>1.961</td>
<td>657.0</td>
<td>1.388</td>
<td>236.6</td>
<td>4.945</td>
<td>36.21</td>
<td>27179.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7829</td>
<td>0.500</td>
<td>1007.0</td>
<td>1.323</td>
<td>252.6</td>
<td>1.288</td>
<td>16.17</td>
<td>18 (18.06)</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7829</td>
<td>0.757</td>
<td>1007.0</td>
<td>1.323</td>
<td>252.6</td>
<td>2.055</td>
<td>23.86</td>
<td>3659.4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7829</td>
<td>1.024</td>
<td>1007.0</td>
<td>1.323</td>
<td>252.6</td>
<td>2.837</td>
<td>28.66</td>
<td>8185.3</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7829</td>
<td>1.583</td>
<td>1007.0</td>
<td>1.323</td>
<td>252.6</td>
<td>4.050</td>
<td>33.24</td>
<td>17652.9</td>
</tr>
<tr>
<td>1.8</td>
<td>0.7829</td>
<td>2.213</td>
<td>1007.0</td>
<td>1.323</td>
<td>252.6</td>
<td>5.912</td>
<td>39.94</td>
<td>48888.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7544</td>
<td>0.800</td>
<td>1444.0</td>
<td>1.275</td>
<td>265.0</td>
<td>1.582</td>
<td>18.93</td>
<td>18 (18.06)</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7544</td>
<td>1.017</td>
<td>1444.0</td>
<td>1.275</td>
<td>265.0</td>
<td>2.403</td>
<td>25.56</td>
<td>5113.3</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7544</td>
<td>1.395</td>
<td>1444.0</td>
<td>1.275</td>
<td>265.0</td>
<td>3.387</td>
<td>30.40</td>
<td>11511.6</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7544</td>
<td>2.221</td>
<td>1444.0</td>
<td>1.275</td>
<td>265.0</td>
<td>4.691</td>
<td>35.13</td>
<td>25485.5</td>
</tr>
<tr>
<td>1.8</td>
<td>0.7544</td>
<td>3.443</td>
<td>1444.0</td>
<td>1.275</td>
<td>265.0</td>
<td>6.515</td>
<td>41.95</td>
<td>80012.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7317</td>
<td>1.000</td>
<td>2523.0</td>
<td>1.227</td>
<td>275.4</td>
<td>2.052</td>
<td>21.12</td>
<td>20 (20.97)</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7317</td>
<td>1.536</td>
<td>2523.0</td>
<td>1.227</td>
<td>275.4</td>
<td>3.027</td>
<td>28.14</td>
<td>8194.6</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7317</td>
<td>2.132</td>
<td>2523.0</td>
<td>1.227</td>
<td>275.4</td>
<td>4.296</td>
<td>32.92</td>
<td>18270.2</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7317</td>
<td>3.445</td>
<td>2523.0</td>
<td>1.227</td>
<td>275.4</td>
<td>6.208</td>
<td>37.75</td>
<td>41134.7</td>
</tr>
<tr>
<td>1.8</td>
<td>0.7317</td>
<td>5.538</td>
<td>2523.0</td>
<td>1.227</td>
<td>275.4</td>
<td>11.393</td>
<td>46.69</td>
<td>330765.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8558</td>
<td>2.000</td>
<td>5264.0</td>
<td>1.113</td>
<td>311.5</td>
<td>2.948</td>
<td>24.78</td>
<td>24.78</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8558</td>
<td>2.523</td>
<td>5264.0</td>
<td>1.113</td>
<td>311.5</td>
<td>4.252</td>
<td>31.52</td>
<td>15783.1</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8558</td>
<td>3.809</td>
<td>5264.0</td>
<td>1.113</td>
<td>311.5</td>
<td>5.997</td>
<td>36.30</td>
<td>35816.6</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8558</td>
<td>6.554</td>
<td>5264.0</td>
<td>1.113</td>
<td>311.5</td>
<td>9.131</td>
<td>43.42</td>
<td>88931.4</td>
</tr>
<tr>
<td>1.8</td>
<td>0.8558</td>
<td>10.455</td>
<td>5264.0</td>
<td>1.113</td>
<td>311.5</td>
<td>17.270</td>
<td>49.69</td>
<td>330765.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6256</td>
<td>2.400</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>3.233</td>
<td>26.14</td>
<td>26 (26.16)</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6256</td>
<td>3.171</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>4.762</td>
<td>32.49</td>
<td>19973.1</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6256</td>
<td>4.674</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>6.732</td>
<td>37.39</td>
<td>45241.4</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6256</td>
<td>8.880</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>10.427</td>
<td>43.01</td>
<td>116570.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6388</td>
<td>8.875</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>10.427</td>
<td>43.01</td>
<td>116570.3</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6388</td>
<td>11.197</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>14.472</td>
<td>53.46</td>
<td>283698.5</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6388</td>
<td>22.146</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>28.943</td>
<td>63.92</td>
<td>1352816.6</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6388</td>
<td>44.292</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>58.195</td>
<td>74.37</td>
<td>504593.6</td>
</tr>
<tr>
<td>1.8</td>
<td>0.6388</td>
<td>88.614</td>
<td>6846.0</td>
<td>1.080</td>
<td>322.2</td>
<td>116.390</td>
<td>84.83</td>
<td>1698976.6</td>
</tr>
</tbody>
</table>

Values in parentheses were calculated by McQueen et al. (1970) for 1018 alloy.
is approximately 1.8 (see Fig. 6(a), but this probably will not induce even partial vaporization. For 4- to 5-km/sec iron flyer plates the optimum distention is 1.8 to 2.0, which will induce partial vaporization (see Fig. 6(b)). Tungsten plates fired at samples with distentions greater than 2.0 will induce maximum, but probably only 5% vaporization (see Fig. 6(c)).

URANIUM

The Mie-Grüneisen equation sharply limits the present calculations to shocks in a regime of lower entropy than required for partial vaporization. This metal is a good candidate for Mach-stem vaporization, which is discussed in the following sections. Extrapolating the results of Fig. 7(c) suggests that a 4- or 5-km/sec tungsten plate fired at a 1.8 distention target may induce some partial vaporization. This, however, is a very tentative speculation.

LITHIUM

As evident from Fig. 8, lithium is surprisingly difficult to vaporize with a plane-wave system. For the range of distention up to a value of 1.6, no flyer plate is capable of shocking the material to even induce partial vaporization; therefore lithium is another good candidate for Mach-stem vaporization.

STRONTIUM

Substantial quantities of strontium vapor can be produced by shocking either initially solid or distention 1.2 samples with 4- or 5-km/sec tungsten or iron flyer plates (see Figs. 9(a) and 9(b)). As for the other compressible metals, the Mie-Grüneisen theory is not usable for greater porosities. Although the limited range explored suggests rather high porosities, m = 1.6 may be optimum for vapor production.

Table 4. Shock-wave parameters and thermodynamic states for barium.

<table>
<thead>
<tr>
<th>Distention ratio (V/V₀)</th>
<th>Compression (V/V₀)</th>
<th>Shock pressure (Mbar)</th>
<th>Principal Hugoniot shock temp (°K)</th>
<th>Grüneisen ratio</th>
<th>Debye temp (°K)</th>
<th>Shock particle velocity (km/sec)</th>
<th>Entropy (cal/mol-°K)</th>
<th>Porous Hugoniot shock temp (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.6850</td>
<td>0.0510</td>
<td>1035.0</td>
<td>1.343</td>
<td>172.5</td>
<td>0.688</td>
<td>18.60</td>
<td>1035.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6850</td>
<td>0.0734</td>
<td>1035.0</td>
<td>1.343</td>
<td>172.5</td>
<td>1.058</td>
<td>24.49</td>
<td>2779.1</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5810</td>
<td>0.1020</td>
<td>2328.0</td>
<td>1.270</td>
<td>187.3</td>
<td>1.103</td>
<td>22.95</td>
<td>2329.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5810</td>
<td>0.1700</td>
<td>2328.0</td>
<td>1.270</td>
<td>187.3</td>
<td>1.736</td>
<td>39.74</td>
<td>7280.4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4720</td>
<td>0.3030</td>
<td>9457.0</td>
<td>1.148</td>
<td>201.5</td>
<td>2.335</td>
<td>30.86</td>
<td>9457.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.4720</td>
<td>0.4960</td>
<td>9457.0</td>
<td>1.148</td>
<td>201.5</td>
<td>4.406</td>
<td>40.83</td>
<td>50379.1</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4330</td>
<td>0.5040</td>
<td>17918.0</td>
<td>1.093</td>
<td>204.7</td>
<td>2.355</td>
<td>34.58</td>
<td>17918.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.4330</td>
<td>4.5689</td>
<td>17918.0</td>
<td>1.093</td>
<td>204.7</td>
<td>51.29</td>
<td>295978.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 5. Shock-wave parameters and thermodynamic states for thorium.

<table>
<thead>
<tr>
<th>Distention ratio (\frac{V_0}{V_f})</th>
<th>Compression (\frac{V_0}{V_f})</th>
<th>Shock pressure (Mbar)</th>
<th>Hugoniot shock temp (°K)</th>
<th>Debye temp (°K)</th>
<th>Shock particle velocity (km/sec)</th>
<th>Entropy (cal/mol•°K)</th>
<th>Porous Hugoniot shock temp (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.7950</td>
<td>0.200</td>
<td>667.0</td>
<td>1.000</td>
<td>208.7</td>
<td>0.592</td>
<td>14.86</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7850</td>
<td>0.234</td>
<td>667.0</td>
<td>1.000</td>
<td>208.7</td>
<td>0.600</td>
<td>23.44</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7950</td>
<td>0.261</td>
<td>667.0</td>
<td>1.000</td>
<td>208.7</td>
<td>1.207</td>
<td>27.78</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7950</td>
<td>0.353</td>
<td>667.0</td>
<td>1.000</td>
<td>208.7</td>
<td>1.559</td>
<td>31.22</td>
</tr>
<tr>
<td>1.8</td>
<td>0.7950</td>
<td>0.474</td>
<td>667.0</td>
<td>1.000</td>
<td>208.7</td>
<td>2.018</td>
<td>34.52</td>
</tr>
<tr>
<td>2.0</td>
<td>0.7950</td>
<td>0.719</td>
<td>667.0</td>
<td>1.000</td>
<td>208.7</td>
<td>2.724</td>
<td>38.24</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7070</td>
<td>0.400</td>
<td>1577.0</td>
<td>0.890</td>
<td>206.0</td>
<td>1.002</td>
<td>19.64</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7070</td>
<td>0.473</td>
<td>1577.0</td>
<td>0.890</td>
<td>206.0</td>
<td>1.413</td>
<td>27.81</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7070</td>
<td>0.579</td>
<td>1577.0</td>
<td>0.890</td>
<td>206.0</td>
<td>1.853</td>
<td>32.17</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7070</td>
<td>1.045</td>
<td>1577.0</td>
<td>0.890</td>
<td>206.0</td>
<td>3.128</td>
<td>39.27</td>
</tr>
<tr>
<td>1.8</td>
<td>0.7070</td>
<td>1.752</td>
<td>1577.0</td>
<td>0.890</td>
<td>206.0</td>
<td>4.405</td>
<td>43.56</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6520</td>
<td>0.600</td>
<td>2708.0</td>
<td>0.820</td>
<td>256.1</td>
<td>1.337</td>
<td>22.72</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6520</td>
<td>0.715</td>
<td>2708.0</td>
<td>0.820</td>
<td>256.1</td>
<td>1.832</td>
<td>30.51</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6520</td>
<td>0.885</td>
<td>2708.0</td>
<td>0.820</td>
<td>256.1</td>
<td>2.381</td>
<td>34.46</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6520</td>
<td>1.161</td>
<td>2708.0</td>
<td>0.820</td>
<td>256.1</td>
<td>3.069</td>
<td>38.50</td>
</tr>
<tr>
<td>1.8</td>
<td>0.6520</td>
<td>1.685</td>
<td>2708.0</td>
<td>0.820</td>
<td>256.1</td>
<td>4.070</td>
<td>42.23</td>
</tr>
<tr>
<td>2.0</td>
<td>0.6520</td>
<td>3.077</td>
<td>2708.0</td>
<td>0.820</td>
<td>256.1</td>
<td>5.859</td>
<td>47.02</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6140</td>
<td>0.800</td>
<td>3659.0</td>
<td>0.770</td>
<td>256.8</td>
<td>1.826</td>
<td>24.46</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6140</td>
<td>0.959</td>
<td>3659.0</td>
<td>0.770</td>
<td>256.8</td>
<td>2.193</td>
<td>33.23</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6140</td>
<td>1.196</td>
<td>3659.0</td>
<td>0.770</td>
<td>256.8</td>
<td>2.837</td>
<td>38.74</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6140</td>
<td>1.588</td>
<td>3659.0</td>
<td>0.770</td>
<td>256.8</td>
<td>3.862</td>
<td>40.46</td>
</tr>
<tr>
<td>1.8</td>
<td>0.6140</td>
<td>2.366</td>
<td>3659.0</td>
<td>0.770</td>
<td>256.8</td>
<td>4.801</td>
<td>44.34</td>
</tr>
<tr>
<td>2.0</td>
<td>0.6140</td>
<td>4.631</td>
<td>3659.0</td>
<td>0.770</td>
<td>256.8</td>
<td>7.413</td>
<td>49.55</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5850</td>
<td>1.000</td>
<td>5091.0</td>
<td>0.740</td>
<td>231.1</td>
<td>1.885</td>
<td>26.38</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5850</td>
<td>1.207</td>
<td>5091.0</td>
<td>0.740</td>
<td>231.1</td>
<td>2.521</td>
<td>32.92</td>
</tr>
<tr>
<td>1.4</td>
<td>0.5850</td>
<td>2.060</td>
<td>5091.0</td>
<td>0.740</td>
<td>231.1</td>
<td>4.231</td>
<td>42.13</td>
</tr>
<tr>
<td>1.6</td>
<td>0.5850</td>
<td>3.185</td>
<td>5091.0</td>
<td>0.740</td>
<td>231.1</td>
<td>5.756</td>
<td>46.22</td>
</tr>
<tr>
<td>1.8</td>
<td>0.5850</td>
<td>7.021</td>
<td>5091.0</td>
<td>0.740</td>
<td>231.1</td>
<td>9.223</td>
<td>52.12</td>
</tr>
<tr>
<td>2.0</td>
<td>0.5850</td>
<td>1.200</td>
<td>7239.0</td>
<td>0.710</td>
<td>232.0</td>
<td>1.212</td>
<td>26.42</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5440</td>
<td>1.400</td>
<td>9666.0</td>
<td>0.680</td>
<td>231.8</td>
<td>2.328</td>
<td>30.16</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5440</td>
<td>1.697</td>
<td>9666.0</td>
<td>0.680</td>
<td>231.8</td>
<td>3.047</td>
<td>36.62</td>
</tr>
<tr>
<td>1.4</td>
<td>0.5440</td>
<td>2.153</td>
<td>9666.0</td>
<td>0.680</td>
<td>231.8</td>
<td>3.972</td>
<td>40.89</td>
</tr>
<tr>
<td>1.6</td>
<td>0.5440</td>
<td>2.944</td>
<td>9666.0</td>
<td>0.680</td>
<td>231.8</td>
<td>5.159</td>
<td>44.55</td>
</tr>
<tr>
<td>1.8</td>
<td>0.5440</td>
<td>4.658</td>
<td>9666.0</td>
<td>0.680</td>
<td>231.8</td>
<td>7.067</td>
<td>48.70</td>
</tr>
<tr>
<td>2.0</td>
<td>0.5440</td>
<td>11.122</td>
<td>9666.0</td>
<td>0.680</td>
<td>231.8</td>
<td>11.775</td>
<td>55.04</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5350</td>
<td>1.500</td>
<td>10980.0</td>
<td>0.670</td>
<td>232.1</td>
<td>2.444</td>
<td>30.91</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5350</td>
<td>1.822</td>
<td>10980.0</td>
<td>0.670</td>
<td>232.1</td>
<td>3.221</td>
<td>37.18</td>
</tr>
<tr>
<td>1.4</td>
<td>0.5350</td>
<td>2.320</td>
<td>10980.0</td>
<td>0.670</td>
<td>232.1</td>
<td>4.145</td>
<td>41.33</td>
</tr>
<tr>
<td>1.6</td>
<td>0.5350</td>
<td>3.192</td>
<td>10980.0</td>
<td>0.670</td>
<td>232.1</td>
<td>5.395</td>
<td>45.09</td>
</tr>
<tr>
<td>1.8</td>
<td>0.5350</td>
<td>5.114</td>
<td>10980.0</td>
<td>0.670</td>
<td>232.1</td>
<td>7.442</td>
<td>49.31</td>
</tr>
<tr>
<td>2.0</td>
<td>0.5350</td>
<td>12.862</td>
<td>10980.0</td>
<td>0.670</td>
<td>232.1</td>
<td>12.702</td>
<td>55.95</td>
</tr>
</tbody>
</table>

-12-
Table 6. Shock-wave parameters and thermodynamic states for pure uranium.

<table>
<thead>
<tr>
<th>Distention ratio (v_0/v_0)</th>
<th>Compression ((V/V_0))</th>
<th>Shock pressure ((\text{Gbar}))</th>
<th>Principal Hugoniot shock temp ((^\circ\text{K}))</th>
<th>Gruneisen ratio</th>
<th>Debye temp ((^\circ\text{K}))</th>
<th>Shock particle velocity ((\text{km/sec}))</th>
<th>Entropy* ((\text{cal/mol} \cdot ^\circ\text{K}))</th>
<th>Porous Hugoniot shock temp ((^\circ\text{K}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.6872</td>
<td>0.200</td>
<td>436.0</td>
<td>1.801</td>
<td>345.8</td>
<td>0.344</td>
<td>9.40 (10.81)</td>
<td>436.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8872</td>
<td>0.259</td>
<td>436.0</td>
<td>1.801</td>
<td>345.8</td>
<td>0.653</td>
<td>15.22</td>
<td>1950.8</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8872</td>
<td>0.369</td>
<td>458.0</td>
<td>1.801</td>
<td>345.8</td>
<td>0.979</td>
<td>23.62</td>
<td>4748.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8241</td>
<td>0.400</td>
<td>759.0</td>
<td>1.679</td>
<td>393.0</td>
<td>0.608</td>
<td>11.88 (13.65)</td>
<td>759.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8241</td>
<td>0.531</td>
<td>759.0</td>
<td>1.679</td>
<td>393.0</td>
<td>1.024</td>
<td>21.85</td>
<td>4046.3</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8241</td>
<td>0.791</td>
<td>759.0</td>
<td>1.677</td>
<td>393.0</td>
<td>1.568</td>
<td>27.58</td>
<td>10540.1</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8159</td>
<td>0.600</td>
<td>1287.0</td>
<td>1.856</td>
<td>396.6</td>
<td>0.761</td>
<td>14.81 (16.50)</td>
<td>1287.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8159</td>
<td>0.800</td>
<td>1287.0</td>
<td>1.856</td>
<td>396.6</td>
<td>1.270</td>
<td>24.29</td>
<td>6971.8</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8159</td>
<td>1.198</td>
<td>1287.0</td>
<td>1.855</td>
<td>396.6</td>
<td>1.817</td>
<td>34.08</td>
<td>18105.8</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7245</td>
<td>1.000</td>
<td>2737.0</td>
<td>1.471</td>
<td>481.1</td>
<td>1.203</td>
<td>18.29 (21.00)</td>
<td>2737.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7245</td>
<td>1.392</td>
<td>2737.0</td>
<td>1.471</td>
<td>481.1</td>
<td>1.864</td>
<td>27.31</td>
<td>12443.4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7245</td>
<td>2.291</td>
<td>2737.0</td>
<td>1.471</td>
<td>481.1</td>
<td>2.851</td>
<td>33.42</td>
<td>34885.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6795</td>
<td>1.500</td>
<td>5219.0</td>
<td>1.379</td>
<td>527.1</td>
<td>1.589</td>
<td>21.59 (24.75)</td>
<td>5219.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6795</td>
<td>2.146</td>
<td>5219.0</td>
<td>1.379</td>
<td>527.1</td>
<td>2.421</td>
<td>29.93</td>
<td>21168.8</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6795</td>
<td>3.767</td>
<td>5219.0</td>
<td>1.379</td>
<td>527.1</td>
<td>3.734</td>
<td>36.26</td>
<td>61219.8</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6485</td>
<td>2.000</td>
<td>8225.0</td>
<td>1.316</td>
<td>561.3</td>
<td>1.821</td>
<td>23.93 (27.43)</td>
<td>8225.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6485</td>
<td>2.922</td>
<td>8225.0</td>
<td>1.316</td>
<td>561.3</td>
<td>2.800</td>
<td>31.83</td>
<td>31002.0</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6485</td>
<td>5.423</td>
<td>8225.0</td>
<td>1.316</td>
<td>561.3</td>
<td>4.625</td>
<td>38.36</td>
<td>92750.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6254</td>
<td>2.500</td>
<td>11622.0</td>
<td>1.270</td>
<td>588.3</td>
<td>2.217</td>
<td>25.71 (29.47)</td>
<td>11622.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6254</td>
<td>3.719</td>
<td>11622.0</td>
<td>1.270</td>
<td>588.3</td>
<td>3.349</td>
<td>33.32</td>
<td>41888.6</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6254</td>
<td>7.248</td>
<td>11622.0</td>
<td>1.270</td>
<td>586.3</td>
<td>5.420</td>
<td>40.04</td>
<td>128850.4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6072</td>
<td>3.000</td>
<td>15227.0</td>
<td>1.233</td>
<td>610.4</td>
<td>2.487</td>
<td>27.14 (31.12)</td>
<td>15227.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6072</td>
<td>4.529</td>
<td>15227.0</td>
<td>1.233</td>
<td>610.4</td>
<td>3.754</td>
<td>34.54</td>
<td>53070.2</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6072</td>
<td>9.238</td>
<td>15227.0</td>
<td>1.233</td>
<td>610.4</td>
<td>6.200</td>
<td>41.45</td>
<td>189304.5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5924</td>
<td>3.500</td>
<td>19282.0</td>
<td>1.203</td>
<td>629.0</td>
<td>2.737</td>
<td>28.32 (32.49)</td>
<td>19282.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5924</td>
<td>5.354</td>
<td>19282.0</td>
<td>1.203</td>
<td>629.0</td>
<td>4.132</td>
<td>35.37</td>
<td>65048.9</td>
</tr>
<tr>
<td>1.4</td>
<td>0.5924</td>
<td>11.382</td>
<td>19282.0</td>
<td>1.203</td>
<td>629.0</td>
<td>6.948</td>
<td>42.68</td>
<td>213981.4</td>
</tr>
</tbody>
</table>

*Values in parentheses were calculated by McQueen et al. (1970) for 97/3 uranium/molybdenum alloy.
Table 7. Shock-wave parameters and thermodynamic states for lithium.

<table>
<thead>
<tr>
<th>Distention ratio (V_0/V_0')</th>
<th>Compression (V/V_0)</th>
<th>Shock pressure (Mbar)</th>
<th>Principal Hugoniot shock temp (°K)</th>
<th>Grüneisen ratio</th>
<th>Debye temp (°K)</th>
<th>Shock particle velocity (km/sec)</th>
<th>Entropy (cal/mol-°K)</th>
<th>Porous Hugoniot shock temp (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.7510</td>
<td>0.0540</td>
<td>488.0</td>
<td>1.03</td>
<td>477.3</td>
<td>1.563</td>
<td>8.31</td>
<td>496.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7510</td>
<td>0.0646</td>
<td>488.0</td>
<td>1.03</td>
<td>477.3</td>
<td>2.339</td>
<td>12.00</td>
<td>925.4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7510</td>
<td>0.0804</td>
<td>488.0</td>
<td>1.03</td>
<td>477.3</td>
<td>3.317</td>
<td>15.12</td>
<td>1561.4</td>
</tr>
<tr>
<td>1.6</td>
<td>0.7510</td>
<td>0.1030</td>
<td>488.0</td>
<td>0.958</td>
<td>512.0</td>
<td>2.554</td>
<td>18.18</td>
<td>2608.4</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8610</td>
<td>0.1263</td>
<td>777.0</td>
<td>0.898</td>
<td>512.0</td>
<td>3.583</td>
<td>15.05</td>
<td>1675.2</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8610</td>
<td>0.1857</td>
<td>777.0</td>
<td>0.898</td>
<td>512.0</td>
<td>4.806</td>
<td>18.78</td>
<td>3133.9</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8610</td>
<td>0.2408</td>
<td>777.0</td>
<td>0.898</td>
<td>512.0</td>
<td>6.531</td>
<td>22.57</td>
<td>5015.8</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5860</td>
<td>0.1670</td>
<td>1287.0</td>
<td>0.889</td>
<td>535.9</td>
<td>3.603</td>
<td>13.17</td>
<td>1287.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5860</td>
<td>0.2150</td>
<td>1287.0</td>
<td>0.889</td>
<td>535.9</td>
<td>4.882</td>
<td>18.11</td>
<td>2948.7</td>
</tr>
<tr>
<td>1.4</td>
<td>0.5860</td>
<td>0.3016</td>
<td>1287.0</td>
<td>0.889</td>
<td>535.9</td>
<td>6.798</td>
<td>22.29</td>
<td>5950.0</td>
</tr>
<tr>
<td>1.6</td>
<td>0.5860</td>
<td>0.5054</td>
<td>1287.0</td>
<td>0.889</td>
<td>535.9</td>
<td>8.823</td>
<td>26.95</td>
<td>13006.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5280</td>
<td>0.2530</td>
<td>2133.0</td>
<td>0.846</td>
<td>551.5</td>
<td>4.747</td>
<td>15.99</td>
<td>2133.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5280</td>
<td>0.3408</td>
<td>2133.0</td>
<td>0.846</td>
<td>551.5</td>
<td>5.574</td>
<td>21.09</td>
<td>5020.6</td>
</tr>
<tr>
<td>1.4</td>
<td>0.5280</td>
<td>0.5220</td>
<td>2133.0</td>
<td>0.846</td>
<td>551.5</td>
<td>9.267</td>
<td>25.75</td>
<td>10978.2</td>
</tr>
<tr>
<td>1.6</td>
<td>0.5280</td>
<td>1.1144</td>
<td>2133.0</td>
<td>0.846</td>
<td>551.5</td>
<td>31.83</td>
<td>30458.2</td>
<td>30458.2</td>
</tr>
</tbody>
</table>

Table 8. Shock-wave parameters and thermodynamic states for pure aluminum.

<table>
<thead>
<tr>
<th>Distention ratio (V_0/V_0')</th>
<th>Compression (V/V_0)</th>
<th>Shock pressure (Mbar)</th>
<th>Principal Hugoniot shock temp (°K)</th>
<th>Grüneisen ratio</th>
<th>Debye temp (°K)</th>
<th>Shock particle velocity (km/sec)</th>
<th>Entropy (cal/mol-°K)</th>
<th>Porous Hugoniot shock temp (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.7150</td>
<td>0.059</td>
<td>738.3</td>
<td>1.138</td>
<td>203.3</td>
<td>0.805</td>
<td>15.62</td>
<td>738.3</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7150</td>
<td>0.074</td>
<td>738.3</td>
<td>1.138</td>
<td>203.3</td>
<td>1.178</td>
<td>21.68</td>
<td>2043.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6210</td>
<td>0.100</td>
<td>1563.0</td>
<td>1.060</td>
<td>219.7</td>
<td>1.206</td>
<td>19.62</td>
<td>1563.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6210</td>
<td>0.133</td>
<td>1563.0</td>
<td>1.060</td>
<td>219.7</td>
<td>1.724</td>
<td>25.56</td>
<td>4233.9</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5665</td>
<td>0.149</td>
<td>2674.0</td>
<td>1.009</td>
<td>227.7</td>
<td>1.579</td>
<td>22.61</td>
<td>2674.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5665</td>
<td>0.210</td>
<td>2674.0</td>
<td>1.009</td>
<td>227.7</td>
<td>2.265</td>
<td>28.60</td>
<td>7312.4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5276</td>
<td>0.202</td>
<td>4089.0</td>
<td>0.971</td>
<td>232.6</td>
<td>1.917</td>
<td>34.98</td>
<td>4069.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5276</td>
<td>0.300</td>
<td>4089.0</td>
<td>0.971</td>
<td>232.6</td>
<td>2.785</td>
<td>31.04</td>
<td>11244.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5016</td>
<td>0.250</td>
<td>5473.0</td>
<td>0.945</td>
<td>235.4</td>
<td>2.180</td>
<td>26.68</td>
<td>5473.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5016</td>
<td>0.337</td>
<td>5473.0</td>
<td>0.945</td>
<td>235.4</td>
<td>3.228</td>
<td>32.92</td>
<td>15355.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4808</td>
<td>0.328</td>
<td>7005.0</td>
<td>0.924</td>
<td>232.7</td>
<td>2.442</td>
<td>28.09</td>
<td>7005.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.4808</td>
<td>0.484</td>
<td>7005.0</td>
<td>0.924</td>
<td>232.7</td>
<td>3.681</td>
<td>34.37</td>
<td>20073.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4471</td>
<td>0.406</td>
<td>10679.0</td>
<td>0.889</td>
<td>240.3</td>
<td>2.939</td>
<td>30.54</td>
<td>10679.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.4471</td>
<td>0.726</td>
<td>10679.0</td>
<td>0.889</td>
<td>240.3</td>
<td>4.589</td>
<td>37.17</td>
<td>32505.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4133</td>
<td>0.589</td>
<td>16787.0</td>
<td>0.852</td>
<td>242.3</td>
<td>3.583</td>
<td>33.18</td>
<td>18787.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.4133</td>
<td>1.168</td>
<td>16787.0</td>
<td>0.852</td>
<td>242.3</td>
<td>5.809</td>
<td>40.51</td>
<td>57456.1</td>
</tr>
</tbody>
</table>
Fig. 3. Hugoniot curves for aluminum showing various initial distention ratios, m, on the entropy-relative volume plane. The second set of curves represents the loci of states attainable at different flyer plate speeds. The points indicated by a solid dot (•) represent the states behind the Mach stems formed by the collision of two shock waves (indicated by +) at the indicated angles of incidence.
Fig. 4. Hugoniot curves for iron showing various initial distention ratios, m, on the entropy-relative volume plane. The second set of curves represents the loci of states attainable at different flyer plate speeds. The points indicated by a solid dot (•) represent the states behind the Mach stems formed by the collision of two shock waves (indicated by +) at the indicated angles of incidence.
Fig. 5. Hugoniot curves for barium showing various initial distention ratios, \(m \), on the entropy-relative volume plane. The second set of curves represents the loci of states attainable at different flyer plate speeds. The points indicated by a solid dot (•) represent the states behind the Mach stems formed by the collision of two shock waves (indicated by +) at the indicated angle of incidence.
Fig. 5. Hugoniot curves for thorium showing various initial distention ratios, \(m \), on the entropy-relative volume plane. The second set of curves represents the loci of states attainable at different flyer plate speeds. The points indicated by a solid dot (•) represent the states behind the Mach stems formed by the collision of two shock waves (indicated by +) at the indicated angles of incidence.
Fig. 7. Hugoniot curves for uranium showing various initial distention ratios, m, on the entropy-relative volume plane. The second set of curves represents the loci of states attainable at different flyer plate speeds. The points indicated by a solid dot (•) represent the states behind the Mach stems formed by the collision of two shock waves (indicated by +) at the indicated angles of incidence.
Fig. 8. Hugoniot curves for lithium showing various initial disten­sion ratios, m, on the entropy-relative volume plane. The sec­ond set of curves represents the loci of states attainable at differ­ent flyer plate speeds. The points indicated by a solid dot (•) represent the states behind the Mach stems formed by the collis­sion of two shock waves (indicated by +) at the indicated angles of incidence.
Fig. 9. Hugoniot curves for strontium showing various initial distention ratios, \(m \), on the entropy-relative volume plane. The second set of curves represents the loci of states attainable at different flyer plate speeds. The points indicated by a solid dot (●) represent the states behind the Mach stems formed by the collision of two shock waves (indicated by +) at the indicated angles of incidence.
Mach Stems

In order to calculate the entropies that may be induced, particularly in lithium and uranium, upon propagation of Mach stems, we have initially investigated the criteria for introducing this type of flow in all the metals of interest. For the present we have considered these metals only at the single crystal density.

Upon the collision of two shocks at a slightly oblique angle, the pressure behind the reflected shock will increase slightly as the incidence angle, α, increases. At a certain critical angle, α_{cr}, regular reflection will no longer occur, and a Mach stem will be formed similar to that shown in Fig. 10(b). With the formation of a Mach stem, the pressure produced will increase discontinuously to a new high value. Upon further increase in α, this pressure will rapidly decrease until at $\alpha = 90$ it will reach the value of the original plane shock wave.

The theory of oblique shock waves for gaseous media is fully described in a classical text of Courant and Friedrichs,17 and the description of irregular reflection in solid bodies was carried out by Al'tshuler and his co-workers.18 The application of Mach stems to the study of properties of materials under extremely high pressures has been discussed by Leygonie and Bergon19 and more recently by de Beaumont and Leygonie.20 In the latter paper the authors describe producing Mach stems by a convergent conical shock wave in copper and using the central portion of the Mach stem to impact as a strong plane wave upon a small pellet of uranium sample. This is a candidate, but unexplored, configuration that might be used in proposed experiments in this country.

![Fig. 10. Oblique intersection of shock waves: (a) regular Mach stem; (b) irregular Mach stem.](image-url)
Oblique Shock Polars

The present analysis is carried out graphically. The method was initially developed for the solution of problems involving the interaction of oblique discontinuities in gaseous media and it has also been applied to liquid explosives. For solid bodies a similar technique was developed by Laharrague et al. for problems involving shock-wave refraction from a boundary between two different materials.

In contrast to the other polar techniques known in the literature, the vector polar method uses a logarithmic scale for the pressure ratio, which permits not only a more compact set of polars but also graphical addition of pressure ratios across various components of the wave system.

The basic theory describing the flow across an oblique discontinuity in a solid material is illustrated in Fig. 11 and is governed by the following set of equations:

\[\rho_0 u_s = \rho_1 (u_s - u_p), \]
\[P_1 - P_0 = \rho_0 u_s u_p, \]
\[u_s = a_0 + b_0 u_p, \]
\[u_s = w \sin \theta, \]
\[P = p/p_0. \]

Here, \(\rho, u_s \) and \(u_p \) denote the usual pressure, density, normal shock velocity, and normal particle velocity; \(a \) and \(b \) represent the two constants in the linear \(u_s - u_p \) relationship in solids (McQueen et al.); \(w \) is the oblique shock velocity, while \(\theta \) and \(\delta \) denote the oblique angle of approach and the angle by which the flow was deflected after going through the oblique shock discontinuity. The subscripts 0 and 1 indicate the undisturbed and shocked states, respectively.

These equations were found to be easier to manipulate if they are cast in a nondimensional form. This is done by using \(p_0 v_0 \) as a normalizing parameter where \(v_0 \) is the initial specific volume, i.e., \(v_0 = 1/\rho_0 \). With \(\nu = v/v_0 \) and \(p = p/p_0 \), the first four equations are written as follows:

\[U_0 = (1 - \nu) U_s, \]
\[(P - 1) = U_s U_p, \]
\[U_s = A_0 + b U_p, \]
\[U_s = W_0 \sin \theta. \]

In contrast to the dimensional form, all nondimensional quantities are represented as capital letters.

Introducing a new parameter,

\[\Gamma_k = \frac{v^2}{p_k v_k}, \]
one can derive the Mach number, which is a well-known parameter in gas dynamics:

$$
M_k^2 = \frac{w_k^2}{u_k^2} = \frac{w_k^2}{I_k^2}, \quad k = i, j,
$$

where i and j indicate conditions before and after the wave. In solid materials Mach number has little meaning, since it is normalized by a bulk sound velocity of the medium; nevertheless it is a very useful quantity for this analysis.

With these parameters one can derive the following equations:

$$(P - 1) = \frac{\Gamma_i (1 - \nu)}{[1 - b(1 - \nu)]^2}, \quad (19)$$

$$(P - 1) = (1 - \nu)\Gamma_i M_i^2 \sin^2 \theta, \quad (20)$$

$$\tan \delta = \frac{(P - 1) \cot \theta}{\Gamma_i M_i^2 - (P - 1)}, \quad (21)$$

and

$$M_j^2 = \frac{\Gamma_i M_i^2 - (P - 1)(1 + \nu)}{\Gamma_j P \nu} \quad (22)$$

The solutions to these equations are plotted in the form of polars on the $P - \delta$, $\theta - \delta$, and $P - M_j$ planes as shown in Fig. 12.

![Oblique shock polars for strontium in the pressure ratio-deflection angle plane.](image-url)
Fig. 13. Oblique shock polars for strontium in the incident angle-deflection angle plane.

Figs. 12, 13, and 14, respectively. The incident Mach number of the wave was taken as an independent parameter, and the plot shows polars for several values of M_i. For a solution of a problem, all three planes are equally important and must be used simultaneously—even though only one P-δ plane is considered to be the main solution plane since pressure and deflection angle represent the two most interesting parameters of the flow.

The reflected shock waves that propagate into a precompressed region are calculated in the same manner using the same set of four Eqs. (19)-(22), the only difference being that M_i and Γ_i correspond to the new initial conditions of the state into which the wave propagates.
Critical Angle

Solving for the critical angle at which regular reflection becomes irregular, one first assumes the strength of the shock wave that is to interact with its identical counterpart at an oblique angle α. The same wave inclined at different angles will have the same Γ_j', but different M_j' and therefore different M_j. Reflected shock polars are computed and plotted on the $P - \delta$ plane with their origin placed at proper initial states as illustrated in Fig. 15. For example, let us assume two shock waves propagating through strontium at a velocity of 3.18 mm/µsec with a pressure $p_j = 100$ kbar. The intersection of the reflected polar with either the ordinate ($\delta = 0$) or the original shock polar ($\delta > 0$) will determine whether reflection is regular or irregular, respectively—i.e., whether the Mach stem has formed during this reflection. As evident from Fig. 15, there is a range of cases where reflected shock intersects both, and this range corresponds to the two-solution region, one of which, the one with the lower pressure, is more likely to occur. When the reflected shock polar becomes tangent to the ordinate, the angle at which this occurs is said to be critical, because further increase of the incident angle will only produce irregular reflection with a Mach stem.
Upon solution for the critical angles, it became evident that there are several ways a transition from a regular reflection to an irregular one can occur. The type of transition depends not only on the material that is used, but also on the initial strength of the interacting shock waves. The three types of solutions are illustrated in Fig. 16, where all three cases show the secondary shock polar to be tangent with the $\delta = 0$ ordinate.

In type I, the entire reflected shock polar lies below the original polar without crossing it at any point. This failure to have a common point between the two polars other than the origin of the reflected one indicates that the case is not merely a simple triple wave intersection, but rather a more complex one involving additional compression along the Mach stem, as illustrated in a qualitative manner in Fig. 16.

Type II is probably the most common type when at the critical angle the reflected polar also crosses the original one at a certain $\delta > 0$. Although in this case the solution calls for a distinct three-wave configuration at the origin of the Mach stem, the flow behind it is not entirely uniform and must adjust itself from a slightly oblique wave at the axis of symmetry.

Type III is special; the Mach stem is already being formed before the critical
angle criterion has been achieved. In this case it is possible to find an angle at which a perfect Mach stem is formed that is normal to the axis of symmetry over its entire length.

The variation of the critical angle for the metals of interest with initial strength of the shock wave is shown in Fig. 17. The ranges of investigation for various materials are dictated by the relative impedance of the materials and by our ability to attain the necessary pressures with the simple high-explosive techniques described in the first part of this report.

Some of the materials show similar tendencies with an increase in shock pressure in that the critical angle decreases asymptotically to a value around 35°. Iron, uranium, strontium, and barium behave somewhat differently in that the first two decrease to asymptotes around 25° and 28°, respectively, and the latter two show an increase in the critical angle.
Mach Stems in Aluminum, Barium, Lithium, Strontium, Thorium, Iron, and Uranium

The maximum pressure that can be attained behind the Mach stem is found from the intersection of the original polar with the ordinate marked as P_m in Fig. 16. P_{cr} and P_{nr}, respectively, represent pressure behind the regular reflection at the critical angle and pressure behind the normal to the reflected shock.

Comparing pressures P_m, P_{cr}, and P_{nr} at the critical angle, one could see that all materials behave differently and, depending on the strength of the initial shock, critical conditions may be those resembling all three cases. Figures 18 through 24 illustrate this effect for each material separately. In each figure P_m, P_{cr}, and P_{nr} are normalized with P_1 and plotted against that value. For the ranges shown, aluminum is found to yield types I and II, lithium and strontium will both give types II and III, and thorium seems to cover the complete range of type II, while iron and uranium will only yield type I and barium only yields type III.

Fig. 17. Critical angle α_{cr} vs initial strength of interacting shocks for all investigated materials.
Fig. 18. Critical pressure ratios vs initial shock strength in aluminum.

Fig. 19. Critical pressure ratios vs initial shock strength in barium.
Also of interest is the effective increase of pressure with increase in the initial shock strength. While in most materials the ratio P_m/P_1 decreases with P_1 or stays nearly constant (as in aluminum and uranium), in iron it again behaves differently and increases to over an eight-fold pressure jump at $P_1 = 10^6$ (p$_1 = 1$ Mbar). Thus, even though the maximum Mach stem pressure P_m is found in iron, its rather strong display of type I diminishes the effectiveness of...
Using the present graphical technique one can also determine the range of pressures attainable in a certain material with a particular shock strength as the angle of interaction is varied. Assuming that the most realistic solution is the one that gives the lowest pressure, one can cover the whole range of angles that yield a possible solution. For the purpose of illustration, such analysis has been carried out for three different types of critical reflection, and the results are shown in Figs. 25, 26, and 27. While there is a big pressure jump from a regular reflection to a Mach stem in types I and II, in type III the Mach stem solution takes over before regular reflection meets its limit, and therefore no pressure jump occurs in this case. Maximum pressure is always obtained near the critical condition. The further the angle is from the critical value, the lower is the pressure that is obtained from the reflection. Thus, in order to get maximum compression of a material, one must operate very close to the critical angle.

To illustrate how much entropy is gained by a Mach stem, an example is worked out for a series of collision angles for each material. In each case the initial
Fig. 24. Critical pressure ratios vs initial shock strength in uranium.

Fig. 25. Variation of the reflected pressure with incident angle θ in aluminum when $p_1 = 300$ kbar, values of δ taken from Ref. 18.
Fig. 26. Variation of the reflected pressures with incident angle θ in aluminum when $p_1 = 1$ Mbar, value of δ taken from Ref. 18.

Fig. 27. Variation of the reflected pressures with incident angle θ in lithium when $p_1 = 250$ kbar.
shock was taken to be of different strength, but always one that was attainable with the same explosive-in-contact geometry.

In Figs. 3(a)-9(a) these initial shock strengths are indicated by a cross, and the final states behind the Mach stem are indicated by arrows with corresponding values of the incidence angle. The results clearly indicate that one can profit from a Mach stem design in getting a considerable gain in entropy, but it is also evident that an "in-contact" geometry, even one as strong as the octal-dural 400 system used in these examples, will not suffice for vaporizing material upon release, and for all materials except strontium and barium a stronger shock generating system is necessary.

Estimate of the Mach Stem Size

Before using the above criterion for practical application, one must consider one more factor of the problem: the amount of material that can be compressed to such high pressures; i.e., the amount of material affected by the Mach stem as compared to the total amount of material used.

Geometrically speaking, with reference to Fig. 1(b) one would be interested in knowing how large an angle γ one can get during such an interaction. In the present analysis we do not attempt to predict the angle γ. We expect that this calculation and/or experiment could be profitably investigated in the future.

From the experimental data available in the literature, one finds that at critical conditions the angle γ is extremely small and increases very slowly with deviation from the critical angle α. Therefore, the gain in compressed substance is a trade-off to the amount of compression, and the practical problem of inducing large quantities of vapor becomes one of determining the optimal geometry. If one could speculate on the basis of data available, the angle γ grows much more rapidly with stronger shocks than with weaker inter-

actions, as is indicated by the dashed curves on Figs. 25 and 26, which were plotted through experimental points taken from Ref. 18. It seems feasible that with stronger shocks one could increase the size of the Mach stem to compress a noticeable amount of the material.

As an estimate of how much material one can expect to compress with a Mach stem at higher initial pressures, one can use the experimental data of Ref. 18 shown in Fig. 26. At $\alpha = 45^\circ$ we find that $\gamma = 9^\circ$, and there still is a significant pressure increase of $P_m/P_1 = 2.3$. Such a system is represented geometrically in Fig. 28; from the figure it follows that the amount of material affected by the Mach stem as compared to the total is

$$\frac{x}{y} = \frac{L\tan 9^\circ}{L\tan 45^\circ} = 0.158 = 15\%.$$

If other materials behave in a similar way, then with stronger initial shock one can expect the Mach stem to cover 10-20% of the original material.

In the above analysis we have only described a system in which two plane waves interact at an oblique angle α. It is also possible to obtain Mach stems in other configurations where theoretical...
Pig. 28. Geometrical representation for the estimate of efficiency.

Another such system has been described by Fowles and Isbell in which a cylindrical block is surrounded by high explosive. A detonation wave propagates along the high explosive, and a conical shock wave is induced in the material. A Mach stem forms in the sample cylinder near the apex of the cone. In this case the angle of the cone will originally depend on the relative impedance of the materials, but it can also be varied by reshaping the material from a straight cylinder to a cone. Due to the three-dimensional character of this problem, one can presumably improve on the efficiency of the system. In this geometry the maximum pressure behind the Mach stem will be limited by the strength of the original shock, which can be generated either by an "in-contact" explosive or by means of a conically or cylindrically imploding flyer plate.

Conclusions

In the present study we have examined the shock states that may be produced in various metals with available explosive systems. The entropies produced by shocks in porous and solid samples and the entropy required for vaporization are calculated, and the comparison is used as a quantitative guide to estimate the degree of vaporization for a given shock strength. Systems that optimize the trade-offs between the shock-induced particle velocity, the maximum specific entropy imparted by a shock, and the amount of material that receives sufficient entropy to induce vaporization could be designed using as references the present analyses of shock dynamics and the calculation of shock-induced thermodynamic state.

Both plane-wave and Mach-stem shock systems are capable of inducing vaporization of aluminum, iron, strontium, barium, and thorium. Only Mach-stem shocks are capable of vaporizing lithium and possibly uranium. Plane-wave techniques, because of their inherent efficiency in transferring internal energy to a large quantity of metal, appear to be the most promising techniques for use on the first four metals even though substantial vaporization probably cannot be achieved, except possibly in the case of strontium and barium.

Specifically, we find for the plane-wave case that for a given explosive system, such as a flyer-plate launching device, a certain initial porosity provides the optimum conditions for entropy production. For the case of aluminum,
distentions of 1.6, 1.7, or 1.8 are optimum for 4- or 5-km/sec iron and tungsten flyer plate impacts. For iron the optimum distention of the sample is about 1.6 or 1.7. For thorium, initial distentions of ~2.0 will probably induce maximum, but incomplete, vaporization. As a result of the investigation of plane-wave shock vaporization, we concluded that both uranium and lithium required convergent, and possibly Mach-stem, flow to induce significant vaporization. In this latter geometry, a fraction (we estimate 20%) of the sample can be vaporized.

Investigating the conditions that are required to induce Mach stems in the same materials, we found that the collision of two shock waves at an oblique angle does not always result in a clean Mach stem. The Mach-stem formation depends on both the equation of state of the material and on the strength of the initial shock. Within the range of initial pressures that are easily attainable by conventional high explosive systems, barium, lithium, and strontium will propagate clean Mach stems. Thorium and aluminum will propagate Mach stems for shocks above 400 and 510 kbars, respectively. Iron and uranium, although behaving in a similar fashion, do not readily form a clean triple wave intersection. Additional compression takes place between the reflected wave and its Mach stem for these metals.

Pressurewise, iron and uranium are the most interesting materials, since Mach stems can produce pressures 6 to 8 times those of the initial shock. Aluminum, lithium, strontium, and thorium yield four- to five-fold increases in shock pressure, while barium gives no more than a three-fold pressure increase. The angles required to induce a series of specific entropies for various Mach-stem geometries are presented in graphical form for system design proposes.

Acknowledgments

We appreciate the discussions with R. N. Keeler, E. B. Royce, and N. Rosenberg (AFCRL) concerning this problem. D. Young's help with our analyses of the thermodynamics of the liquid-vapor region and F. Rogers' help in obtaining data for barium and strontium are appreciated.
References

15. F. Rogers, Lawrence Livermore Laboratory, private communication.

-39-
Appendix

ENT, a Fortran IV Program for Calculating Entropy and Shock States in Solid and Porous Metals

I case = control No. ; for I case = 1 or 2 continue
 for I case = 3 stop

 IP = No. of pressures along principal Hugoniot

 SUBST = material being calculated

 THETO = Debye temperature, STP

 GAMO = Grüneisen ratio, STP

 MBAR = mean atomic weight

 RHOO = density, STP

 PH(I) = principal Hugoniot pressure

 TH(I) = principal Hugoniot temperature

 UP(I) = principal Hugoniot compression

 GA(I) = principal Hugoniot/Grüneisen ratio

 I = index point on principal Hugoniot

 J = index of porosity

 M = distention ratio

 P(I, J) = shock pressure

 U(I, J) = particle velocity

 S(I, J) = entropy

 TPOR(I, J) = temperature porous Hugoniot

 FEUP = polynomial coefficients for shock particle velocity—pressure \(U_s - P \)
 relation for iron

 WUP = polynomial coefficients \(U_s - P \) for tungsten

 ALUP = polynomial coefficients \(U_s - P \) for 2024 aluminum

 FEU = shock particle velocity points, Hugoniot

 FEP = shock pressure points, Hugoniot
//ENT JR (4516,T,A,S,1)*THOMAS J. AHRENS
// SET PRT=6
// SET PLT=60
// EXEC FORTG
// FORTRAN DD *
PF(A1,A2,A3,A4)=A1+2*A2*X+A3*X*X+A4*X*X
DOUBLE PRECISION STOR(4,4)
DIMENSION FEU(8),FEP(8),DATA(8),FEUP(4),MUP(4),ALUP(4)
DIMENSION VPP(6,5),STT(6,5)
DIMENSION SUBST(4,VP(9),PH(9),GAL(9),TH(9),S(9),TPOR(9),DAT(3,10)
DIMENSION WPP(9),STT(6,5),WUP(160),DD(3),S0(9),DAT(3,10)
DATA WUP/20996E-11,76733E0,27450E0,-36697E-1/
DATA ALUP/-6378E-2,15459E0,36446E-1,-242876E-3/
DATA FEU/0...
DATA ALUP/-.6378E-2,.15459E0,.36446E-1,-.242876E-3/
DATA FEP/ 0...2,4...
DATA CEM/.5,.951.291.581.852.442.95/
DATA WPP/...55...
REAL MBAR,H
1 FORMAT(21X,4A4)
2 FORMAT(1X,4A4)
3 FORMAT(4F10.5)
4 FORMAT(1X,THETO='F9.4',GAMO='F9.4',MBAR='F9.4',RHOO='F9.4')
5 FORMAT(4F10.5)
6 FORMAT(1X,THETO='F9.4',GAMO='F9.4',MBAR='F9.4',RHOO='F9.4')
7 FORMAT(1X,+5X,PH='F5.3',TH='F5.3',VP='F5.3',G=1.5)
8 FORMAT(1X,PH='F5.3',TH='F5.3',VP='F5.3',GA='F5.3')
9 FORMAT(1X,PH='F5.3',TH='F5.3',VP='F5.3',GA='F5.3')
DO 90 I=1,160
90 X(I)=FLOAT(I-1)+1
C ICASE=1,GAMO=V1,GAMO ONLY
2000 READ(5,1) ICASE,IP,ICASE*SUBST
DO(2)=SUBST(1)
WRITE(6,2)SUBST
IF(ICASE.GT.2) GO TO 1000
READ(5,3) THETO,GAMO,MBAR,RHOO
WRITE(6,4)THETO,GAMO,MBAR,RHOO
READ(5,5) (PH(I),TH(I),VP(I),GA(I),I=1,IP)
WRITE(6,6)
WRITE(6,7)PH(I),TH(I),VP(I),GA(I),I=1,IP)
DO 50 I=1,IP
P(I)=PH(I)
U(I,1)=((1./RHOO-VP(I)/RHOO)*PH(I))*5.1*10.
IF(ICASE.EQ.1) GO TO 80
TE(I)=THETO*EXP(GAMO*(1.-VP(I))
GO TO 81
80 TE(I)=THETO*EXP(GAMO*(1.-VP(I))
81 CONTINUE
IF(ICASE.EQ.1) GO TO 56
GA(I)=GAMO*RHOO*VP(I)/RHOO
56 CONTINUE
TP(I)=TE(I)/TH(I)
T=TP(I)
IF(TP(I).LT.1) GO TO 51
C CALL ENT(T,ES)
C S(I,1)=ES*C
GO TO 52
51 S(I,J) = 21.65 + ALOG(TH(I)/10, TE(I)) * 1.986*3.
52 CONTINUE
 M = 1.
 TPOR(I,J) = TH(I)
 DO 60 J = 2, 6
 M = M + 2.
 DP = PH(I) = (M - 1.)/VP(I)/(2, GA(I) = M/VP(I) + 1.)
 IF (DP-TE(I)) GO TO 63
 P(I,J) = PH(I) + DP
 CALL DEBYE(X, Y)
 TPOR(I,J) = DP*VP(I)*MBAR*GA(I)/(CV*C)/RHOO/L.E-12 + TH(I)
 DS = 1.986*3.*ALOG(TPOR(I,J)/TH(I))
 S(I,J) = DS + S(I,J)
 IF (I.EQ.1) JT = JT + 1.
 IF (J.T.EQ.JT) JT = JT + 1.
 CONTINUE
 GO TO 65
60 CONTINUE
 JT = 6.
63 JTI = J - 1.
65 IF (J.EQ.1) JT = JT + 1.
 IF (JT.GT.JT) JT = JT + 1.
 CONTINUE
 WRITE(6, 7)
 DO 80 I = 1, IP
 M = 1 + FLOAT(J - 1) * 2.
 WRITE(6, 8) I, M, VP(I),
 1 P(I,J)
 TH(I), GA(I), TE(I), U(I,J), S(I,J), TPOR(I,J)
21 CONTINUE
70 CONTINUE
 DO 801 I = 1, IP
 DATA(I,1) = FEU(I)
 DATA(2*I) = FEP(I)
 DATA(3*I) = 1.
801 CONTINUE
 DATA(3*I) = .0001
10 FORMAT (1X, 'FEUP ARRAY', '/4E20.7)
 CALL LSQRAR (DATA, AX, FEUP, CH, STOR)
 WRITE (6, 10) FEUP
 DO 61 I = 1, IP
 FT(I,1) = ALUP(I)
 FT(I,2) = FEUP(I)
61 FT(3,I) = WUP(I)
 DO 701 = 1, IP
 IPP = IP + 1.
 DATS(2*IPP) = 0.
 DATS(1*IPP) = 1.
 DATS(3*IPP) = .0001.
 DAT(1*IPP) = 0.
 DAT(2*IPP) = 0.
 DAT(3*IPP) = .0001.
 DO 711 I = 1, IP
 DAT(1,I) = U(I,J)
 DAT(2,I) = P(I,J)
 DAT(3,I) = .0001*FLOAT(I)
51 DATS(1*I) = VP(I)
 DATS(2*I) = S(I,J)
 DATS(3*I) = .0001*FLOAT(I)
711 CONTINUE
 CALL LSQRAR (DAT, IPP, AX, CH, STOR)
-42-
CALL LSQURID(DAT,UPP,IP,SV,CH,STOR)
DO 712 I= 1,4
712 TMM(I,J) = TMM(I)
DO 701 J=1,4
701 CONTINUE
CCC FLYER PLATE TYPE
DO 9011=1,3
DO 91 J=1,4
91. FRI(J) = FRI(J+1).
CCC POROSITY
DO 93 K=1,JT
DO 95 N = 1,4
95. TM(N) = TMM(N,K)
DO 92 J=1,5
92. FP(J) = FLYER PLATE TYPE
UFP = FLOAT(J)
WRITE (6,12) UFP, FP
12 FORMAT ('TARGET PARAMETERS',14E20.7, 'FLYER PARAMETERS'
C (X*,9F11.5)
WRITE (6,13) VP, SQ
13 FORMAT (X, 9F11.5)
WRITE (6,13) VP, SQ
CONTINUE
93 CONTINUE
DO 930 J=1,5
930 CONTINUE
DO 930 K=1,4
CALL MAXMIN(SV(K),J),JT,YMX,YMN)
IF (K.GT.1) GO TO 935
IF (YMX.GT.YX) YX=YMX
GO TO 930
935 YX=YMX
935 CONTINUE
CALL MAXMIN(VP,IP,XMX,XMN)
DO 945 K=1,5
945 CONTINUE
CALL SCALE(YX,0.,TOP,BOTTOM,10,IER)
CALL SCALE(XMX,0.,RIGHT.XLEFT,15,IER)
CALL LABEL(0.,0.,XLEFT,RIGHT,15,1H,1,0)
CALL LABEL(0.,0.,TOP,BOTTOM,10,10,1H,1,1)
DO 950 K=1,KJ
 ISYS=K-1
950 CALL PLDXYJ,IP,VP,S1(K),XLEFT,RIGHT,BOTTOM, TOP,0,0,ISYS,1,DD)
 ISYS=5
 DO 1001 K=1,S
 ISYS=ISYS+S1
 CALL PLOXYJ,J,YPP(1,K),S1(K),XLEFT,RIGHT,BOTTOM, TOP,0,0
1 ISYS=1,00
1001 CONTINUE
 CALL SYSEND(1,1)
901 CONTINUE
 GO TO 2000
1000 CONTINUE
STOP
SUBROUTINE UPMATC(UF,FP,TH,ST,UT)
DIMENSION FT(1,4),TM(4),FP(4), VR(1,3), ROOT(1,3),EPS
DOUBLE PRECISION A(4), ROOT(1,3), EPS
FORMAT(1X,6E18.9)
A(1)=FP(1)-TM(1)+ FP(2)*UFP+FP(3)*UFP*UFP+FP(4)*UFP**3
A(2)=FP(1)-TM(3)+ FP(3)*UFP+FP(3)*UFP**3
A(3)=FP(1)*UFP-2.0*FP(3)+FP(3)*UFP**3
A(4)=FP(1)*UFP**3-2.0*FP(3)*UFP**3
WRITE(6,1) A
EPS=1.0-10
CALL ROOT(A(3),ROOTR, ROOTI,EPS)
WRITE(6,1) ROOTR, ROOTI
DO 10 I=1,3
R=ROOTR(I)
IF(R .LT,0.0) GO TO 10
IF(R .GT, UFP) GO TO 10
TEST= TH(2)+2.*TH(3)+3.*TM(4)+R
IF(TEST .LT. 0.0) GO TO 10
TEST= -FP(1)-2.*FP(3)*UFP+FP(4)*UFP**2+2.*R*UFP-2.0*UFP**2
IF(TEST .LT. 0.0) GO TO 10
UT = R
10 CONTINUE
RETURN
END
SUBROUTINE DEBYE(THEE, CVX,X1)
DIMENSION X(160), CV(160)
DATA CV (160) = / .5, .955, .95, .95, .95, .93, .91, .85, .85, .81, .77, .75, .72, .69, .67, .65, .63, .61, .59, .57, .55, .53, .51, .49, .47, .45, .43, .41, .39, .37, .35, .33, .31, .29, .27, .25, .23, .21, .19, .17, .15, .13, .11, .09, .08, .07, .06, .05, .04, .03, .02, .01, .00, .99, .98, .97, .96, .95, .94, .93, .92, .91, .90, .89, .88, .87, .86, .85, .84, .83, .82, .81, .80, .79, .78, .77, .76, .75, .74, .73, .72, .71, .70, .69, .68, .67, .66, .65, .64, .63, .62, .61, .60, .59, .58, .57, .56, .55, .54, .53, .52, .51, .50, .49, .48, .47, .46, .45, .44, .43, .42, .41, .40, .39, .38, .37, .36, .35, .34, .33, .32, .31, .30, .29, .28, .27, .26, .25, .24, .23, .22, .21, .20, .19, .18, .17, .16, .15, .14, .13, .12, .11, .10, .09, .08, .07, .06, .05, .04, .03, .02, .01, .00, 0.99, 0.98, 0.97, 0.96, 0.95, 0.94, 0.93, 0.92, 0.91, 0.90, 0.89, 0.88, 0.87, 0.86, 0.85, 0.84, 0.83, 0.82, 0.81, 0.80, 0.79, 0.78, 0.77, 0.76, 0.75, 0.74, 0.73, 0.72, 0.71, 0.70, 0.69, 0.68, 0.67, 0.66, 0.65, 0.64, 0.63, 0.62, 0.61, 0.60, 0.59, 0.58, 0.57, 0.56, 0.55, 0.54, 0.53, 0.52, 0.51, 0.50, 0.49, 0.48, 0.47, 0.46, 0.45, 0.44, 0.43, 0.42, 0.41, 0.40, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.32, 0.31, 0.30, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.10
N = 160
IF(THEE.LT.X1) GO TO 10
IF(THEE.GT.X1) GO TO 10
GO TO 10
SUBROUTINE XINTP(THTEE, X(K), CV(K), NINT, CVE)

Aitken's Algorithm is used for N points interpolation.

ABSCIS = ABSCISSA AT WHICH THE VALUE OF THE FUNCTION IS DESIRED
X = ARRAY OF ABSCISSA
Y = ARRAY OF ORDINATES. THE VALUE OF THE FUNCTION AT THE ABSCISSA
N = THE NUMBER OF POINTS WE WISH TO USE FOR INTERPOLATION
N IS SET FOR A MAXIMUM OF 20.

THE VALUE OF THE FUNCTION AT ABSCISSA

THE BEST RESULT IS OBTAINED WHEN ABSCISSA FALLS IN THE INTERVAL THAT
HAS EQUAL NUMBER OF POINTS ON BOTH SIDES.

DIMENSION X(20), Y(20), ZL20), XL(20, 20)

KK = N - 1
DO 1 I = 1, N
1 Z(I) = Y(I)

K = 2
DO 2 I = 1, KK
DO 3 J = K, N
3 XL(I, J) = Z(I) + (Z(J) - Z(I))/((X(J) - X(I)) * (ABSCIS - X(I))

DO 4 JJ = K, N
4 Z(JJ) = XL(I, JJ)

2 K = K + 1
VALUE = Z(N)
RETURN
END

//SYSPLOT DD SYSOUT=N
//DATA DD *
28ALUMINUM
350. 2. 26.98 2.702
 2. 37.4 9039
 2. 508. .8624
 2. 707. .7980
 4. 968. .7536
 5. 1268. .7358
 7.5 2290. .6839
 1. 3540. .6472
 2. 4684. .6244
29 IRON
175. 1.690 55.847 7.850
 2. 616. .8803

-45-
<table>
<thead>
<tr>
<th>4</th>
<th>657</th>
<th>.8215</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1007</td>
<td>.7829</td>
</tr>
<tr>
<td>8</td>
<td>1444</td>
<td>.7544</td>
</tr>
<tr>
<td>1.2</td>
<td>2523</td>
<td>.7317</td>
</tr>
<tr>
<td>1.6</td>
<td>3812</td>
<td>.6827</td>
</tr>
<tr>
<td>2</td>
<td>5264</td>
<td>.6588</td>
</tr>
<tr>
<td>2.4</td>
<td>6846</td>
<td>.6388</td>
</tr>
<tr>
<td>2.7</td>
<td>8107</td>
<td>.6256</td>
</tr>
</tbody>
</table>

BARIUM

<table>
<thead>
<tr>
<th>110</th>
<th>137.34</th>
<th>3.51</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>1035</td>
<td>.665</td>
</tr>
<tr>
<td>102</td>
<td>2329</td>
<td>.581</td>
</tr>
<tr>
<td>303</td>
<td>9457</td>
<td>.472</td>
</tr>
<tr>
<td>504</td>
<td>17918</td>
<td>.432</td>
</tr>
</tbody>
</table>

END OF DATA