The following Report is published in accordance with the provisions of article V, 7(f) of
the Convention for the establishment of a European Organization for Nuclear Research.
It gives an account of CERN’s activities in 1974.
Foreword

Those of us who have had the pleasure and privilege to work closely with CERN over a considerable period—and I have had this honour—cannot fail to have been impressed not only with the scientific results which have been achieved by our research physicists in Europe using the equipment at CERN but also the very fruitful collaboration between CERN and European industry which has produced the equipment.

It is right that we should give to the scientists full credit for the brilliance of their discoveries, but we must remember always that these would not have been possible without the machines and equipment which they had at their disposal. It was particularly gratifying, therefore, that in 1974, when scientific discovery was in the forefront of our minds, CERN was able to show, during the Technology Meeting which was held in April, some of the interesting and valuable technological advances which were the product of many years of interaction between high-energy physics research and manufacturers in the Member States of CERN. The interest which was shown in the exhibition and the talks which formed part of the Meeting were proof, if proof were needed, that the challenge of experimental science brings in its wake the development and exploitation of industry and technology.

I am confident that in the years to come CERN will continue to play its leading role in science and in technological development. In today's economic situation there is no doubt that the path ahead will be difficult; the Council, however, in electing Paul Levaux to succeed me as President, has chosen someone well equipped to guide the Organization along that path. Few people understand better than he the tasks, and the problems which face us, we could not wish to be in better hands at this moment.

W. Gentner
President of the Council
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY</td>
<td>5</td>
</tr>
<tr>
<td>COUNCIL ORGANIGRAM</td>
<td>7</td>
</tr>
<tr>
<td>LABORATORY I: BASIC AND ISR PROGRAMMES</td>
<td>9</td>
</tr>
<tr>
<td>INTERNAL ORGANIZATION OF LABORATORY I</td>
<td>10</td>
</tr>
<tr>
<td>INTRODUCTION BY THE DIRECTOR-GENERAL OF LABORATORY I</td>
<td>11</td>
</tr>
<tr>
<td>PHYSICS I DEPARTMENT</td>
<td>25</td>
</tr>
<tr>
<td>Nuclear Physics Division (NP)</td>
<td>27</td>
</tr>
<tr>
<td>Synchro-cyclotron Machine Division (MSC)</td>
<td>43</td>
</tr>
<tr>
<td>PHYSICS II DEPARTMENT</td>
<td>49</td>
</tr>
<tr>
<td>Track Chambers Division (TC)</td>
<td>51</td>
</tr>
<tr>
<td>THEORETICAL PHYSICS DEPARTMENT</td>
<td>67</td>
</tr>
<tr>
<td>Theoretical Studies Division (TH)</td>
<td>69</td>
</tr>
<tr>
<td>PROTON SYNCHROTRON DEPARTMENT</td>
<td>71</td>
</tr>
<tr>
<td>Proton Synchrotron Machine Division (MPS)</td>
<td>73</td>
</tr>
<tr>
<td>APPLIED PHYSICS DEPARTMENT</td>
<td>87</td>
</tr>
<tr>
<td>Data Handling Division (DD)</td>
<td>89</td>
</tr>
<tr>
<td>ISR DEPARTMENT</td>
<td>95</td>
</tr>
<tr>
<td>Intersecting Storage Rings Division (ISR)</td>
<td>97</td>
</tr>
<tr>
<td>ADMINISTRATION DEPARTMENT</td>
<td>113</td>
</tr>
<tr>
<td>Finance Division (FIN)</td>
<td>115</td>
</tr>
<tr>
<td>Personnel Division (PE)</td>
<td>127</td>
</tr>
<tr>
<td>Technical Services and Buildings Division (SB)</td>
<td>133</td>
</tr>
<tr>
<td>Health Physics Group (HP)</td>
<td>141</td>
</tr>
<tr>
<td>General Safety Group (SY)</td>
<td>143</td>
</tr>
<tr>
<td>Central Services (CS)</td>
<td>145</td>
</tr>
<tr>
<td>LABORATORY II: 300 GeV ACCELERATOR PROGRAMME</td>
<td>147</td>
</tr>
<tr>
<td>INTERNAL ORGANIZATION OF LABORATORY II</td>
<td>149</td>
</tr>
<tr>
<td>INTRODUCTION BY THE DIRECTOR-GENERAL OF LABORATORY II</td>
<td>150</td>
</tr>
<tr>
<td>300 GeV ACCELERATOR PROGRAMME</td>
<td>153</td>
</tr>
<tr>
<td>APPENDIX A: CERN publications</td>
<td>185</td>
</tr>
<tr>
<td>APPENDIX B: Lectures and seminars</td>
<td>217</td>
</tr>
<tr>
<td>APPENDIX C: Training programmes</td>
<td>219</td>
</tr>
<tr>
<td>APPENDIX D: Scientific conferences and schools</td>
<td>222</td>
</tr>
</tbody>
</table>
History

... The Organization shall provide for collaboration among European States in nuclear research of a pure scientific and fundamental character, and in research essentially related thereto. The Organization shall have no concern with work for military requirements and the results of its experimental and theoretical work shall be published...

Extract from the Convention for the establishment of a European Organization for Nuclear Research.

Article II — Purposes.

By the late 1940s, nuclear physicists in Europe had realized that further advances in pure research on a par with those taking place in the United States could only come through the construction of particle accelerators of a size and cost beyond the means of individual nations. Under the stimulus of a number of leading scientists, UNESCO sponsored an intergovernmental meeting in December 1951 to consider the practicability of a joint European nuclear laboratory.

At a second meeting in February 1952, eleven nations signed the Agreement which established an interim body which was to be known as the "Conseil européen pour la recherche nucléaire". So the acronym CERN came into being and has remained ever since the name by which the Organization is best known. Over the next twelve months, the structure and programme of the permanent organization was worked out, and between July and December 1953, the Convention was signed by twelve States which established the European Organization for Nuclear Research. The founding States were Belgium, Denmark, France, the Federal Republic of Germany, Greece, Italy, the Netherlands, Norway, Sweden, Switzerland, the United Kingdom and Yugoslavia. With the entry into force of the Convention on 29 September 1954, the new CERN formally came into being.

Subsequently, Austria joined the Organization in July 1959 but, at the end of 1961, Yugoslavia had to withdraw for financial reasons. Turkey became an observer State in June 1961 and was joined by Yugoslavia in 1962 and one year later by Poland. Spain entered the Organization in January 1961, but financial pressures forced her withdrawal from the end of 1968.

As early as October 1952, the Council had agreed on Geneva as the centre for the Laboratory, which was then confirmed in the Convention. The foundation stone was laid on 10 June 1955 at Meyrin and the next day the Headquarters Agreement was signed with the Swiss Federal Council. At that time, the Laboratory comprised 40 hectares in the Canton of Geneva, upon which began construction of the two accelerators stipulated in the Convention — Article II, 3(a), viz.:

(i) a proton synchrotron for energies above ten giga-electronvolts (10^10 eV);
(ii) a synchro-cyclotron capable of accelerating protons up to, approximately, 600 million electronvolts (6 x 10^8 eV).

Meanwhile, the design and construction of the 600 MeV Synchro-cyclotron went ahead and a first proton beam was produced on 1 August 1957. The Synchro-cyclotron has since supported a very vigorous programme of research in particle physics and
nuclear physics A major experimental facility for the study of short-lived nuclei (ISOLDE — Isotope Separator On-Line) was completed in 1967. The first circuits of the Synchrotron by a proton beam were made on 16 September 1959 and full energy was achieved on 24 November. Since then the Proton Synchrotron, operating at energies up to 28 GeV, has been the mainstay of the high-energy physics programme of Europe.

The decision by the Council to build intersecting storage rings associated with the Proton Synchrotron for research with colliding beams necessitated the extension of the Laboratory and following approval by Council in June 1965, an Agreement was signed on 13 September with the Government of France, together with a Lease Agreement putting at the disposal of the Organization a further 40 hectares of land in the communes of Prevessin and St. Genis-Pouilly adjoining the existing site. On 27 January 1971 the first proton-proton collisions in the Intersecting Storage Rings were observed. A lively physics programme was immediately mounted at this machine which is unique in the world.

Collaboration with non-member States has been actively pursued and an Agreement was signed on 4 July 1967 with the State Committee of the USSR for the Utilization of Atomic Energy for a joint scientific and technical programme at the 70 GeV proton synchrotron at the Serpukhov Institute of High-Energy Physics.

The setting up of a new Laboratory to house a proton synchrotron of 300 GeV energy, first discussed by the Council in 1963, required modifications to the original Convention. The Council, in December 1967, recommended to Member States the acceptance of the necessary amendments and on 17 January 1971 the amended Convention came into force.

On 19 February 1971, ten European States (Austria, Belgium, France, the Federal Republic of Germany, Italy, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom) decided to participate in the 300 GeV Programme. They were joined during 1972 by Denmark.

The new Laboratory is being built by CERN Laboratory II on land adjoining the existing Laboratory, now designated Laboratory I. A total of 412 hectares in France and 68 hectares in Switzerland is being leased to the Organization and building restrictions have been imposed on a further 509 hectares in France and 63 hectares in Switzerland.

The very large area involved and the open nature of the site—the accelerator is being built deep underground and only the few surface buildings will be enclosed—required that the Agreement covering the legal status of the Organization in France be revised. The amendments were agreed by Council in June 1972 and signed immediately afterwards on 16 June. The Lease Agreement for the new land in France was signed on 9 December 1972 as well as amendments to the Lease Agreement signed in 1965 to bring the two into concordance with each other. The “Contrat de superficie” for the new land in Switzerland was signed on 16 December 1974.

The eight-year-long 300 GeV Programme is centred upon the construction of a proton synchrotron in a ring of 2.2 km major diameter. At the beginning of the Programme, a number of options were left open as to the exact way in which the project should be completed. In June 1973 Council approved a proposal that the ring should be filled with iron-cored magnets and that the construction schedule should be adjusted to allow the accelerator to reach a full energy of 400 GeV during the sixth year of the Programme so that research could begin at the end of that same year in the West Area.
COUNCIL OF THE ORGANIZATION
STRUCTURE AND MEMBERSHIP
(as at 31 December 1974)

OFFICERS OF THE COUNCIL
President: Professor W. Gentner (Germany, Fed. Rep. of)
Vice-President: Professor Th. G. Kostoglou (Greece)
Dr. G. H. Stanford (United Kingdom)

DELEGATIONS (two Delegates from each Member State)

Australia
Belgium
Canada
Denmark
France
Germany, Fed. Rep. of
Greece
India
Ireland
Italy
Japan
Netherlands
Norway
Sweden
Switzerland
United Kingdom

PERCENTAGE CONTRIBUTIONS OF MEMBER STATES FOR THE FINANCIAL YEAR 1974

<table>
<thead>
<tr>
<th>Member State</th>
<th>Basic and ISR Programmes</th>
<th>200 ECU Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>2.96</td>
<td>2.03</td>
</tr>
<tr>
<td>Belgium</td>
<td>2.71</td>
<td>2.72</td>
</tr>
<tr>
<td>Canada</td>
<td>2.96</td>
<td>2.17</td>
</tr>
<tr>
<td>Denmark</td>
<td>2.11</td>
<td>2.63</td>
</tr>
<tr>
<td>France</td>
<td>2.50</td>
<td>2.11</td>
</tr>
<tr>
<td>Germany, Fed. Rep. of</td>
<td>2.96</td>
<td>2.70</td>
</tr>
<tr>
<td>Greece</td>
<td>2.96</td>
<td>2.70</td>
</tr>
<tr>
<td>Italy</td>
<td>2.96</td>
<td>2.70</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2.96</td>
<td>2.70</td>
</tr>
<tr>
<td>Norway</td>
<td>2.96</td>
<td>2.70</td>
</tr>
<tr>
<td>Sweden</td>
<td>2.96</td>
<td>2.70</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2.96</td>
<td>2.70</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2.96</td>
<td>2.70</td>
</tr>
</tbody>
</table>
Performing an experiment is rather like opening a window which looks out into the physical world; it brings new features into view and helps us to understand more of the nature of the world in which we live. Over the past few years, the view through our windows has been changing rapidly and the year 1974 may come to be seen as a landmark or turning point in our understanding of elementary particles.

The main topics presented in this survey cover our present ideas on the possible internal structure of the nucleons (the proton and neutron) and the search for an underlying unity of the three basic forces which are important in particle physics: the weak force (responsible for radioactive decay), the electromagnetic force (the binding force forming atoms and molecules) and the strong force (which binds nucleons together to form the nuclei of atoms). Until recently these three forces have looked very different one from another but now, for the first time, we can glimpse a possibility that they could be but different facets of a single basic form of interaction.

Some 25 years ago the term “elementary particle” had a relatively simple meaning; only a few particles were known, their roles seemed — with some exceptions — fairly evident and the task of the physicist was that of understanding the forces acting between them. We are confronted with a tremendous proliferation of hadronic states (hadron is the general name for particles which interact via the strong force) and know that there must be more. A very important part of the research programme at CERN has been the study of these states using both bubble chambers and electronic techniques. An impressive body of detailed information has been assembled which is essential for complete tests of the theories which attempt to provide a framework for understanding such a complex array of particles. This work is by no means over. A number of important questions remain to be answered but, nevertheless, a remarkable synthesis of all this information is provided by a theory which is extraordinarily successful even in its most naïve form. In this model, the observed hadronic states are assumed to be composed of three basic “building blocks” called quarks (three antiquarks are also required). In particular, the nucleons would contain three quarks, while mesons would be formed from quark and antiquark pairs; by
Results from a high statistics study of the production of kaon pairs by high-energy pions which illustrates the research on hadron states at CERN. π⁺p → K⁺K⁻ at 18.4 GeV. There is evidence for a meson state of mass ~2 GeV which decays into a K⁺K⁻ pair and has a spin of 4. This is the highest value of spin so far observed for a meson. The quantity N<Y$>_\text{K}\rightarrow K^\pm K^\mp$ measures the intensity of spin 4 angular momentum states in the K⁺K⁻ system. The quantity N<Y$>_\text{K}\rightarrow K^\pm K^\mp$ is a measure of the interference between the spin 4 and well established spin 3 contributions in the K⁺K⁻ system.

Putting these quarks together according to certain rules, the properties of the many different observed hadron states can be reproduced in remarkable agreement with the data.

As with the atom, where the study of atomic spectroscopy — the analysis of the light emitted by atoms changing from one state to another — revealed the detailed electronic structure, so the spectroscopy of nuclear energy levels tells us about the composition of the nucleus. Systematic studies of the states of hadronic matter give us clues to the possible internal structure of these particles.

High-energy collisions

One of the main reasons for building the two-mile-long linear accelerator at Stanford (SLAC), California, was to probe the structure of the nucleon using intense beams of 20 GeV electrons. The results obtained a few years ago (1968) were remarkable in suggesting that there were point-like constituents (called partons) within the nucleon. These were postulated to explain the character and high frequency of events in which the electron was deflected by a large angle on hitting the nucleon. These experiments probed the nucleon structure as revealed by the electromagnetic interaction.

At CERN we have performed experiments in the heavy liquid bubble chamber, Gargamelle, using a beam of neutrinos which interact with the nucleon only via the weak interaction. Just as in the electron experiments at SLAC, the results of the neutrino experiments at CERN are most easily explained by the presence of partons within the nucleon. The data obtained in both the electron and neutrino experiments can be interpreted in detail since the forms of the electromagnetic and weak interactions are quite well understood. Both can be explained with surprising success by a simple model in which the partons, the point-like constituents of the nucleon, have just the same properties as the quarks proposed as nucleon components by the analysis of hadron spectroscopy described earlier. In particular, the results of the SLAC electron and CERN neutrino scattering experiments can be taken together to “measure” the parton electric charge and the values agree with the presence of three quarks having the expected fractional charges (i.e., $\frac{1}{3}$ or $\frac{2}{3}$ of the charge of an electron).
Figure 3 — Recent experiments at the Split-Field Magnet allow the measurement of sign of charge and momentum for many of the particles emitted in collisions characterized by the detection of a neutral pion with high transverse momentum. An event of the kind sketched here (several secondaries of large longitudinal momentum are not shown) seems to be quite typical and it is significant that the high momentum track travelling away in almost the opposite direction to the π^0 is more often positively charged than negatively charged. This would be expected if these processes result from collisions between point-like constituents which, for the proton, would be mostly positively charged. Further analysis of this and other data will be required to establish this picture.

Figure 2 — The dependence on neutrino energy of the total cross-section for interactions between neutrinos and nucleons. The linear relationship observed by experiments in Gargamelle, and now shown to extend to much higher energies by results from Fermilab, is expected if the neutrino interacts with point-like constituents. The ratio of three between the neutrino and antineutrino cross-sections suggests that the constituents have spin $\frac{1}{2}$.

Turning to high-energy collisions between protons, experiments at the ISR have shown effects in the strong interaction which can also be attributed to the presence of point-like constituents. This follows from the discovery that high-momentum hadrons are emitted at large angles to the line of collision of two protons much more frequently (greater than 10^4) than expected. Studies of this phenomenon have continued during 1974.

The results recently obtained by a group using the large Split-Field Magnet (SFM) may be quoted. Here it has been shown that a neutral pion of high transverse momentum is often accompanied by a positive particle of high momentum going in approximately the opposite direction. This observation may well confirm the idea that such processes result from “hard” collisions between the point-like constituents of the nucleon. More analysis of these and other data will be required to establish this interpretation.

The year 1974 has brought confirmation of the discovery at CERN of neutral currents. This is a major advance in our understanding of one of the basic forces of nature. Moreover, the discovery may lead us to a unification of the theories of the weak and electromagnetic interaction, a synthesis as profound as that achieved by Maxwell when he united the phenomena of electricity and magnetism in one theoretical framework.

This result also comes from an experiment in which Gargamelle was exposed to a beam of neutrinos. Previously, the weak interaction was believed to have only the "charged
current" form; a neutrino (which carries no electric charge) would always change into a charged muon when interacting with matter. The Gargamelle experiment was the first to find interactions involving neutrinos in which a muon was not created and the neutrino is presumed to leave the interaction unchanged. This new form of interaction is called the "neutral current".

Two different processes due to neutral currents have been observed. In the first, a neutrino is scattered by an electron. Only two examples of this process have so far been found but the probability that these are due to some other less interesting mechanism is about 1%. The search for more events continues and, in addition, a new experiment using electronic techniques designed to look for neutrino electron scattering, has started to take data in the neutrino beam behind Gargamelle.

In the second process, the neutrino creates hadrons in its interaction with a nucleon, again without the production of a muon. These events are much more frequent than the first kind and about 260 examples have been found in Gargamelle. In a similar experiment using an antineutrino beam ~70 events have been found. They can be simulated by fast neutrons which are also present as the result of neutrino interactions occurring in the material surrounding the bubble chamber but further studies of this background have fully confirmed the conclusion that the muonless events are mostly due to neutrinos. Now the existence of the neutral current interaction between neutrinos and hadrons has been confirmed by experiments at Fermi National Laboratory, Brookhaven and Argonne.

Before the discovery of neutral currents in neutrino interactions it was thought that one of the best tests for their existence was provided by the decay rate of neutral kaons into two muons which was very much smaller than would have been expected if the neutral current form of the weak interaction was important. We are immediately faced with a serious difficulty — why does the neutral kaon not decay more often into two muons? There is an important difference between the kaon decay process and the neutrino interactions which proceed by the neutral current: the kaon has an attribute, or quantum number, called "strangeness" (it carries one unit of strangeness) and the two-muon final state has zero strangeness; thus, in this weak decay, the strangeness changes by one unit. On the other hand, in the neutrino-induced process, both the initial and final states have zero strangeness. This distinction provided a clue to a mechanism which could get us out of the difficulty at the cost of introducing a new quantum number to characterize certain particle states.

The new quantum number has been christened "charm". In all strong and electromagnetic interactions, the total charm must be conserved, like electric charge or strangeness, but not in weak interactions. In terms of the quark model, this introduces a fourth type of quark, distinguished by the new quantum number charm. This quark provides an additional "building block" and so leads to a whole new possible set of particle states. It is clear that the search for charmed particles is one of the next vital steps. The fact that they do not seem to have been recognized so far suggests they may be heavy. Although the suppression mechanism of the strangeness changing neutral weak currents cannot work if they are much heavier than 2 GeV.

The lowest mass particles carrying the charm quantum number are expected to decay with a rather short lifetime (~ 10^{-12} s) but via the weak interaction only; the products of decay will sometimes include an electron or muon and it is also expected that particles carrying strangeness, for example kaons or hyperons, will often occur. A meson formed by a charmed quark plus an anti-charmed quark would have no charm, but might reveal this hidden property by the circumstances of its birth or death!

A second question raised by the discovery of neutral currents is that of the existence of the neutral intermediate vector boson. Most of our knowledge of the weak interaction has come from the study of the decay of unstable particles and nuclei. In these processes the interaction seems to take place at a point in contrast to the strong interaction which has a characteristic range of about 10^{-13} cm and, we believe, is mediated by the exchange of mesons between the interacting hadrons. There are compelling reasons to believe that the
weak interaction must also be mediated by the exchange of particles, called intermediate vector bosons, which have high masses, corresponding to the very short range of the weak interaction. The existence of the neutral current implies a neutral intermediate vector boson, to accompany the two charged ones required for the ordinary charged current interaction. So far, no evidence of the production of these bosons has been found, yet if their masses were only a few times greater than the nucleon mass (1 GeV) the searches at the ISR and elsewhere should have revealed them. In its simplest form one of the theories providing a unification of the weak and electromagnetic interactions predicts a mass of about 75 GeV, which would put their creation well beyond the range of present accelerators.

Within this grand design there are many problems which I have avoided in order to be able to present a simple picture which, modified though it will be no doubt by future discoveries, contains much that must surely find a place in later descriptions. One of the major difficulties is that no experiment has yet obtained evidence for the existence of real quarks. Either they are too massive to be created at the energies now available, or they are forbidden to exist as free particles by some as yet not understood mechanism.

Experiments looking for the direct production of electrons and muons in the collisions of high-energy protons were among the earliest performed at the ISR. They discovered something else — the unexpectedly high frequency of emission of hadrons with large transverse momentum. In the search for the direct production of electrons, this high transverse momentum phenomenon is a source of background but this year, with more sophisticated apparatus and taking advantage of new heights of performance reached by the ISR, the production of single electrons has been observed. The discovery was paralleled by similar observations on muons and electrons at the Fermi National Laboratory. There are two remarkable features of this observation: over the range of transverse momentum covered, the yield of single electrons follows the same law as that for hadrons but at a

\[\frac{d^2 \sigma}{d^2 p_t} \sim 10^{-3} \times 10^{12} \text{cm}^2/\text{GeV}^2 \]
level about 10,000 times smaller; moreover, this ratio seems to be independent of the proton energy over a rather wide range even though the total hadron yield changes by an order of magnitude. The experiment at the ISR is also able to show that these electrons do not arise as decay products of already known particle states. Therefore, we believe we are faced with a new phenomenon and one of the first speculations is that this may be related to the production of new forms of matter.

At the beginning of November 1974, we received news from Brookhaven and Stanford of the discovery of a new particle state. At Brookhaven the new particle was produced by 28 GeV protons hitting a beryllium target and was seen by its decay into an electron and a positron; the mass is 3.1 GeV. At Stanford the same state was found by the inverse process electron and positron annihilation at a total energy of 3.1 GeV to form hadrons. The Stanford experiment was performed with the electron and positron colliding beam machine called SPEAR. Within a few days the new information on this state was obtained with the similar machine, ADONE, at Frascati and again at the DESY Laboratory using the new DORIS storage rings. At SPEAR a second particle with a mass of 3.7 GeV was later found which has also been confirmed at DESY.

The outstanding property of these new particles is their lifetime which, at 10^{-20} s, is exceptionally long for states of this mass. It is about a thousand times longer than would be typical for hadronic states of 3 GeV mass and presents some difficulties to all current attempts to understand the new particles.

Different explanations were proposed; in particular, the new particles were related to the neutral intermediate vector boson mediating the neutral current weak interactions. Recent photoproduction experiments, however, have shown that these particles are most probably strongly interacting particles, ruling out this possibility. Another possibility is that these particles are connected with a new quantum number, which could be either charm or colour. In such an interpretation they may be examples of the meson state with hidden charm, that is composed of a charmed quark and anti-charmed quark.

CERN has already an extensive programme of experiments searching for new particles. One of them, specifically designed for the search for charmed particles, was prepared during the summer of 1974 and has taken data at the ISR. One team has observed nine events of a particle with a mass around 3.1 GeV decaying into an electron-positron pair. Another team, using the Split-Field Magnet detection system, is looking for muon pairs from the decay of the same 3.1 GeV particle. At the PS, an experiment which may be able to detect high mass particles like those found at Brookhaven and Stanford will start early in 1975.

The discovery of the new particles has stimulated our experimental and theoretical physicists to devise other searches and possible explanations. Several groups with running experiments have switched their attention to a search for effects which may be related to these particles and many new proposals are being prepared.

Amidst all the excitement about the new discoveries, the other part of the CERN experimental programme at the ISR and PS should not be neglected. This is concerned with more systematic studies, mainly on the strong interaction properties of the hadrons, but also on weak and electromagnetic interactions.
Figure 5 — Differential cross-section of proton-proton elastic scattering as a function of four-momentum transfer measured in the Split-Field Magnet at the ISR with beams of twice 11.5 GeV energy. The dip in the curve indicates an analogy in the pp scattering with the scattering of light from a black disc.

(i) two-body and quasi-two-body processes which measure the total cross-section in elastic scattering and isobar production;
(ii) inclusive production of particles \(\pi \) in reactions of the type \(p + p \rightarrow \pi + X \) at small angles to verify scaling properties and to study the diffraction dissociation mechanism;
(iii) investigation of very large transverse momentum phenomena to get detailed information on the constituents of the nucleon;
(iv) study of correlations between several particles produced in one interaction.

This programme is illustrated by the study on large-angle elastic scattering and on inelastic diffraction scattering which has been made using the Split-Field Magnet facility. In the elastic scattering experiment, measurements have been made over the full ISR energy range and an impressive diffraction minimum is found, in analogy to the scattering of light on a black disc. A systematic shift of the dip to smaller values of transverse momentum is found as the energy increases. This is in agreement with the measurements of the total pp cross-sections, where the increase in cross-section is explained by a corresponding increase in the radius of the proton. In the exclusive data on inelastic diffraction where one of the two protons taking part in a collision is excited and turns into a \(\pi n^+ \) system, an indication of a dip around \(-t = 0.3 \) GeV\(^2\) in the transverse momentum distribution is seen for the first time. This dip occurs at a smaller value of transverse momentum, showing that the absorption takes place on the periphery of the proton.
From the many experiments which have been performed at the PS in 1974 two only are mentioned here.

A beautiful experiment on CP violating effects in neutral kaon decays was completed in the middle of the year after five years of work. With the help of the new and powerful technique of multiwire proportional chambers, a substantial improvement of the precision of our knowledge of these, still puzzling, phenomena of CP violation could be obtained. In particular, the $K_S - K_L$ interference in the two-pion decay gives more precise knowledge of the magnitude and phase of the CP violating amplitude, and the measurement of the charge asymmetry in the leptonic decays of neutral kaons as a function of time gives a more precise value of CP violation as reflected in the mass matrix as well as a more precise value of the $K_S - K_L$ mass difference.

In the last months of its run, the addition of a gamma detector to the apparatus allowed the conversion of lambda hyperons to sigma hyperons in the nuclear Coulomb

Figure 7 — Decay rate into two pions as a function of the eigen time of neutral kaons measured in a short neutral beam at the PS. The observed interference between K_S and K_L gives more precise values for several parameters in the description of the CP violation phenomenon.

Figure 8 — Charge asymmetry of K_L decays as a function of the neutral kaons decay time. For short times, interference effects between K_S and K_L are prominent; later, the charge asymmetry of the K_S component is observed.
field (Primakoff effect) to be observed for the first time. Sigmas produced in the Coulomb field are emitted in a very forward cone because of the long range of the electromagnetic force. The cross-section for Coulomb production determined from these data allows the sigma lifetime to be deduced which is not measurable in any other way.

The most precise measurement of the anomalous magnetic moment of the muon was made at CERN about six years ago. Because of its accuracy, it provides one of the most stringent tests on the theory of electromagnetic interactions, quantum electrodynamics. A new experiment aims to measure this number with an accuracy of 2×10^{-8}. This is a level of precision, where one expects strong interaction phenomena to play a
role. In the experiment an intense burst of pions is injected into a storage ring and polarized muons from the decay of these pions are captured on stable orbits in the ring. The muons subsequently decay into electrons, which are detected around the ring. The precession of the muon in the magnetic field of the storage ring causes a modulation of the electron counting rate and the modulation frequency is a direct measure of the anomalous magnetic moment.

The new storage ring was a brilliant success. It was completed in June, had a brief test run the same month and gave usable data almost at once. All features of the new experiment have performed well. In seven weeks of running time more than 10^7 decay electrons have been detected and the result so far has a statistical accuracy about ten times better than that of the previous experiment. Further running of the experiment in 1975 should finally give a result at the level of precision of 1 part in 100 million.

Serpukhov collaboration

During 1974, the fourth CERN-Serpukhov joint experiment obtained remarkable results. A study of neutral final states produced in πp interactions at incident energies between 15 and 40 GeV allowed a very precise determination of the A2 Regge trajectory to be made over an extended t interval. The reaction $\pi^+ p \rightarrow X^0 n$ has been measured with more than an order of magnitude increase in statistics and very valuable data on the final state when X^0 consists of two neutral pions have been collected. The experimenters plan to continue running in 1975 concentrating on the measurement of neutral final states in K^- induced interactions.

Preparations for SPS experiments

For the preparation of the experimental programme at the SPS many important decisions were made in 1974. An almost complete programme for the first round of experiments in the West Hall is approved. There will be the so-called West Area Neutrino Facility designed in such a way that protons of up to 400 GeV can be used to produce
high-energy neutrino beams. On the other hand, a set of secondary hadron beams, produced by protons up to a maximum energy of 200 GeV, will provide particles for a number of experiments designed to study interactions of hadrons and photons at high energies.

Neutrino physics

A big effort has been made to make the neutrino programme of research as complete as possible. A high quality neutrino beam, either run as a wide-band or narrow-band beam, is under construction and should be ready at the end of 1976. The use of two bubble chambers to observe neutrino interactions is foreseen — Gargamelle will be placed in the neutrino beam line behind BEBC, the Big European Bubble Chamber, which can be filled with hydrogen, deuterium or neon. Provision is made for two counter experiments to be set up in the same beam line in between the two bubble chambers. One of these experiments is already under construction and it is planned to be ready for data taking at the beginning of 1977.

Hadron and photon physics

In the field of strong interactions, BEBC will again serve as a powerful detector. A unique facility is a beam which can deliver particles to it of chosen identity and energy to about 100 GeV. Four experiments using counter techniques will attack different problems in strong interaction physics. Another approved counter experiment will study leptonic decays of charged hyperons. A surprising feature of high-energy proton accelerators is that they can provide very good high-energy photon beams and, in making use of this fact, one group will study photon-induced reactions using the Omega spectrometer, which will be modified for use at higher energies. The group intends to use photons of known energy up to about 60 GeV.

Other activities

The preparation of the secondary beams is far advanced and final plans exist. Detailed work on beam monitoring equipment, like Čerenkov counters for particle identification and apparatus for the determination of beam momenta and beam profiles, is in progress.

Towards the end of the year the plans for the North Area installations were being discussed with high priority, and a number of experimental proposals have been submitted.

The muon beam to be provided for the North Area promises to be of very high quality — high intensity, high purity and low background. Two proposals for intensive studies of muon interactions on liquid hydrogen (and also on heavy nuclear targets) were discussed in great detail and positive recommendations were made by the SPSC.

As in the past years, we can claim a number of first-rate achievements in the technology which is the basis of our research progress. The most exacting demands, arising from the need for more and more sophisticated apparatus, are met by the highly qualified people at CERN devoting themselves to this part of the research programme. In
April, this work was brought into the limelight with a “Meeting on Technology arising from High-Energy Physics”. Over 220 visitors, mainly from European industry, came to CERN to hear talks and see exhibits on the major fields of technology involved in our research.

New limits have been reached in the intensity of accelerated protons both at the PS and the ISR. The Proton Synchrotron had a very successful year with a fault rate during physics time as low as 5%, compared to 8% for the previous year. The new PS injector, the 800 MeV Booster, delivered protons very reliably for the neutrino runs with the heavy liquid bubble chamber at an intensity about three times higher than before. This is very promising in view of the 1975 schedule, which requires the use of the Booster for a major part of the time. The most exciting news came on 10 December when the PS, for the first time, exceeded the magic threshold of \(10^{11}\) accelerated protons per pulse — the design value with the Booster injection. The beam losses in this operation are still high, but with this success it seems certain that the PS will be able to fulfill its task as injector for the SPS.

The ISR by no means stayed behind the PS in the race for higher intensities. Higher luminosities (a measurement for the number of pp collisions per second) and significant reductions in beam loss rates and background radiation have resulted from storing higher currents in each ring and improving the vacuum system. A luminosity of \(1.4 \times 10^{31}\) cm\(^{-2}\) s\(^{-1}\) was achieved with beams of 24.5 A in each ring at 265 GeV/c.

A particularly successful development was the installation of the so-called low beta section, a system of ten quadrupoles that reduces the height of the beams at an intersection, in order to increase locally the luminosity. Assembly and testing of equipment started in the middle of the year and in October the first tests at the ISR were made. The record luminosity of \(2.2 \times 10^{31}\) cm\(^{-2}\) s\(^{-1}\) has been attained. In November the ISR stored currents at 30 A in each ring and the total number of operating hours passed the 10,000 mark.

The vacuum for the more than 2 km long system is below \(10^{-11}\) torr. This extraordinary technological achievement is best illustrated by the fact that under the best conditions and with luminosities not higher than \(6 \times 10^{30}\) cm\(^{-2}\) s\(^{-1}\), more than half of the beam loss is due to beam-beam collisions. That means that background problems originating from beam-gas interactions are virtually eliminated in the experiments.

Mention has already been made of two experiments on the large Split-Field Magnet. Altogether six experiments have taken data using this facility and the first results were presented at the London Conference in July.

Figure 12 — The Split-Field Magnet at the ISR with arrays of multipurpose proportional chambers installed in its large aperture. The detection system is now in full action for experiments and the first results have been reported (CERN-189874).
The superconducting magnet of BEBC had to be dismantled as a consequence of a short-circuit in auxiliary circuits which had been installed originally to suppress the so-called “frozen currents”. The repair consisted of the suppression of these auxiliary circuits (this was possible because it turned out that the field changes due to frozen currents can be measured regularly in a satisfactory way) and the addition of more insulating material. The magnet was cooled down and successfully powered to full field in December.

Also in December, the 2 m hydrogen bubble chamber celebrated its tenth anniversary.

On 13 December 1964, the chamber underwent its first test, since when it has taken about 32 million photographs. Despite a few minor technical breakdowns during the year, almost 5 million pictures were taken which will be analysed by a great number of physicists all over Europe.
The reconstruction of the 600 MeV Synchro-cyclotron started in June 1973 and went on for the greater part of 1974. The accelerator, now named SC 2, was fully reassembled in September, and on 30 September, tests of acceleration were started. The following day acceleration to full energy was observed with a beam current of about 0.6 μA at 1/6 duty cycle. At the full pulse repetition rate this would correspond to an internal beam of about 10 μA, the design value of SC 2. Reconstruction of the secondary beam system derived from the internal targets of SC 2 is complete and the elements for the first set of meson beams from external targets are available. Regular meetings of the Physics III Committee have been resumed and there is now a rich programme of experiments lined up for the improved Synchro-cyclotron. Several teams have started installing their equipment in the Proton Hall and the Isolde Area, physics will start early in 1975.

During the second half of the year the computing service provided by the CDC 7600/6500 reached and maintained an acceptable level. This was achieved through considerable improvements in the quality and size of the engineering and software support provided on site by CDC, the replacement of all the 9-track tape drives by new, improved models, and concentration of effort on a stabilization of software. A big effort is now being made in DD Division, in collaboration with NP and TC Divisions, to develop data handling facilities for SPS physics in the West and North Areas.

Laboratory I is now making a large contribution to the preparations for the experimental programme at the SPS. It is responsible for the experimental beams and other facilities in the West Area and will carry a large share of the total effort required to construct apparatus for the experiments in both the West and North Areas. The needs of experiments at high energies, as we begin to see at the ISR, call for more sophisticated experimental apparatus, often involving major engineering projects. These preparations make heavy demands on both manpower and budget.

Another significant factor is the continuing increase in the number of physicists from Member State Laboratories wishing to perform electronics experiments at CERN; the number of registered Member State physicists coming to CERN has risen by a factor of two since 1970. This also puts additional demands on services and space.

The reduction in the 1975 budget is causing great concern. We shall review the whole programme of the Laboratory to redetermine our priorities, in both financial terms and the use of staff, and endeavour to reduce the impact on the experimental programme as far as possible.

The advance of knowledge is seldom uniform. After a period of relative calm, we have entered an era which promises a rich harvest of exciting results. New windows on nature have been opened. Economic and social difficulties exist in many Member States, indeed throughout the world, but we all want to see scientists from our European universities continuing to make leading contributions to this great quest for fundamental knowledge. Progress is made by the contributions from different experiments, often using quite different techniques and different types of particle accelerators. In this respect Europe has been fortunate in possessing machines in national laboratories which very effectively complement those at CERN.

I trust that we can find a way in the future to maintain this strong foundation for European research in this field. With the support of Council, I am sure that CERN will continue to play its part in providing our European physicists with the best opportunities for future discoveries.
The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (Experiment R406). The plastic scintillation telescopes are used for precise pulse-height and time-of-flight measurements. The experiment will be running during the first half of 1975. Its purpose is to search for new particles (CERN-203 372)
More than forty electronics experiments were in progress at the PS and ISR in 1974. At the PS a great success has been achieved in the new \((g - 2)\) experiment, which after a few runs has already given a value ten times more precise than the previous measurement. This experiment demonstrated the hadronic contribution as predicted by theory.

At the ISR the study of single electrons produced with large transverse momentum gave interesting new results, as described in the following pages, and an exciting programme of experiments to search for new charmed particles was started.

On the technical side the salient feature was the completion of the SC improvement programme. By the end of the year the SC was able to reach its designed beam intensity and extraction rate.

The SPS experimental programme for the West Area has been drawn up in its broad lines. NP groups are involved in five out of nine experiments already approved by the NPRC. The Department is putting a great deal of effort into preparing the necessary equipment.
Figure I — K-meson spectrometer of the Geneva Saclay Collaboration. This apparatus includes proportional wire chambers, spark chambers, an analysing magnet, two multiple-cell Čerenkov counters and three scintillator detectors. It was by means of this spectrometer which is used for studies of the $K^+\rightarrow \pi^+\pi^-\nu\bar{\nu}$ decay that the very rare channel $K^+\rightarrow \pi^+\pi^-\nu\bar{\nu}$ was discovered (CERN-157674).

Nuclear Physics Division

South Hall

Either of two internal targets (01 and 08) in the PS ring, supply secondary beams to the electronics experiments in this area.

A team from Geneva University is studying the production of strange resonances which decay into a neutral kaon and a pion in reactions of the type $K^+p\rightarrow pK^*\Xi$. Other reactions induced by pions, protons, and antiprotons are also being studied when they lead to decays of the same topology. The experiment will explore the mass region from 1.5 to 22 GeV where little information exists up to now.

A group from CERN-ETH, Zürich-Helsinki-Imperial College, London-Southampton is studying the helicity amplitudes in the baryon-exchange reaction $\pi^-p\rightarrow K^0\Lambda$ at 6 GeV/c with a frozen spin polarized target. Values of the $d\sigma/d\Omega$ and the spin rotation parameters P, A, R in the s-channel helicity frame have been measured. The values $R = 0$ and $P = -A$ have been obtained, in agreement with the model of strongly-exchange degenerate trajectories ($\Sigma_+\Sigma_-$) and ($\Sigma_\alpha\Sigma_\beta$) where the relative phase between the amplitudes is $\pi/2$.

PS Programme
A Strasbourg-Turin Collaboration is looking for pp annihilation at rest and more precisely at $\bar{p}p \rightarrow \gamma \gamma$, $\bar{p}p \rightarrow n^0\pi^0$ and other final states with γ-rays. To obtain the proton form factor in the time-like region, the antiproton must be at rest when it annihilates with a proton. To achieve this, a moderator is placed in front of the 50 cm hydrogen target to ensure that antiprotons are stopped in the target.

A Heidelberg Group is studying excited states of hypernuclei with high resolution spectroscopy. The reaction $K^- A \rightarrow \Lambda\pi^-$ is being studied using a magnetic double spectrometer at a K momentum of 900 MeV/c. The first part of the spectrometer analyzes the K momentum and the other the pion momentum. Time-of-flight can be measured, as well as the angle and the coordinates of kaons and pions. The focus obtained with the spectrometer is only of first order. Some higher-order corrections are applied during the evaluation, using the measured positions and angles of the particles in the focal planes.
The overall resolution of the spectrometer, employing no higher-order corrections, turned out to be 1.5 MeV/c for a momentum bite of incoming particles of 15 MeV/c. Applying the "software corrections", the resolution of the spectrometer improved to 0.5 MeV/c. Targets of 9Be, 12C, 16O, 32S, and 29Bi with K^- and K^+ have been irradiated in the first two PS periods in 1974.

A Basel-Karlsruhe-Stockholm experiment on exotic atoms with negative kaons, antiprotons, or negative sigmas is in progress. Information can be obtained on the distribution of particles at the nuclear surface, on the particle correlations in the nucleus, on the strong interaction between the particle and a nucleon, etc.

The CERN-Trieste Collaboration has concluded a series of measurements on the scattering of π^+ by polarized protons, with the meson emitted in the backward direction. The measurements were carried out in two steps. First the elastic scattering $\pi^+ p \rightarrow p\pi^+$ at 2.0, 3.5, 4.0 GeV/c and the inelastic scattering $\pi^+ p \rightarrow \Sigma^+ K^+$ at 3.5 GeV/c were measured with a wire spark chamber system, built around a standard polarized target magnet. This was used also as magnetic analyser for the slow backward-emitted particles. Later a polarized target magnet providing greater analysing power was used to measure the reactions $\pi^+ p \rightarrow p\pi^+$ and $\pi^+ p \rightarrow \Sigma^- K^+$. In the second reaction a new water Čerenkov counter for the detection of the K^+'s covered a solid angle larger than that of the corresponding π^+ induced reaction set up. All the measurements at 3.5 GeV/c were made in a separated pion beam.

South-East Hall

The new $(g - 2)^J$ experiment was installed in April-May and the running-in started in June-July. Seven weeks of data-taking allowed more than 10^7 decay electrons to be detected. The aim of the experiment is to measure the anomalous part of the magnetic moment of the muon with an accuracy of 2×10^{-9} to test the validity of quantum electrodynamics. One of the by-products of the experiment is the determination of the muon lifetime in flight for $\gamma = 30$ and for a closed path.
The first result, obtained at the end of 1974, is \(\frac{g-2}{2} = (1.165895 \pm 0.026) \times 10^{-9} \). This value is \((-1.3 \pm 0.26) \times 10^{-9} \) below the theoretical value which includes the sixth-order QED terms and a hadronic contribution of \((73 \pm 9) \times 10^{-9} \).

East Hall

The CERN-Dortmund-Heidelberg Group has obtained several results using a beam consisting of a mixture of \(K_s, K_L \), neutral hyperons and, unavoidably, neutrons and...
gamma, with a multiwire proportional chamber detector capable of a very high data-taking rate (up to 2×10^3 events per pulse). The apparatus was dismantled this summer after three and a half years of operation. During this time, 5×10^9 decays were recorded and analysed. The analysis of the three experiments on the mass difference was completed and the results published. The results for the phase Φ_{++} and the implications for CP phenomenology of this and the previously published results for $|\eta_{+-}|$ and the charge asymmetry in leptonic decay were published. Data-taking was completed on the experiment to measure the $\Lambda \rightarrow \Sigma^0$ transition in the Coulomb field, as well as on experiments on several K^0 and Ξ radiative decays. The decays $\Xi^0 \rightarrow \Lambda \gamma$ and $\Xi^0 \rightarrow \Sigma^0 \gamma$, which had not been seen previously, were observed. The analysis on the $K \rightarrow e$ scattering (K^0 form factor) is nearing completion.

The CERN-Munich Collaboration is studying the production of resonances which decay into two pions in the $\pi^- p \rightarrow \pi^+ \pi^- n$ interaction. In this experiment a polarized butanol target surrounded by a counter array which eliminates events other than those in which a neutron is produced is used. The CERN-Munich spectrometer has been built to study the mechanism of ρ, π, σ, and A_2 meson production and the states in which these resonances are produced according to the angular distributions of the pion pairs.

The Clermont-Ferrand-Lyon-Strasbourg Collaboration is measuring the coherent scattering in the following reactions:

\[
p + {}^4\text{He} \rightarrow {}^4\text{He} + \text{anything}
\]

\[
p + {}^4\text{He} \rightarrow {}^3\text{He} + \text{anything}
\]

\[
p + {}^4\text{He} \rightarrow p + {}^4\text{He}.
\]

The experiment provides a means of testing the Glauber model, which is used to interpret hadron-nucleus interactions at high energies and small scattering angles.

The Lyon-Warsaw Collaboration is aiming to measure the excited states of ^4H and ^4He hypernuclei. The observation of γ-transitions from these hypernuclei will make it possible to study the properties of $\Lambda-N$ interactions of low energy for different phenomenological potentials. In a previous experiment a Heidelberg-Warsaw team observed two de-excitation lines of hypernuclei at 1.09 MeV and 1.42 MeV, but the parent nucleus was not identified (^4H or ^4He). The present experiment aims to identify the parent by observing in coincidence the emitted γ-ray and the pion coming from the Λ disintegration; in fact for a ^4H decay it is expected that in 50% of the cases a 53 MeV negative pion will be emitted.

A complete list of the experiments on the floor in the East Hall is attached at the end of this report of the activities of the NP Division.

West Hall

Nine experiments have been approved for the Omega spectrometer. While one team is collecting data via an on-line EMR 6130 computer, others can test triggering systems with minicomputers (PDP-11s).

A Birmingham-Rutherford-Tel Aviv-Westfield College Collaboration is studying the production of neutral mesons in the reaction $\pi^- p \rightarrow X^0 n$ at 12 GeV/c, using slow neutron triggers. The time-of-flight and direction of the neutron define the mass of the X^0. The range of masses explored extends from 0.8 to 2.3 GeV/c² and about 3×10^6 triggers have been recorded.

A Bari-Bonn-CERN-Daresbury-Liverpool-Milano Collaboration is studying the reaction $\pi^- p \rightarrow X^0 p$ at 12 GeV/c, using a slow proton trigger. The range of masses explored extends from 1.0 to 2.3 GeV/c². About 3.3×10^6 triggers have been recorded.
A CERN-ETH-Freiburg im Breisgau-Karlsruhe-Saclay Collaboration is studying baryonic exchange with production of a backward-emitted Λ in the reaction $\pi^+ p \rightarrow \Lambda^0 X$. The trigger consists of detecting the proton from Λ decay in the Čerenkov counter. The Λ polarization will be measured.

A Glasgow-Saclay team is investigating the reaction $K^+ p \rightarrow (\Lambda, K^-, p^-) X$ at 12 GeV/c triggering either on the antiprotons from Λ decay or on K^-. The main object of the experiment is to look at mesons decaying to ΛN. About 2×10^6 triggers have been collected for $K^+ p$ and about 1×10^6 in the case of π^+ incoming particles.

The CERN-Collège de France-Ecole Polytechnique-Orsay experiment is studying baryon exchange processes in the $\pi^+ p \rightarrow pX\pi^+$ interaction. This experiment detects fast forward-emitted kaons. A fast proton may originate from the decay of a hyperon or from an N^*, with the result that the experiment can study a wide range of interactions.

A CERN-Saclay Collaboration is aiming to measure the scattering lengths and phase shifts of $\pi^+\pi^-$ and $\pi^+\pi^+\pi^-$ systems. The reactions $\pi^+ p \rightarrow \pi^+\pi^+\pi^-$ are being studied at 32 GeV/c with a trigger designed to accept only two pions at a small aperture.

A Birmingham-Glasgow Collaboration will use an interaction trigger logic based on two multiwire proportional chambers in front of, and one behind, the target to veto non-interacting beam particles. The main interest of the experiment lies in the reaction $K^+ p \rightarrow K^+\pi^+\pi^- p$.

A multi-institute Collaboration (Bari-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milán-Purdue-Vienna) is studying rare decays of mesons using a negative pion beam.
The main object of the experiment is meson decay into \(K\bar{K}\pi \) and \(p\bar{p}\pi \), and therefore the triggering is initiated by kaons and antiprotons.

Finally, a CERN-ETH team is doing an experiment to study non-diffractive \(K^* \) in the reaction \(K^- p \rightarrow K^0\pi^+\pi^- n \) at 10 GeV. The multiparticle trigger consists of requiring two prongs in one multiwire proportional chamber and four prongs in a second multiwire proportional chamber.

The ISR experiments continue to reveal new insights into the character of the strong interaction at high energies, and are searching for new exotic particles. In the field of strong interactions the large number of experiments being carried out can be classified into four groups:

1) Two-body and quasi-two-body processes which measure the \(\sigma_{\text{tot}} \) in elastic scattering and isobar production. In particular, one experiment to be performed (CERN-Rome) will measure the elastic scattering of protons at very small angles, using the exceptionally fine control of the beams which can now be achieved to enable small detectors to be brought within a few millimetres of the circulating beams.

2) Inclusive production \(pp \rightarrow aX \) at small angles to verify scaling properties and to study the diffraction dissociation mechanism. Many results have been obtained from the so-called inclusive single-particle production where the study was concerned with one particle without bothering what happens to the rest. If two protons collide, what happens is that a few particles tend to continue in the forward direction and carry most of the original longitudinal momentum of the two protons. In contrast to this kind of process, another happens in which some particles are produced at large angles (90°) and their behaviour is quite different, as these particles have comparatively low momenta.

3) Investigation of very large transverse momentum (large-angle experiments). Although very rare, the emission of particles with high transverse momentum has been discovered to be more frequent than expected, leading to speculation that they are due to scattering by point-like constituents within the nucleon. Many features of this fundamentally important process remain to be elucidated by experiments now in progress.

4) Correlations of several particles produced. A new type of mechanism is the study of correlations of several particles emitted. If one particle is found in a certain region of phase space, what are the chances of finding another particle in the same direction or in another given direction? By answering this or similar questions it is hoped to distinguish between different models.

In the field of the search for new processes, the observation of single electrons produced with large transverse momentum more frequently than expected constitutes another surprise from the ISR. This result, also observed at the Fermi National Accelerator Laboratory, may be the first indication of a new process. Among the present speculations the exciting possibility that these high transverse momentum electrons will eventually be recognized as decay products of charmed particles produced in proton-proton collisions is not excluded. Experiments now in progress, and other second-generation experiments to be performed in 1975 and 1976, such as one using a superconducting solenoid to detect electrons over a wide angular spread, are well prepared for further possible discoveries in this field.

After this introduction to the ISR Programme follows a review of the activities at the different intersections of the ISR. A complete list of the ISR experiments may be found at the end of this NP Division report.
Intersection 1

The CERN-Columbia-Rockefeller Group, in collaboration with the Saclay Group, has recently completed data-taking at the ISR. Lead-glass Čerenkov counters have been used with a magnetic spectrometer to study the inclusive production of high \(p_T \) pions (both charged and neutral) and to perform a sensitive search for directly produced electrons. Preliminary results have indicated that such electrons have been observed with a spectrum parallel to that of pions, but suppressed by a factor of \(10^4 \) and in the range of transverse momenta from 1.5 GeV/c to about 4 GeV/c. Additional studies show that this unexpectedly high signal cannot be explained by the leptonic decays of the known vector mesons, in particular \(\sigma_p < 0.4 \sigma_\pi. \) The first observation of high-\(p_T \) \(\eta \) mesons from hadron collisions has also been made in this experiment. The ratio of \(\eta \) mesons to \(\pi \) mesons is seen to be \(\sim 0.5. \)

A more sensitive extension of the above research is being planned (experiment R108). This experiment will be a collaboration between the CERN-Columbia-Rockefeller Group and a group from Oxford University. The planned experimental technique involves the use of superconducting solenoidal magnets and drift chambers.

A Bologna-CERN-Saclay-Rome Group has searched for magnetic monopoles in a plastic detector. No magnetic monopoles have been found, yielding the following limits:

\[
\sigma(2\text{st dev.}) < 3 \times 10^{-36} \text{ cm}^2
\]

\(m_{\text{monopoles}} < 24 \text{ GeV} \)

\(0.5 g_0 < g < 3 g_0. \)

Intersection 2

Among the experiments in progress in I-2 is that of a CERN-Netherlands-Lancaster-Manchester Collaboration on the study of the production of particles at small angles between 30 and 200 mrad, using a 30 m long spectrometer. This year the Collaboration has obtained the following results:

1) the invariant cross-section for \(pp \rightarrow pX \) depends on \(M, \) the missing mass, and \(s, \) the total energy squared, only through the variable \(M^2/s \); i.e., the data "scale" and the mass range excited expands linearly with \(\sqrt{s}; \)
The rapidity distribution of a particle C in pp → p_D + C + X' (where p_D is a high-momentum, small-angle proton) has been found to be in excellent accord with the distribution expected for the decay X → C + X' of a state X, excited in the collision pp → pX.

On the basis of these results it can now be firmly concluded that at the ISR energies a substantial fraction of the collisions proceeds through the diffraction excitation of one of the incident protons by the other.

Intersection 4

The useful volume for detection in the Split-Field Magnet is about 30 m^3, and it is filled with multiwire proportional chambers arranged so as to form two forward detectors around the downstream arm of each beam and a central detector which records the secondary products emerging at a wide angle. This spectrometer is suitable for the study of particle correlations, multiplicities, diffraction dissociation, and the search for new particles.

A CERN-Hamburg-Orsay-Vienna Collaboration is taking data on inelastic diffraction scattering pp → pnπ^+ and on large-angle elastic scattering. Up to about 4 x 10^7 triggers have been recorded. In large-angle scattering the data cover the full ISR energy range. The position of the diffraction minimum is found to shift to smaller values of −t as the energy increases. The dip is found to be deepest at the lowest ISR energy and it gets shallower as the energy increases. The cross-section at the second maximum increases with energy, and at large values of −t it tends towards energy-independent values. Two components of inelastic diffraction are observed, N* production and non-resonant pion production. The N* resonance production displays forward-backward symmetry in the Jackson frame, and the non-resonant production is strongly asymmetric.

A Pavia-Princeton Collaboration is studying the double dissociation and the double N* excitation in the channel pp → (pπ^+π^-)(pπ^+π^-) at different ISR energies.
A CERN-Bologna Group is searching for new particles, and in particular quarks, the detector being able to distinguish particles carrying fractional charges.

A CERN-Collège de France-Heidelberg-Karlsruhe Collaboration is studying twoparticle correlations.

Intersection 6

A single-arm magnetic spectrometer with an azimuth acceptance of almost 2π has been built in the past few years by a CERN-Harvard-Munich-Aachen-Genoa Collaboration. Recently the magnetic spectrometer, in a new configuration, has been used firstly, by an Aachen-CERN-UCLA Collaboration and secondly, by a Saclay-UCLA Group to study the $\Delta^+\pi^-$ production and the production of unstable particles N^+, Λ^0, K^0. A new proposal to search for electrons and muons directly produced in the forward direction has been presented by a CERN-Harvard-Munich-Northwestern-Riverside Collaboration. This proposal aims to hunt for charmed particles.

Intersection 7

The Aachen-CERN-Heidelberg-Munich Collaboration operating in 1-7 is observing complete events by means of a large streamer chamber detector. The trigger is given either by a set of large acceptance hodoscopes, which see almost the full inelastic cross-section, or by a lead-glass Čerenkov array to select events where a high transverse momentum p_T has been produced. More than 3×10^5 pictures have been taken and the analysis is in an advanced state. Some of the topics covered by the experiment are:

1) correlations in rapidity and azimuth between charged particles at $\sqrt{s} = 23 \text{ and } 53 \text{ GeV}$;
2) correlations among charged particles produced in association with a large p_T;
3) measurement of the total pp cross-section;
4) inclusive π^0 and η production;
5) study of π^0 production

Intersection 8

Among the experiments in progress or in preparation in 1-8 is that of the CERN-Rome Collaboration. Inclusive spectra of π, K^-, and \bar{p} have been measured over a range of x, $0.4 < x < 0.9$, and for ISR energies between $2 \times 11.8 \text{ and } 2 \times 31.5 \text{ GeV}$, using a magnetic spectrometer that accepts particles emitted around 0°. In addition, data on neutron production were obtained using the Karlsruhe neutron calorimeter.

Studies of correlations, in the fragmentation region, between the charged particles detected in the magnetic spectrometer and in the counter hodoscope array of the Pisa-Stony Brook Group have been made. The data exhibit structure, in the correlation function, which may be explained by the production of leading clusters of mass 2-3 GeV.

Simultaneous measurements of the total interaction rate by the Pisa-Stony Brook hodoscopes and the forward-elastic scattering by small-angle counter telescopes of the CERN-Rome Group have yielded values of the total cross-section over the full energy range of the ISR ($2 \times 11.8 \text{ GeV to } 2 \times 31.5 \text{ GeV}$). The new data, independent of external normalization, are consistent with the previous measurement of the CERN-Rome and Pisa-Stony Brook Groups, which exhibited a strong rise of the total cross-section over the ISR energy range.
The SC improvement programme is now near to completion, and experiments will start soon. Among the experiments performed before the shutdown of the SC and now analysed may be mentioned the experimental study on the \((\mu^4\text{He})^{3/2}_S \) metastable system in helium gas done by a CERN-Pisa-Bologna-Saclay Group. The metastable muonic system was obtained by stopping negative muons in a pure helium target at pressures ranging from 10 to 50 atm, and observing the total yield and the differential time distribution of the X-rays released in delayed coincidence with the arrival of muons. At each pressure \(P \) results were obtained on the total disappearance rate \(\lambda_{2S,00}(P) \), on the disappearance rates \(\lambda_\lambda(P) \) and \(\lambda_\kappa(P) \) for external Auger effect and stark-mixing collisions, and on the fraction \(e_{2S}(P) \) of muons stopped in helium which form the \((\mu^4\text{He})^{3/2}_S \) system.

The final result on the energy difference \(2P_{3/2} - 2S_{1/2} \) of the levels in the \((\mu^4\text{He})^+ \) muonic atom has been obtained. The experimental value is 8117 ± 5 \(\text{Å} \) and is to be compared with the theoretical value which is 8136 + 47 \(\text{Å} \). The contribution of the vacuum polarization term in \(\tau^2 \) is 61 \(\text{Å} \). The error in the theoretical value comes mainly from the uncertainty with which the electrical radius of the helium nucleus is known.

The construction of the ISOLDE-2 facility is now almost completed and the first beam tests are planned for the near future. New target-ion-source techniques, greatly improved beam handling and, of course, the intense beams foreseen at SC 2 will open up a number of new experimental possibilities. The scientific programme at ISOLDE is in its final stage of preparation, and the experimental groups are setting up several major, new experiments, which add to the earlier lines of research at ISOLDE. Among the new experiments are atomic beam studies of nuclear spins and moments, optical pumping of alkalis and optical spectroscopy with tunable lasers, direct measurements of nuclidic...
Figure II — The nuclear masses of the rubidium isotopes (black dots) are shown as a function of the atomic number. To emphasize nuclear structure effects only the excess over the smooth liquid-drop masses are given. The results for $^{83,87,89}_{\text{Kr}}$Rh are from recent ISOLDE work. The increased binding around $N \sim Z$ is seen to be of the same order as the well-known shell effect at neutron number 50. The full-drawn curves give for comparison the masses taken from two different sets of calculations, one of which (indicated by squares) contains a Wigner term determined phenomenologically from the masses of light nuclei.

masses of radioactive atoms (an important first experiment of this type was carried out at the PS last year), high-resolution studies of ls electronic X-rays, the preparation of radioactive targets for nuclear-reaction spectroscopy, and the study of the ranges of heavy atoms in gases.

The analysis of data taken before the shutdown was continued. Two results obtained by the CERN-ISOLDE Group seem worth emphasizing:

1) In the spectrum of alpha particles from the decay of 3.6 s $^{181}_{\text{Hg}}$ a small number of high-energy alpha events have been observed. These are interpreted as originating in alpha-delayed alpha emission with an intensity of $(9 \pm 3) \times 10^{-8}$. The branching ratio permits a first value for the strength function corresponding to the cluster "alpha plus nuclear A-4"; the experimental value agrees with a simple theoretical estimate.

2) Another experiment has studied the electron-capture Q-values of isotopes of rubidium. The preliminary analysis of the ensuing nuclear masses in the Kr-Rb region shows clear evidence for the so-called Wigner term in the nuclear binding energy and may allow the first accurate estimate of this quantity outside the region of light nuclei. (The Wigner energy is a symmetry-energy term proportional to the absolute value $|T_z|$ of the isospin projection; the normal symmetry energy depends on T_2^2.)

Joint experiment with Serpukhov

During 1974 the fourth CERN-Serpukhov joint experiment (Karlsruhe-Pisa-Vienna-IHEP Serpukhov Collaboration) has continued to accumulate data on $\pi^+p \to$ neutrals at incident energies between 15 and 40 GeV under a variety of experimental conditions.
At the same time, results have been analysed, and the general stability, performance, and calibration procedure of the detectors markedly improved. In particular, as reported at the London Conference, the study of the reaction $\pi^- p \rightarrow X^0 n$ has allowed a better determination of the Λ_2 Regge trajectory over an extended t-interval, and the reaction $\pi^- p \rightarrow X^0 n$ has been measured with more than an order of magnitude increase in statistics. Preliminary results have also been obtained for $\pi^0 \pi^0$ final states, using events with and without neutron detection in coincidence. During the run in October more than 6×10^8 triggers were recorded at 40 GeV/c for $\pi^0 \pi^0$ study: this completes the statistics it had been planned to collect.

During a further data collection period, the experiment is expected to run under the best conditions for normalization and for proper correction of all systematic effects concerning the most abundant process; that is, pion charge exchange. The chambers for the detection of $K^- p \rightarrow K n$ will also be tested. Data-taking is expected to continue until towards the end of 1975.

The fifth CERN-Serpukhov experiment (Milan-Dubna Collaboration) has been installed. The aim of this experiment is to measure meson diffractive dissociation using the Dubna 5 m magnetic spectrometer, wire chamber and silicone detector systems. Measurements should start in 1975.

The main progress has been the first successful operation of a frozen spin target, using a powerful dilution refrigerator, built in collaboration with the Low-Temperature Laboratory of the Technical University of Helsinki.

The target is polarized dynamically as usual in a 25 kG homogeneous magnetic field. It is then cooled to some 50 millidegrees and moved into the large gap of the ETH spectrometer magnet, where the field is 10 kG, with a poorer homogeneity. It stands in front of the beam, in the centre of the detection system, for studying all the spin parameters in the reaction $\pi^- p \rightarrow K^0 \Lambda^0$ at 5 GeV/c, with an available solid angle of nearly 4π.

During runs in September, less than 1% decay in polarization was observed in a target which had been polarized to some 90%, moved into the spectrometer magnet, kept there for thirty hours, and then returned.

Instrumentation

Figure 12 — A frozen spin target (CERN-225 10 74).
Proportional chambers with spherical drift spaces have been investigated. An experiment on X-ray diffraction in crystal shows that an accuracy of 0.5 mm, at 20° inclination with respect to the axis of the chamber, can be obtained with 4 cm of drift length. Such chambers have many applications. X-ray diffraction patterns, pin-hole imaging, angular distributions of cascades of X-rays in nuclear physics, etc.

Development of the video-tape facility with the aim of producing a system for general use in the long run was continued by integrating the pilot system with the NP standard data acquisition facility using CAMAC and HP 2100A computers. The capacity of the system is 10 gigabytes (equivalent to several hundred conventional magnetic tape reels) per video-tape cartridge, and the maximum data rate is 1 megabyte/second.

The hardware problems of recording reliably at 10^9 bits/in2 and the software problems of organizing the structure of the large interleaved data volume were tackled successfully, and it is planned to use the system on an experiment at I-6 from March 1975.

In September 1973 a CERN-Brookhaven-Rochester Group was formed to carry out a search for high transverse momentum particles at the ISR, especially neutral particles and electrons. During 1974 two new types of detectors to be used in this experiment have been built and tested.

A 10 t ion chamber with steel plates in liquid argon was finished in late March. The sampling fluctuations for 10 GeV pion cascade showers in 2 mm steel plates have been measured, and a non-Gaussian distribution with a r.m.s width near the peak of about 3.5% has been found. It has been found that the non-linear effects due to densely ionizing particles in the shower decrease with increasing high voltage, and reach values of a few per cent at voltages around 1 kV/mm. The volume was divided into about 90 sections, thus enabling it to be found that the necessary length of the plate array for adequate energy containment was about 100 cm of steel equivalent. The average 10 GeV pion gave about 0.7 of the charge of a 10 GeV electron, due to nuclear binding energy, and the fluctuations in this effect limit the resolution to about 15% r.m.s. Tests are now under way to see if the last effect can be suppressed by the use of uranium plates for fission amplification. The Group verified the results on electron resolution obtained 18 months ago, that electron resolution is about 2.5% limited by sampling fluctuations.

The same Group has built and measured a number of transition radiators. One new effect observed is the interference dip in the spectrum caused by the coherence of the radiation from the front and back of the radiating foil. There is now a dry laboratory with a relative humidity of about 1%, where lithium metal foils to make radiators are fabricated. Both semiconductor detectors and proportional wire chambers have been used to detect the radiation. The former to obtain the finest energy resolution for fundamental studies, the latter as prototypes of the ISR set-up, to be installed in February 1975.
<table>
<thead>
<tr>
<th>No.</th>
<th>Experiment</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study of $K_{4\pi}$ decay</td>
<td>Geneva-Saclay</td>
</tr>
<tr>
<td>2</td>
<td>Study of $\pi^+ p \to \Sigma^+ K^+$, $K^- p \to \Sigma^- \pi^+$ and other two-body processes at 10 GeV/c</td>
<td>CERN-Birmingham-Genoa-Stockholm-RHEL</td>
</tr>
<tr>
<td>3</td>
<td>Measurement of polarization parameter in $p\bar{p} \to \pi^+ \pi^-$ in momentum range 1.2 → 2.4 GeV/c</td>
<td>DNPL-QMC-RHEL</td>
</tr>
<tr>
<td>4</td>
<td>$\pi^- p \to \Sigma^- K^+$ and $\pi^- p \to \pi^- \pi^+$ at 3.5 GeV/c and $</td>
<td>u</td>
</tr>
<tr>
<td>5</td>
<td>Measurement of production of strange bosons in reaction $K^+ p \to K^{\pm} \pi^+ p$ and $K^+ p \to K^{\mp} \pi^- p$</td>
<td>Geneva-Indiana</td>
</tr>
<tr>
<td>6</td>
<td>Measurement of the helicity amplitudes for associated production $\pi^- p \rightarrow K^0\Lambda^0$</td>
<td>CERN-ETH Zurch-Technical University Helsinki-Imperial College, London-Southampton</td>
</tr>
<tr>
<td>7</td>
<td>Systematic study of electron pair production in $\bar{p}p$ annihilation at rest</td>
<td>Strasbourg-Turn</td>
</tr>
<tr>
<td>8</td>
<td>Studies of \bar{p}, K^-, and Σ^- atoms in a new beam of stopping K^- and \bar{p}</td>
<td>Karlsruhe-Stockholm CERN-Heidelberg</td>
</tr>
<tr>
<td>9</td>
<td>High-resolution hypernuclear spectroscopy</td>
<td>CERN-Daresbury-Manx Aachen-Padua</td>
</tr>
<tr>
<td>10</td>
<td>Precise measurement of the anomalous magnetic moment of the muon</td>
<td>CERN-RHEL-UCL-Uppsala CERN-Heidelberg</td>
</tr>
<tr>
<td>11</td>
<td>Search for muon-neutrino electron scattering in spark chambers</td>
<td>CERN-Dortmund-Heidelberg Orsay-Ecole Polytechnique-Strasbourg</td>
</tr>
<tr>
<td>12</td>
<td>Coherent production of $l = \frac{1}{2}$ states on helium</td>
<td>Collège de France-Paris-Padua IHSN Brussels-IPN Orsay</td>
</tr>
<tr>
<td>13</td>
<td>$K^0\bar{K}^0$ decays</td>
<td>CERN-Munich MPI</td>
</tr>
<tr>
<td>14</td>
<td>Measurement of the Σ^0 lifetime using the Prmamakoff effect</td>
<td>Clermont-Ferrand-Lyon-Strasbourg Lyon-Warsaw</td>
</tr>
<tr>
<td>15</td>
<td>Study of elastic scattering of negative hyperons</td>
<td>Birmingham-RHEL-Tel Aviv- Westfield College</td>
</tr>
<tr>
<td>16</td>
<td>Study of reaction $K^- p \rightarrow K^- p$ in momentum interval $2 \leq P_{K^-} \leq 16$ GeV/c</td>
<td>CE'N-ETH-Karlsruhe-Freiburg-Saclay Glasgow-Saclay</td>
</tr>
<tr>
<td>17</td>
<td>Symmetrical double spectrometer for systematic research on heavy masses (Tott)</td>
<td>CERN-ETH CERN-Collège de France-Ecole Polytechnique-Orsay</td>
</tr>
<tr>
<td>18</td>
<td>Experimental proposal to study $\pi^- p \rightarrow n \pi^- n^-$ with a polarized target</td>
<td>CERN-Haifa-Saclay-Université de Paris Bari-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milan-Purdue-Vienna</td>
</tr>
<tr>
<td>19</td>
<td>Production and study of very neutron-rich alkali isotopes</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Study of excited states of ^4He and ^4H hypernuclei</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Study of zero strangeness boson using neutron trigger (Omega spectrometer)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Baryon exchange with production of forward Λ</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Baryon-antibaryon pair production (Omegas)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Non-diffractively produced K^* resonances using the Omega spectrometer</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Study of quasi-two-body reactions proceeding through baryon exchange mechanism (Omegas)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Proposal for an experiment with Omega, $\pi\pi$ scattering length</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Study of rare decays of mesons (Omegas)</td>
<td></td>
</tr>
</tbody>
</table>
ISR EXPERIMENTS ON THE FLOOR IN 1974

<table>
<thead>
<tr>
<th>No</th>
<th>Experiment</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measurement of high transverse momentum charged particles and neutral pions</td>
<td>CERN-Columbia-Rockefeller-Saclay Bologna-CERN-Saclay-Rome</td>
</tr>
<tr>
<td>2</td>
<td>Search for magnetic monopoles</td>
<td>Daresbury-Liverpool-RHEL CERN-Holland-Lancaster-Manchester</td>
</tr>
<tr>
<td>3</td>
<td>Correlations associated with high transverse momentum particles</td>
<td>CERN-Hamburg-Orsay-Vienna</td>
</tr>
<tr>
<td>4</td>
<td>Multiplicity and rapidity distributions of diffractive collisions</td>
<td>CERN-College de France-Heidelberg-Karlsruhe MIT-Orsay-Scandinavia Aachen-CERN</td>
</tr>
<tr>
<td>5</td>
<td>Isobar production at ISR energies</td>
<td>CERN-Aachen-Genoa-Harvard-Munich</td>
</tr>
<tr>
<td>6</td>
<td>Double isobar production at the ISR to study (p \pi \rightarrow \pi \pi \pi) + ((p \pi \pi \pi))</td>
<td>CERN-Orsay-Heidelberg-Saclay</td>
</tr>
<tr>
<td>7</td>
<td>Two-particle correlations in the fragmentation region</td>
<td>CERN-College de France-Heidelberg-Karlsruhe MIT-Orsay-Scandinavia Aachen-CERN</td>
</tr>
<tr>
<td>8</td>
<td>Study of particle correlations at large angles</td>
<td>Aachen-CERN</td>
</tr>
<tr>
<td>9</td>
<td>Study of large transverse momentum events</td>
<td>Aachen-CERN-Munich</td>
</tr>
<tr>
<td>10</td>
<td>Small-angle elastic scattering (outside Coulomb region) and total pp cross section</td>
<td>Aachen-CERN-Genoa-Harvard-Munich</td>
</tr>
<tr>
<td>11</td>
<td>Inclusive measurement of multiparticle hadron systems ((\Delta^{++})) (\pi), (\mu) production, (\pi \mu) coincidences as charm search possibly with associated (\Delta^{++}), (K^{+}), (K^{0}), other hadrons</td>
<td>CERN-Hamburg-Munich NorthWestern-Riverside</td>
</tr>
</tbody>
</table>

APPROVED SPS EXPERIMENTS

<table>
<thead>
<tr>
<th>No</th>
<th>Experiment</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High energy neutrino interactions</td>
<td>CERN-Dortmund-Heidelberg-Saclay Genève-Helvetic-Lausanne-Orsay-RHEL-Strasbourg</td>
</tr>
<tr>
<td>2</td>
<td>Study of leptonic decays (\Xi^{-} \rightarrow \Lambda e^{-}), (\Xi^{-} \rightarrow \Sigma^{0} e^{-}), and (\Sigma^{+} \rightarrow \Lambda e^{+})</td>
<td>CERN-Hamburg-Orsay-Vienna</td>
</tr>
<tr>
<td>3</td>
<td>Study of the quasi-two body hadron reactions (\pi^{+} p \rightarrow (\pi^{+} \pi^{+}) n), ((K^{+} K^{-}) n), ((p p) n), (\pi^{+} p \rightarrow (\pi^{+} \pi^{+}) n), (K^{+} p \rightarrow (K^{-} \pi^{+}) n), (\pi^{+} p \rightarrow (K^{+} K^{-}) p), and (K^{+} p \rightarrow (K^{0}_{S} e^{+}) p) over a wide kinematic range and at energies up to 80 GeV</td>
<td>Amsterdam-CERN-Munich-mpi-Oxford-RHEL Bonn-CERN-Daresbury-DESY-Ecole Polytechnique-Glasgow-Lancaster-Manchester-Orsay-Sheffield</td>
</tr>
<tr>
<td>4</td>
<td>Photoproduction of hadrons for incident particle energies from 10 to 60 GeV</td>
<td>Indiana-Saclay CERN-Trieste-Vienna CERN Genoa-Orsay-Oslo-University College-London</td>
</tr>
</tbody>
</table>
The reconstruction of the Synchro-cyclotron which started in June 1973 occupied the greater part of 1974. Its forecast duration of one year was somewhat exceeded but the accelerator, now named SC2, was fully reassembled during the course of September 1974 and accelerated its first protons at 3 a.m. on 30 September. Acceleration to the full energy of 604 MeV was attempted and observed on 1 October. Although operating at a reduced repetition rate, SC2 approached the design intensity per pulse after some optimization. Tests of the internal beam were resumed in November and the first extracted proton beam was produced on 21 November. Before the end of the year, the extraction efficiency was raised to 50% and a proton beam was sent down the ISOLDE beam line, permitting a first test of the reconstructed Isotope Separator.

The goals of the improvement programme both as regards beam intensity per machine pulse and rate of beam extraction were therefore reached within the first weeks of commissioning of SC2. While the later stages of the work proved less time-consuming than had been expected, the project passed through many difficult phases during the course of the year, and major delays were only avoided by the determined efforts of the MSC staff. The satisfactory results of the initial tests have provided a fresh incentive to complete the work by achieving the reliability required for physics research.
The reconstruction of the SC

After the reassembly of the magnet and the installation of the new vacuum chamber, tests were performed in December 1973. They proved that a good vacuum could be obtained in the SC, but earlier difficulties had indicated the need to reinforce the flexible seal between the magnet and the vacuum chamber. At the cost of some lengthening of the shutdown a second stainless steel membrane was welded to the two elements in situ.

Measurements of the SC magnetic field started in January 1974. To achieve the optimal radial dependence of the field the frequency modulation programme of the accelerating system had to be known with precision. The measurement of the frequency programme was therefore performed with each of the two rotary condensers under realistic working conditions. In spite of great difficulties with the condensers and the control equipment, these measurements were completed in February 1974, although one of the condensers had been delivered only two months earlier. The results permitted the calculation of an optimized field shape, which was reached by four successive cycles of measurements and shimming. To permit time for analysis of the field data and for the design and manufacture of the shims, other installation work was carried out between magnet measurements. These were terminated at the end of August after a final shimming of the extraction region.

The dee, which had formed part of the resonator system used for voltage and frequency measurements at the RF test-site, was installed in the SC in July. Vacuum tests revealed leaks produced by corrosion in brazed appendices of the cooling circuits in the roll-bond dee panels.

Although the danger of corrosion had been known and material required for replacing the panels had been ordered, the leaks threatened to cause a major delay. An emergency repair performed by Central Workshop staff saved the day and allowed the programme to go ahead. However, a repainting of the dee will be necessary before SC2 can operate for prolonged periods with full beam.

Figure 2 — Checking the positioning of the magnet measuring equipment installed between the poles of SC2. The steel structure in front of the magnet is designed to house the rotary condenser and to shield it from the stray magnetic field of the accelerator (CERN-5 274)
A first test of the condenser and of its vacuum system at the machine during July revealed many minor mechanical defects, misalignments and inadequate RF contact between various elements. Nevertheless the condenser functioned satisfactorily under its magnetic shielding and in the presence of a magnetic field. The eddy current losses were found to agree closely with computations based on model tests.

The ion-source and its support, which is fitted with four eccentric drives and two airlocks, had been fully tested on a twelve-metre-high rig in ISR Hall 181. Their installation at the SC during September produced no surprises and was completed on time. The rotary condenser and oscillator were then mounted and, after some conditioning, a peak dee voltage of 20 kV was reached with the rotary condenser turning at full speed but powered only on one in sixteen frequency modulation cycles.

Tests of acceleration were started on 30 September. A target, placed at 30 cm radius to minimize machine activation, registered beam current as soon as the ion-source pulse was correctly synchronized with the radio-frequency. Acceleration to full energy was observed on 1 October. After some attempts to optimize the ion-source position relative to the central focusing electrodes, a beam current of about 0.6 μA was measured at 1/16 duty cycle. At the full pulse repetition rate this would correspond to an internal beam of about 10 μA, the design value of SC2.

Beam tests were resumed in mid-November after modifications to the vacuum system of the rotary condenser. They showed that the radial and axial betatron amplitudes of the internal beam lay within the expected limits. Beam extraction was attempted and immediately achieved on 21 November. The behaviour of the beam in the extraction region of the SC was studied by a system of secondary emission probes which permitted some optimization and, while the cyclotron was still operating at only one sixteenth of its normal repetition rate, it produced an external proton beam of more than twice the highest intensity reached by SC1. Measurements of the internal and external beam intensities performed during December indicated an extraction efficiency of 50%, representing a tenfold improvement due to the reconstruction and a value unequalled by any other synchro-cyclotron.

Figure 3 — Checking the positioning of the dee before its introduction into the vacuum chamber of SC2. The dee is mounted on a large cover plate which also carries the dee liner and the pump manifold. The dummy dee is fixed to the pole faces within the vacuum chamber (CERN-77-74)
The external beam was subsequently aligned on the ISOLDE beam line and the first protons from SC2 reached the ISOLDE target on 17 December 1974.

Work connected with SC2

Radio-frequency system

During the course of the year the radio-frequency system, which was only partially complete when delivered by industry, was put into service. The rotary condenser, which provides the frequency modulation, and its spare, were operated over the full frequency range of 30.5 to 16.7 MHz at more than 20 kV and the time variation of the frequency was measured under different conditions of adjustment.

To achieve this, the CERN team, consisting of the Studies and Development Group and a crew furnished by the Central Workshop, had to carry out numerous repairs and improvements of the electrical and mechanical elements. Many more remain to be done before the system can operate reliably. This will become particularly important when activation of the material will make frequent interventions difficult. A redesign of many components is therefore being undertaken.

The computer-based SC alarm protocol system was used extensively during RF tests and facilitated fault finding.
Magnet measurement and shimming

The computer-controlled magnet measuring gear was completed and installed in the SC magnet in January 1974. During a total measuring time of 103 days, about 700000 field values were measured with 320 Hall plates mounted on eight different sets of mechanical supports. All field data calculated by the computer were listed on paper, punched on cards, and stored on magnetic tape. Four cycles of measurement and shimming of the magnet centre and extraction region were performed. The magnetic and geometric centres of the machine now agree to a fraction of a millimetre. The final set of measurements, finished in September 1974, gave a theoretical captured current of about 20 μA for 30 kV peak on the dee and a theoretical extraction efficiency of about 70% for protons of the expected radial amplitudes.

Internal target and extraction systems

The internal target system, comprising four independently movable targets, was installed in the SC and its operation under vacuum was tested, as was the functioning of the electromagnetic extraction channel and of the pulsed field coil which provides an extracted proton beam of high duty cycle.

Secondary beams and experimental areas

The reconstruction of the secondary beam system derived from the internal targets of SC2 is complete and the elements for the first set of meson beams from external targets are available. A cryotarget for neutron and meson production is under construction. All beam transport power supplies have been revised and are ready for use.

The Division resumed its regular programme discussions with scheduled and intending users and several teams of experimenters have installed their equipment in the Proton Hall and the ISOLDE Area. The MSC Division has participated in discussions concerning the possible construction and use of a large-aperture magnet wire chamber system at SC2.

Common services

The newly laid cable network was connected and checked out. The new cooling installations were completed. Safety and communications systems were reinstalled.

While carrying the burden of all mechanical work required by SCIP the MSC Engineering Group has designed beam layouts and equipment for experiments at the Proton Synchrotron and the Intersecting Storage Rings. It is also participating in the design of spectrometers for use at the Super Proton Synchrotron. It has manufactured much experimental equipment, notably a liquid helium pump and superconductors for a solenoid.

The Division held discussions with the French ‘Groupe pour l'accélérateur national à ions lourds’ (GANIL) with a view to a possible collaboration on a study of problems in the acceleration of heavy ions. It also participated in the preparation of the CERN Technology Exhibition where its contribution aroused much interest.

Other activities
Proton Room.

Beams to this room are generated from the extracted proton beam by targets in the SC Hall.

Zone 1 receives neutrons from the reaction $\text{D}(p, n)\text{p}$ at 0 MeV and is used currently for the calibration of a large neutron detector.

Zone 2 may receive π^+ beams of the energy range 100-400 MeV from production on H or Be targets. It may also be used for test beams of protons from scattering on carbon.

Underground area

The full extracted proton beam is used for nuclear spectroscopy and nuclear chemistry in ISOLDE.

Neutron Room.

Beams to this room are generated from internal targets. There are four chambers in the shielding wall.

Electromagnetic channel 1 MeV: a septum which is the first section of the proton extraction system.

Low energy pion channel (LPC) giving π^+ from 60-100 MeV. Zone 3 is a pure pion test beam using pure neutrons from the septum.

125 MeV channel giving π^+ at higher energy range 60-200 MeV.

γ channel giving γ from 60-200 MeV.
The report falls into two parts: the physics results, and technical activities.

A salient feature of the first part is the consolidation of the fundamental results on both leptonic and semi-leptonic weak neutral currents.

The extensive use made of phase-shift analysis for the study of multibody systems will also be noted.

A large part of the technical section is devoted to the repair of the BEBC magnet and to giving the very unusual reasons for the breakdown.
Track Chambers Division

PHYSICS

Neutrino experiment

Neutral currents

a) Semi-leptonic interactions:

A complete analysis of muon-less events was published in January 1974. This analysis shows NC/CC ratios of 0.23 ± 0.04 and 0.43 ± 0.12 for the neutrino and antineutrino interactions respectively, once all corrections have been made. The energy, multiplicity and charge distribution of the events is very similar for neutral currents (NC) and the hadronic parts of charged currents (CC). The checks made so far on effects which might lead to an underestimation of the background have given negative results both for the loss of associated neutron events (AS), which provide the background normalization, and for the ratio between the detection and identification efficiencies of the various CC, NC and AS channels. In particular, an analysis of photographs with incident protons showed that the estimates of the neutron cascade effects made by the Monte-Carlo method were quite correct. The analysis also provided accurate information concerning the behaviour of the background in the chamber, by means of a study of the neutron stars produced during the proton run.
The statistics of neutrino neutral current events have since been improved by a factor of the order of 2, and the new results are quite consistent with the previous ones.

The charge distribution of the pions in NC events was found to be inconsistent at the 10^{-4} probability level with that of the pions of neutron stars, and provided thus a new indication of the ν nature of NC events. Furthermore, a study of the spatial distribution of the NC events showed that they behaved mainly like neutrino events, and that the proportion of neutron events in them must be weak and consistent with that obtained by the Monte Carlo method.

Comparison of the data with theory resulted in the first measurement of the mixing parameter in the Weinberg-Salam theory.

$$\sin^2 \theta = 0.39 \pm 0.05.$$

\[b) \text{Leptonic interactions} \]

In the new exposures made with higher intensities thanks to the PS Booster operation, a second candidate was found for the reaction

$$\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$$

with the following characteristics.

$P = (500 \pm 120)$ MeV/c
$\theta = (2 \pm 2)$ degrees

This candidate was located in the second part of the chamber.
A total of 0.14 background events was predicted, due mainly to $\nu_e + n \rightarrow e^- + (p)$ reactions in which the energy of the proton is too low for it to be detected. This background was calculated on the basis of $\nu_e + n \rightarrow \mu^- + (p)$ reactions, which are similar. It is unlikely ($p < 1\%$) that these two events can be attributed to this background.

The search for positive electrons e^+ complying with the same criteria as the e^-, and produced by electron antineutrinos ($\bar{\nu}_e$), showed that the background in negative electrons had not been underestimated.

Consequently, there are also clear indications in the leptonic channel for the existence of neutral currents.

Charged currents

The differential cross-section was extracted for neutrinos and antineutrinos with an energy of between 1 and 11 GeV. Scale invariance has been established for events with large momentum transfer (> 1 GeV2) and large hadronic mass (> 2 GeV). This law is, moreover, valid down to the lowest values for these quantities, provided that the Bloom-Gilman variable is selected.

The structure functions extracted from the data agree well with those from electroproduction and with the very simple quark model, in which the quark has a fractional charge. The verifications obtained by using Adler's law and the pion charge distribution, are also consistent with this model (Aachen-Brussels-Ecole Polytechnique, Paris-Milan-Orsay-University College, London Collaboration).
Resonances

Boson resonances

A partial wave analysis was carried out with the \((K^- \pi^+)\) system observed in the charge exchange reaction

\[K^- p \rightarrow n(K^- \pi^+) \]

produced by 10 and 16 GeV/c \(K^-\)

The main purpose of the analysis was to study the behaviour of the \(J^P=0^+\) state, i.e. the S wave, of the \((K\pi)\) system. In the \((K\pi)\) mass region between 0.64 and 1.68 GeV this state predominates and its mass distribution and phase variation correspond well with a resonance described by a Breit-Wigner function with a mass \(M_0 = (1245 \pm 30)\) MeV and a width \(\Gamma_0 = (485 \pm 80)\) MeV. This state may correspond to the kappa meson frequently reported in other experiments but for which doubts exist about its nature — resonance or not resonance — and about its mass and width (Aachen-Berlin-CERN-London-Vienna Collaboration).

Barion resonances with strangeness \(-1\)

Recent measurements at Brookhaven of the \(KN\) total cross-section have established the existence of a narrow bump in the 1580 MeV region in the isotopic spin state \(I = 1\). Previous results from a \(K^-p\) production experiment between 500 and 600 MeV/c (total energy in the centre-of-mass system between 1560 and 1600 MeV) were re-examined by combining the events in smaller energy bins than before (5 MeV instead of 10 MeV). A partial-wave analysis of the different final states revealed a statistically significant effect in the \(\Lambda\pi^+\) channel and in the wave corresponding to a state with \(J^P = 3/2^-\). The parameters of this resonance are mass \(= (1582 \pm 4)\) MeV, width \(= (11 \pm 4)\) MeV, \((\Lambda\pi)\) amplitude at resonance \(= 0.10 \pm 0.02\).

\(K^+\pi^-\) total cross-section

The Chew and Low extrapolation method, previously used for studying \(K^+\pi^- \rightarrow K^+\pi^-\) elastic scattering, may be generalized and applied to the \(K^+\pi^- \rightarrow X\) reaction in which \(X\) represents all the possible final states: in this way the total cross-section \(\sigma(K^+\pi^-)\) is obtained. Using this method, the total cross-section was measured between the threshold and \(E = 1.8\) GeV (total energy of the \(K^+\pi^-\) system) using the events of the \(K^+p \rightarrow X\Delta^{++}\) reaction at 8.2 GeV/c. For the peripheral events (small values of \(|t|\)), the alignment of the \(\Delta^{++}\) spin, measured from the spin density matrix elements, indicates that the reaction is dominated by \(\pi\) exchange. The results show that below \(E = 1.4\) GeV, the inelastic cross-section is negligible. It then increases slowly and the total cross-section seems to level out at about \(\sigma(K^+\pi^-) = 20\) mb (Antwerp-CERN-Mons-Serpukhov Collaboration).

Partial wave analyses

Over the last few years, the partial wave analyses normally used for studying two-body reactions in production experiments of the \(\pi N \rightarrow \pi N, K^-N \rightarrow \Lambda\pi\) type have been extended.
to study, with the help of a number of reasonable approximations, the three-body systems produced in four-particle final states observed at a fixed total energy.

Some of the most interesting results obtained with this method are given below

\((K\pi\pi)\) system

The partial wave analysis of the \((K\pi\pi)^-\) system, the results of which were already presented in 1973, was extended to the \((K\pi\pi)^0\) system. The purpose was to compare the behaviour of the \(K^- p \rightarrow p(K\pi\pi)^-\) (1) diffractive reaction to the charge exchange reaction \(K^- p \rightarrow n(K\pi\pi)^0\) (2).

The analysis was carried out on the \((K^0\pi^+\pi^-)^0\) neutral system in the mass band between 1.04 and 1.56 GeV, which is an interesting region because in the \((K\pi\pi)^-\) system it is dominated by the highly controversial "Q meson" Interactions produced by incident \(K^-\) at 8, 10 and 16 GeV/c were used and the following results obtained:

1) for 2/3, the \((K\pi\pi)^0\) system is produced in the unnatural spin-parity states \(J^p = 0^+\) and \(1^+,\) the latter being the predominant state. The other third belongs to the natural spin-parity state \(J^p = 2^{++}\) and would correspond almost entirely to the resonance \(K^*(1420)\)

2) The unnatural spin-parity states are mainly (80% of the cases) produced by natural parity exchange.

The two preceding results observed in reaction (2) are very similar to those found for the diffractive reaction (1). However, the energy dependence of the cross-sections \((\sigma)\) is very different in each case. Expressed in the form \(\sigma \propto p^{-n}\), in which \(p\) is the momentum in the incident \(K^-\) laboratory system, it is found that \(n = 1.5 - 2\) for reaction (2), whereas for the diffractive reaction (1) the values of \(n\) oscillate between 0 and 0.5 (Aachen-Berlin-CERN-London-Vienna Collaboration).

\((\pi^+\pi^+\pi^-)\) system

This system was studied in the reaction

\[\pi^+ p \rightarrow (\pi^+\pi^+\pi^-)p\]

at 8, 16 and 23 GeV/c

In 93% of the cases, the \((3\pi)\) system is produced in unnatural spin-parity states \((0^-,\ 1^+,\ 2^-\ and\ 3^+)^\) always by natural parity exchange. The differential cross-section \(d\sigma/dt'\) accumulates towards the low values of \(t'\), with the exception of the \(2^+D\) state which decreases at \(t' \sim 0\). The energy dependence of the cross-sections of the states with \(J^p = 1^+,\ 2^+\ and\ 2^-\ in\ the\ A_1,\ A_2\ and\ A_3\ regions\ respectively\ is\ virtually\ the\ same: (p_{lab})^{-n}\ where \(n = 0.3 \pm 0.2\) This implies diffractive production of these states.

The phase of the \(1^+S\) state varies very little in the \(A_1\) mass region, indicating once more that this state does not have the characteristics of a simple resonance. On the contrary, the phase of the \(2^+D\) state in the \(A_2\) mass region has a good resonance behaviour (Aachen-Berlin-Bonn-CERN-Heidelberg-London-Vienna Collaboration).

Comparative study of the \((\pi^+\omega)\ and\ (K^-\omega)\ systems\ at\ different\ energies

The properties and production mechanisms of the \((\pi^+\omega)\ and\ (K^-\omega)\ systems\ produced\ in\ the\ reactions:

\[\pi^+ p \rightarrow (\pi^+\omega)p\]

at 4, 5, 8 and 16 GeV/c and

\[K^- p \rightarrow (K^-\omega)p\]

at 10 and 16 GeV/c have been studied.
In the \((\pi^+\pi^-) \) system, the \(B \) meson is observed in the \(J^P = 1^+ \) state, as expected. Its production is essentially due to natural parity exchange. The mass distribution of the \((K\pi\pi) \) system shows a strong concentration for values below 2 GeV; this system is almost entirely in the \(J^P = 1^+ \) state produced by natural parity exchange. However, contrary to the \((\omega\pi) \) system, no contribution is observed from the \(1^+D \) state and, in addition, its production is apparently due to a diffractive mechanism, since the cross-section remains constant when the energy increases, whereas that for the \((\omega\pi) \) system decreases according to \(p_{lab}^{-4} \).

\((KKK) \) system

Two independent studies of the three \(K \) meson system were carried out. One concerned the reaction

\[K^+ p \rightarrow (K^+ K^+ K^-) p \]

at 8, 12, and 16 GeV/c and the other concerned the reaction

\[K^- p \rightarrow (K^- K^- K^+) p \]

at 10 and 16 GeV/c.

Very similar results were obtained in both cases; furthermore, the behaviour of the three \(K \) mesons is strikingly similar to that of the \((K\pi\pi) \) and \((\pi\pi\pi) \) systems produced in association with a proton in final states by incident \(K^+ \) or \(\pi^+ \). Thus the effective masses of the three kaons accumulate at low values and the \(J^P = 1^+ \) state, produced by natural parity exchange, predominates. This state decays essentially into \(K^\pm \Phi \) (to be compared with the \(J^P = 1^+ Q \rightarrow K^\mp \pi \) and \(A_1 \rightarrow \rho \pi \) systems). For masses above 2 GeV, \(J^P = 2^- \) appears, giving \(K^\pm \Gamma^* \) (\(K^+ p \) Birmingham-Brussels-CERN-Mons-Paris-Saclay Collaboration; \(K^- p \) Aachen-Berlin-CERN-London-Vienna Collaboration.)

\(\pi^- p \rightarrow A_2^- p \) reaction

This reaction was analysed at 39 GeV/c using the decays \(A_2^- \rightarrow \rho^0 \pi^- \eta \pi^- \) and \(K^0 S K^- \). A partial wave study of the \(\rho^0 \pi^- \) mode showed that the only important contribution was due to the \(J^P = 2^+ \) state with an orbital momentum \(p - \pi \) of 2.

At this energy the production of \(A_2^- \) by unnatural parity exchange — \((36 \pm 4) \mu b \) — is almost as large as the production by natural parity exchange — \((50 \pm 4) \mu b \) — the latter being the only one observed at high energies.

The structures observed in the differential cross-section are interpreted in terms of exchange diagrams. In particular, the small-angle behaviour is consistent with a fairly large \(\pi \) \(BA \) coupling already indicated by the observation, in the same experiment, of the decay mode \(A_2^- \rightarrow \omega \pi \pi \) (CERN-Saclay Collaboration).

Inclusive reactions

\(Multiplicities \)

A study was carried out on the multiplicity of charged particles produced by 100 GeV \(\pi^- \) interacting in the NAL 30" bubble chamber. By combining the new results with those obtained at lower energies it is observed that, when the incident momentum increases, the cross-sections for events with a given multiplicity \(\sigma_n \) \((n \geq 4) \) increase, pass through a maximum and then begin to decrease. For \(n = 2 \), the inelastic cross-section becomes almost constant between 20 and 30 GeV/c, whereas that for \(n = 0 \) decreases regularly according to the power law \(p_{lab}^{-1} \).
For all of the values of \(n \geq 2 \) the observations are well represented by the same function of the two variables defined by

\[
y = \frac{n \times \sigma_n}{\sigma_{\text{inel}}}
\]

(where \(\sigma_n \) is the cross-section for the multiplicity \(n \) and \(\sigma_{\text{inel}} \) is the total inelastic cross-section) and

\[
\chi = \frac{<n>}{n}
\]

(where \(<n> \) is the mean multiplicity).

These results can be interpreted by an interaction model with two components: one diffractive component producing weak multiplicities and another more central component with larger multiplicities.

Inclusive production of \(\Delta^* \) in \(K^- p \) and \(\pi^\pm p \) interactions

In the reaction

\[
K^- p \rightarrow \Delta^{++} + \text{anything}
\]

the differential cross-section expressed as a function of \(M^2/s \) (in which \(M \) is the mass of the system accompanying the \(\Delta^{++} \) and \(s \) is the square of the total energy in the centre-of-mass system) is the same at 10 and 16 GeV/c. This scale invariance is already seen for low values of \(M \) in this reaction, whereas it is not observed in the reaction

\[
\pi^- p \rightarrow \Delta^{++} + \text{anything}
\]

studied at 8, 16 and 23 GeV/c.

A triple Reggeon exchange model explains these results. If \(R^- \) is the exchanged Reggeon at the \(p-\Delta^{++} \) vertex, then the \(R^- K^- \) system is exotic in the \(K^- p \) reaction and thus, according to the duality principle, in \(K^- R^- \) scattering Pomeron exchange must dominate at lower energies than in the \(\pi^\pm p \) reaction where \(\pi^+ R^- \) is not exotic and, consequently, other exchanges than that of the Pomeron may occur (Aachen-Berlin-Bonn-CERN-Cracow-Heidelberg-London-Vienna-Warsaw Collaboration).

Scale invariance in the \(K^+ p \rightarrow \pi^\pm + M \) and \(K^- p \rightarrow \pi^\mp + M \) reactions

The invariant cross-sections of the \(\pi^\pm \) mesons produced in the proton fragmentation region in the reactions

\[
K^+ p \rightarrow \pi^\pm + M
\]

at 8.2 and 16 GeV/c and

\[
K^- p \rightarrow \pi^\mp + M
\]

at 10 and 16 GeV/c were compared. \(M \) represents any system accompanying the \(\pi^\pm \).

Scale invariance was observed in the production of \(\pi^\pm \) but not in that of \(\pi^- \).

For the general reaction

\[
a + b \rightarrow c + \text{anything}
\]

several theoretical models exist which, on the basis of the exotic nature of the \(abc \), \(ab \), \(ac \) or \(bc \) systems, predict the existence of scale invariance at relatively low energies. The experimental results do not agree well with these theoretical predictions unless additional assumptions are introduced. (K^+ p: Aachen-Berlin-CERN-London (Imperial College and Westfield College)-Vienna Collaboration. K^+ p: Birmingham-Brussels-CERN-Mons-Paris-Saclay Collaboration.)
<table>
<thead>
<tr>
<th>Beam</th>
<th>Experiment No</th>
<th>Chamber</th>
<th>No of photos (units of 1000)</th>
<th>Laboratories</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>u₂ K⁺</td>
<td>14 GeV/c</td>
<td>T216</td>
<td>HBC200</td>
<td>407</td>
<td>Cambridge, Imperial College (London), Westfield College (London)</td>
</tr>
<tr>
<td>u₂ K⁻</td>
<td>16 GeV/c</td>
<td>T220</td>
<td>HBC200</td>
<td>585</td>
<td>Aachen, Berlin, CERN, Imperial College (London), Vienna, Westfield College (London)</td>
</tr>
<tr>
<td>m₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u₂ π⁺</td>
<td>16 GeV/c</td>
<td>T201</td>
<td>HBC200</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>u₂ p</td>
<td>24 GeV/c</td>
<td>T158</td>
<td>HBC200</td>
<td>245</td>
<td>Bonn, Hamburg, Munich Amsterdam, Liverpool, Stockholm</td>
</tr>
<tr>
<td>u₂ p</td>
<td>12 GeV/c</td>
<td>T226</td>
<td>HBC200</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>k₂ K⁺</td>
<td>1-1.5 GeV/c</td>
<td>T232</td>
<td>HBC200</td>
<td>611</td>
<td>Birmingham, L.P.N.H.E. (Paris)</td>
</tr>
<tr>
<td>m₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m₀ π⁻</td>
<td>1-1.67 GeV/c</td>
<td>T197</td>
<td>HBC200</td>
<td>356</td>
<td>Hafnia, Saclay</td>
</tr>
<tr>
<td>m₀ p</td>
<td>0.6 GeV/c</td>
<td>T239</td>
<td>HBC200</td>
<td>180</td>
<td>CERN, Rome</td>
</tr>
</tbody>
</table>

Subtotal HBC200 5130

<table>
<thead>
<tr>
<th>Beam</th>
<th>Experiment No</th>
<th>Chamber</th>
<th>No of photos (units of 1000)</th>
<th>Laboratories</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν freon</td>
<td></td>
<td>T228</td>
<td>Gargamelle + PS Booster</td>
<td>620</td>
<td>Aachen, Brussels, CERN, Ecole Polytechnique, Milan, Orsay, University College (London)</td>
</tr>
<tr>
<td>ν propane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>4-19 GeV/c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal Gargamelle 980

<table>
<thead>
<tr>
<th>Beam</th>
<th>Experiment No</th>
<th>Chamber</th>
<th>No of photos (units of 1000)</th>
<th>Laboratories</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td></td>
<td>T230</td>
<td>Spark chamber behind Gargamelle</td>
<td>475</td>
<td>Aachen, Padua</td>
</tr>
</tbody>
</table>

Subtotal 475

Total 6585

Note: HBC = hydrogen bubble chamber
TECHNICAL ACTIVITIES

Work on the HYDRA modules has continued. The experience gained during the last year of production can now be used in a new version. This will be ready at the beginning of 1975, and HYDRA may then be considered to have achieved the purpose for which it was designed.

Work has started on an experimental project, using interactive techniques, for simplifying the study of data depending on a large number of parameters. The project combines manual control, graphic display of the results and mathematical procedures.

Outstanding success was achieved by the team of programmers engaged in work with the spiral reader, in collaboration with the electronics engineers working on this instrument. A pre-filtering operation was added to the PDP-9 computer system, resulting in a 70% reduction of the data to be processed. A close comparison of the events measured with and without the pre-filtering system shows that the latter does not lead to any deterioration in the quality of the measurements, or reduce the proportion of events which "get through" the geometry program. The same method was rapidly applied to reader number 2; in this way, it is hoped to make a fourfold reduction in the number of magnetic tapes used and a 50% reduction per reconstructed event in the occupancy of the CDC 7600 central unit.

During 1974, the two spiral readers measured 274,737 events (i.e. 470,208 vertices) of all topologies, from a bubble chamber experiment \((K^- p \rightarrow 4 \text{ GeV/c, 2m HBC}) \) for which 625,000 measurements have already been collected. This represents an increase of about...
20% in the production rate compared with 1973. The improvement was the result of a thorough optimization of the production chain which, at the same time, led to a considerable reduction in operating costs. Thus, alterations in the electronic data processing system made it possible to introduce the pre-filtering program described in the section “Software development”. At the same time, a new calibration procedure ensured the stability of the quality of the measurements. Furthermore, by applying a decision program using ionization it was possible to reduce the work of identifying events considerably. The team of LSD operators is now fully familiar with the various operations of scanning, measurement and identification.

ERASME

The report on this joint project of the DD and TC Divisions is being made this year by the DD Division.

Split-Field Magnet

The report of the joint group of the NP and TC Divisions is being made this year by the NP Division.

BEBC

It was decided in February to dismantle the BEBC magnet completely. On several occasions this magnet had achieved its rated field of 3.5 T. The fault observed was due to intermittent short-circuits to earth, which disappeared in strong fields, but had resulted in several major emergency warnings. The evidence suggested that only an auxiliary circuit was involved (see below), but it was clear that dismantling and reassembly would take a

![Figure 5 — The stock of heavy water which will supply the deuterium for BEBC](Image)
considerable time. Because the magnet has to be as close as possible to the chamber and heat losses have to be avoided, the structure of this equipment must be extremely compact; this makes the delicate components as inaccessible as an Egyptian mummy. The decision to repair the equipment immediately was based on the fact that absolute priority had to be given to the use of BEBC with the SPS and not for an experiment at the PS. In order to explain the nature of the auxiliary circuits in which the fault occurred and the basic cause of the fault discovered on dismantling, we must digress into the technical and scientific aspects of frozen eddy currents.

The conductor used in BEBC is of a relatively early design, copper-stabilized and untwisted. Copper stabilization has always been an important factor in ensuring the safety of non-pulsed magnets, which store a large quantity of energy. However, the combination of copper and the untwisted conductor leads to a troublesome phenomenon. When the magnet current is increased, the radial component of the field tries to penetrate the conductor, particularly at the end of the coils. This results in eddy currents which flow almost entirely along the superconducting wires but form closed loops across a small length of highly-conductive copper. As a result, these currents may last days, months or even years, and this is why they are called "frozen" currents. They are superimposed on the main current in certain regions they are added to it, in others they are deducted. As a result, the absolute value and distribution of the nominal field is modified by between 1 and several percent, fluctuating with time. The existence of this phenomenon was discovered after construction work had started on the BEBC magnet. Two remedies were applied, each of which was rather chancy: one was to carry out permanent measurement of the field and its distribution by means of 200 Hall probes located at specific points in order to determine the absolute value of the field and plot the distribution at each moment (by means of a computer, of course); this did not seem to be a very reliable method, since the fidelity of Hall probes over a period of time was far from proven. The
The repair was completed in November and magnet cooling began on 29 November. After a first satisfactory test at 3.0 T on 12 December, the field was increased to its maximum value on Friday, 13 December. The charge was applied and removed without incident.

Advantage was naturally taken of the long shutdown to make certain useful modifications to the chamber and its expansion system.

The storage area was equipped with two new dewars for deuterium and neon.
During the second half of the year, the decision to revert to the use of Adiprene membranes and the study of the chamber parameters led to a return to more regular operating conditions with regard to track quality. The main technical development was the replacement of the original triggering device of the expansion system by a more reliable and accurate system designed in the electronics laboratory. The track quality was also improved as a result.

Two weeks of operation, one with propane in July and the other with freon in August, each produced 180,000 photographs. A short exposure to 24 GeV primary protons in propane, in order to study the background in neutral current events, produced 50,000 photographs. The December run resulted in 60,000 photographs in propane and 300,000 photographs in freon, thus bringing the freon experiment to an end.

The technical studies carried out with a view to obtaining high quality tracks in an H₂ streamer chamber were resumed this year, with the collaboration of the Orsay Linear Accelerator Laboratory. A large-size Marx generator (designed for 2 MV) was built to feed the small H₂ streamer chamber (21 x 21 x 9.5 cm) used in previous tests (see Nuclear Instruments and Methods 111 (1973) 485-495). A new conical oil-insulated Blumlein line was built to provide a high-voltage pulse with a very steep front (~1.5 ns) and a very narrow base (6 ns). Tracks of 90Sr and cosmic rays were obtained at 40 kV/cm in a hydrogen streamer chamber.

Figure 8 — A dismantled pancake (CERN 774)

Figure 9 — A track in the hydrogen streamer chamber (in hydrogen, the ionization is weak and consequently the number of streamers is small).
mixture, at 500 torr, of $\text{H}_2 + \sim 0.5\% \text{CH}_4 + \sim 0.1 \text{ ppm} \text{ of SF}_6$. Track quality was significantly improved by using an image intensifier (gain $\sim 30,000$) built at CERN (see CERN Report 74-4) The streamers obtained are of excellent contrast, have no tails and are rod-shaped, measuring $7 \pm 2 \text{ mm}$ long with an average diameter of 0.5 mm, with low dispersion, giving a setting error of about 500 μm.

2 m chamber

The 2 m bubble chamber went through its normal maintenance programme which concerned mainly the expansion and vacuum systems and the cooling installation, during the PS shutdown extending from the end of December 1973 to 15 February 1974.

The cool-down of the chamber started on 9 February, in order to resume the hydrogen physics programme.

Operation of the cooling system was interrupted owing to contamination of the coolant from an unidentified source, and, as a result, the chamber had to be heated several times during the year.

Nevertheless, when the chamber was shut down on 19 December, it had already taken more than five million photographs in less than ten months. The programme, drawn up by the Track Chamber Experiments Committee, had been completed; an experiment on the production of boson resonances by slow antiprotons, inspired by the recent discoveries at Brookhaven and SLAC, was included at the last minute and successfully completed.

The film development unit processed 4400 km of film, 3300 km of which had been exposed in the 2 m chamber, 900 km in Gargamelle and 200 km in various other chambers, in some 5000 hours of machine operation; this represents 877 m of film developed per machine/hour.

The cost of photographic chemicals used during the year was offset by the sale of the silver recovered from the baths after film processing.

The 13 December was the tenth anniversary of the first test run with the chamber. The total of 10 years' operation can be summarized roughly as follows: 32 million photographs, 100 million expansion operations, 16000 km of film and a great many sleepless nights for an extremely efficient and competent team.

Beams

South-East Area

The South-East Area now contains the neutrino beam for Gargamelle and a π beam for the $\gamma-2$ experiment, operating alternately. Apparatus has, therefore, been built and installed for the transport, alignment and rapid withdrawal of the components, thereby reducing the working time of the staff in this rather "hot" area. Computer control of the external proton beams is now operational.

2 m chamber

The three beams of the 2 m chamber were used this year. The RF separated beam was used for an experiment with K^- as incident particles; π^- of the highest possible energy...
(16 to 19 GeV/c) were directed at a copper target, and then a set of magnets, collimators and shielding served to eliminate all the charged particles.

The R1+ beam is being dismantled as the 2 m chamber will shortly be moved 13 m to the North.

During two PS runs, a new version of the > beam was installed and used. It is a version without a separator, giving a π⁻ flux as large as possible between 1 and 1.5 GeV/c. These π⁻ interact in a hydrogen target which is the source of low-energy K^0. The charged particle background is eliminated by magnets, collimators and shielding.

Finally, the m_e beam was put back into operation for the last three months of the year.

SPS

s_3 beam

The first two metres of a prototype C-band deflecting cavity were brazed in the CERN workshops. They successfully withstood the high-power tests (5 MW, 6 µs). The final separator will consist of three deflectors, each 6 m long. Automated measurement systems have been developed to measure the 2400 components of the three deflectors and to determine the phase shift of each cell in the brazed structures.

The vacuum and cooling systems and the mechanical supports have been designed and have either been delivered, or are being constructed.

The four 500 W pilot klystrons and a 5 MW klystron have proved fully satisfactory. The prototype HV modulator has been tested for 4×10^6 pulses. The parts required for the manufacture of the final modulators have been ordered.

The development work on the various hyper-frequency systems and on the electronic remote control and monitoring equipment has been completed. Production has begun and is progressing normally.

Neutrino beams

A test circuit was set up and used to show that current pulses of 150 000 A lasting 10 ms could be obtained in a neutrino horn. The wide-band neutrino beam equipment will therefore be designed to operate with these high-current pulses. The magnets and quadrupoles of the narrow-band neutrino beam have been designed. The specification was drawn up and sent to various firms, and orders for the equipment were placed by the end of the year.

The power supplies are being installed and the capacitor banks have been ordered. The electronic control and monitoring equipment, the central component of which will be a NORD-10 computer, is now being assembled.

External muon identifier

Calculations for the detector design have been completed and the quantity of shielding required to eliminate the pions has been determined. The design study concerning this shielding and its installation has been completed.

With regard to the detector itself, which will consist of 150 m² of proportional wire chambers, studies show that, in this particular case, an argon and carbon-dioxide mixture can be used, thereby simplifying BEBC safety problems. Manufacture of a prototype module measuring $3 \times 1 m^2$ has begun.
External particle identifier

A 32-channel module has been assembled, adjusted and tested in the u beam, where it has operated very satisfactorily. The results have been published. Manufacture of the final equipment has started.

Low-temperature laboratory

Investigations into the possibility of building "permanent" superconducting magnets have continued. These are tubular structures of superconducting materials which, by passing from the normal to the superconducting state, freeze a magnetic field produced by conventional or superconducting coils in which the current can subsequently be made to disappear. On the theoretical side, a calculation program has been developed to determine the penetration of a persistent current into dipole superconducting structures. On the experimental side, studies have been made of structures consisting of several triple layers of NbTi foil, aluminium foil, and liquid helium cooling channels. In this way values of up to 2.2 T have been achieved. With similar stacked structures composed of strips of Nb3Sn values of more than 4 T have been reached. Further improvements might be possible by using sintered Nb3Sn tubes, but it is not yet known whether the required length can be manufactured. In the meantime, tests on short samples are being carried out. If such magnets could be made really practical for use in beams, a considerable saving in construction and electricity costs would be obtained.

Liquefier

The following quantities of cryogenic fluids were used for tests and experiments at CERN.

- 2200000 litres of liquid nitrogen,
- 19300 litres of liquid hydrogen,
- 105000 litres of liquid helium.
Charm was discovered through a Čerenkov counter (CERN-153 769).
In an organization like CERN where the basic aim is the study of the fundamental laws of nature, the activity of the Theoretical Studies Division plays a very important role.

The main purpose of this Division is the theoretical study of different aspects and properties of elementary particles. In this respect, the contributions of the Division have been, as in the past, of the highest standard and have received wide attention within the scientific community. On the other hand, the specific role of CERN both as a centre of outstanding experimental and technical achievements and as an international organization must be taken into account. This means that the work done by this Division has both a service and a pure research side.
Concerning the first aspect, there have been many exchanges with the Member States, in the sense that several qualified scientists have paid numerous visits to CERN and participated fully in all the activities of the Division; furthermore about thirty younger physicists from the Member States spend periods of about two years collaborating with the staff. The members of the Division also play an important role as consultants to European experimental groups, in organizing joint meetings on experimental subjects, and in participating in meetings of experimental committees. Finally, the Division contributes actively to the academic training programme of CERN.

On the other hand, all sectors of theoretical particle physics have been covered by the recent scientific activity of the Division. The fundamental principles at the basis of theoretical particle physics are those contained in quantum mechanisms and in the special theory of relativity. Those principles can be combined either in terms of fundamental local fields or by means of a self-consistent theory of the scattering S-matrix (bootstrap).

The complexity of the hadron world has not yet allowed a satisfactory unified theoretical picture, consistent with all our general principles. In order to cope with this situation, many points of view can be taken, which are reflected in the different directions in which the activity of the Division is channelled.
One point of view is that the main problem lies within the formulation of the basic principles. Contributions in this direction range from the axiomatic study of field theory to the derivation of rigorous consequences for scattering amplitudes from established principles such as analyticity and unitarity.

Another possibility is to use the present, although imperfect, principles of quantum field theory as a tool for the study of particle interactions. Within this approach there has been a very strong trend towards unification. Particles are considered as composites of a few simple constituent elementary fields (quarks). The different interactions, seen in nature, are being considered as different aspects of a single fundamental Lagrangian with a large amount of symmetry.

In this respect, much attention has been given to the troublesome question of why quarks have not been seen. At the same time, the evidence for the presence of quarks in both particle structure and in the currents has been studied in detail.

In the framework of unified gauge theories, much interest has been shown in the use of the renormalization group for the study of small distance behaviour of physical amplitude.

Finally, an important breakthrough has been obtained with the introduction of the concept of supersymmetry, which implies large supermultiplets including bosons and fermions and which gives rise to schemes of particular beauty.

In recent years, the physics of high-energy weak and electromagnetic interactions has played a very enlightening role. Experimental results on deep inelastic lepton scattering, e^+e^- annihilation, and the newly discovered neutral current constitute a fundamental challenge and have triggered an important part of the Division's activity.

On the basis of our theoretical understanding, many new particles (W mesons, charmed particles, heavy leptons) seem to be needed. A very fruitful collaboration with experimental groups on this subject has taken place.

Much effort has been dedicated to the study of particle interactions on the basis of different realizations of the bootstrap point of view. In this direction the concepts of renormalization and duality continue to play the dominant role. In particular, applications of Regge and multiperipheral analysis of high-energy interactions have led to remarkable improvements in the description of high-energy hadron collisions. There has been a good deal of interest in the application of renormalization group techniques to 'Reggeon calculus'.

A large amount of theoretical work is closer to experimental facts and has as its aim the building and testing of phenomenological models, which are the first step in the construction of future fundamental theories. In particular, the thermodynamical model has been further developed and the statistical properties of multiple production have been investigated.

The exciting ISR results on large p_T events and rising cross-sections have been the object of successful theoretical study. Both inclusive and exclusive analyses of particle collisions have led to interesting results.

Finally, the theoretical expertise of members of the Division has also been used to help experimental physicists extract the most relevant information from their data.

The interactions of elementary particles with nuclei provides a remarkable avenue of progress both for exploring nuclear properties and for providing new targets from which some special particle properties can be revealed. Interesting results have been obtained in the study of the electric and magnetic polarizability of hadrons and of nuclei, and the effects of the nucleon pion field have been thoroughly explored.
Proton Synchrotron

Scale model of part of the accelerating structure for the new Linear. It is being used in experiments to finalize the 'detailed design' (CERN-183.10.74)
A considerable amount of development work has been undertaken to fit the PS for its future role as SPS injector, which it must perform whilst still continuing to serve the ISR and "25 GeV" physics. The requirements of the three users differ appreciably, and may well change later on, so that flexibility must be maintained. Moreover, a high degree of reliability will be expected of the accelerator which is actually three individual machines in series—Linac, Booster, and the synchrotron itself.

The "intermediate intensity" of approximately 5×10^{12} protons per pulse (5 Tp/p for short) has been used operationally for all the runs of the neutrino experiment during 1974. This will be extended in 1975 to the East Hall beams, which are being completely reconstructed to meet the new requirements. Towards the end of the year, 10^{13} protons per pulse were accelerated to 10 GeV for the first time, during a machine development session. This was the design aim of the original improvement programme, deliberately delayed in execution for reasons of economy.

The MPS Division made a substantial contribution to the meeting on "Technology arising out of High-Energy Physics" held in April, providing 48 exhibits and 50 explanatory "Technology Notes." A large proportion of the staff were involved in preparations, and in manning exhibits, in addition to their normal work.

The Experimental Areas Group is now heavily engaged in the detailed design of equipment for the SPS experimental areas, and in placing orders. An account of progress in this field is given in the part of this Report devoted to Laboratory II.
Proton Synchrotron Machine Division

THE PHYSICS PROGRAMME

This year's long shutdown lasted from Christmas 1973 to 13 February 1974. Greater emphasis was placed on pre-start preparations, markedly reducing the time taken to get the machine into operation; beam was accelerated within six hours and setting-up for experimental physics began eight hours later. The magnetic field configuration approached closely to the ideal, and consequently the closed orbit at injection was much flatter than before.

A major innovation was the inclusion in the normal operating schedule of "intermediate-intensity" running, using 800 MeV injection from the Booster to produce accelerated beam intensities in the region of 5 Tp/pulse. This was employed throughout the year for the neutrino experiment, in the first place on a single-user basis, but with growing confidence more complex operation added two others during the same cycle.
First, one bunch was extracted for the 2 m hydrogen bubble chamber, then eighteen were sent down the primary beam line to the neutrino target, and finally the remaining bunch was slowly extracted over a few hundred milliseconds to supply a West Hall beam for tests of the Omega magnetic spectrometer experiments. Beam for the ISR could be supplied on alternate cycles whenever required, with a programmed intensity reduction in order to avoid unnecessary irradiation of the transfer line and injection components; the method used for this was to vary the number of turns fed into the Booster at 50 MeV.

All the other experimental facilities have been fully exploited at normal intensities (i.e. 50 MeV injection). The fault rate, at 5% for experimental physics time, was reassuringly low. Major breakdowns involved cavity beam loading compensation in the Linac, the main magnet cooling system, shims in magnet unit 16, and the septum extraction magnet in straight section 62. Statistics of the year's performance are shown in Figure 2.

Figure 2 — Functional division of the PS year (24 hours per day) and a summary of the statistics of operation in 1974

The Year (8760 h)

- **225 h**: part tests (linac, magnet, etc.)
- **2259 h**: shut-down
- **6276 h**: scheduled operation
- **64 h**: starts and stops

Statistics of Operation

<table>
<thead>
<tr>
<th></th>
<th>Fraction of scheduled operation</th>
<th>Faults: percentage running time lost</th>
<th>Average beam intensity * Tp / pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENTAL PHYSICS :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- with 50 MeV injection</td>
<td>87%</td>
<td>5%</td>
<td>(2.41)</td>
</tr>
<tr>
<td>- with 800 MeV injection</td>
<td>70%</td>
<td>4.7%</td>
<td>1.75**</td>
</tr>
<tr>
<td>MACHINE DEVELOPMENT :</td>
<td>13%</td>
<td>1%</td>
<td>4.71***</td>
</tr>
</tbody>
</table>

* Tp = Teraproton = 10^{12} protons
 ** "normal intensity"
 *** "intermediate intensity" (N.B. figure includes operation with deliberately reduced intensity)
SCHEMATIC DIAGRAM OF PS EXTERNAL BEAMS AND EXPERIMENTAL COMPLEXES IN 1974

SOUTH HALL
Target 01: five beams are derived from this target
- m_0: partially separated, mainly p up to 0.9 GeV/c
- q_0: test beam ≤ 4.4 GeV/c
- d_0: π^- ≤ 10 GeV/c
- b_0: neutrons at 0° production angle, protons for tests

Target 08: two beams are derived from this target
- k_1: partially separated \bar{p}, K^- up to 0.9 GeV/c, mainly for stopped K^-'s (tag spectrum), q_{11}: π^+ K^- ≤ 5 GeV/c

EAST HALL
Slow ejection from straight-section 62, the primary beam, e_x is divided into three branches, each with a target, from which five secondary beams are derived:
- s_1: short beam with analyzing magnet, for observation of charged hyperons
- k_5: enriched in K^-, \bar{p} by differential absorption; up to 0.7 GeV/c
- b_{18}: neutrons at 52 mrad production angle (for K^0 studies)
- p_{18}: π^+ up to 10 GeV/c
- b_{18}: K^0

Fast ejection from straight-section 58, three possible target options give a choice of beams for the 2 m hydrogen bubble chamber
- u_3: RF-separated (three options); π^+ up to 16 GeV/c, and other possibilities
- m_0: K^+ electrostatically separated, up to 4.5 GeV/c
- k_8: K^- electrostatically separated, 1.2 to 2 GeV/c

SOUTH-EAST AREA
Neutrino experiment, supplied with primary beam (e_2) by fast ejection from straight-section 74, and using the heavy liquid bubble chamber "Gargamelle" and a spark chamber assembly.
Alternatively, $g-2$ experiment using a secondary beam of π^+ at ≤ 3 GeV/c derived from a target in e_2
During the shutdown two new beams for counter experiments were built in the East
areas. One, b_nu, is a neutral beam for the study of $K^0_L + p \rightarrow K^0_S + p$. The second is
essentially a reconstruction of the high-momentum π-beam with a smaller production
(5 mrad) to increase its intensity. The 2 m hydrogen bubble chamber was
viewed with new facilities for K^0 experiments, and in the last running period before
the construction of the whole complex began, a major modification was made in order to
test the essential elements of the "bi-spectrometer" experiment due to begin next year.

In the South Hall three secondary beams were rebuilt to provide facilities for the
measurement of helicity amplitudes in the reaction $\pi^- p \rightarrow \Lambda^0 K^0$, of electron pair
production in $p p$ annihilation at rest, and of strange boson production in $K^+ p$ reactions
(respectively, beams q_11, m_14 and d_13). An additional test facility for medium and low
energies was provided (q_12).

For the new $g - 2$ experiment, a secondary beam derived from a target in the c_n
extraction channel (neutrino facility) was constructed. Since this experiment runs alternati­
vly to Gargamelle neutrino observations, several changes of layout were inevitable.

The West Area beams remained essentially unaltered, apart from the frequent minor
changes of layout for numerous tests of experimental apparatus common to all areas
throughout the year.
CURRENT TECHNICAL DEVELOPMENT

Operation at the pulse 50 mA current level has been quite stable and reliable, with few breakdowns affecting PS running. The best period was in July, with only 54 minutes of breakdown time for 627 hours of operation (0.14%). Since a new Linac is under construction, work on the present machine is nominally restricted to maintenance only; however, a few essential modifications had to be carried out.

The original Cockcroft-Walton type 500 kV pre-injector HT set, which broke down in mid-1973, would have been very expensive to repair. It has therefore been replaced by a pair of SAMES electrostatic generators (one in operation and one on standby) of the type in common use for electrostatic separators, so that additional spares are readily available. The pre-injector beam load compensator had to be rebuilt to obtain adequate reliability. Studies carried out for the new Linac led to a simplified design for the proton source, with an appreciable improvement in operation.

A modified version of the buncher, with better stability, is now in use for machine development work. With its aid, a central transverse density about twice as high as usual has been obtained for currents of 80-90 mA. Installation of new coupling loops on the RF power amplifiers and rigid feeder lines to the tanks has been completed, and a set of RF circulators to diminish mutual interference between the three tank settings is on order. A new phase measurement system has considerably reduced setting-up time.

The chopper between the pre-injector and the Linac proved to have undesirable effects upon beam stability, and it has been replaced by a clipping device at the 50 MeV level.

In the course of 1974 the Booster effectively reached the stage of routine operation at the "intermediate-intensity" level. From the technical viewpoint, this involved providing a suitable beam for injection from the present Linac, matching the 800 MeV output to the PS input, and achieving adequate overall reliability and stability. On the personnel side, an effective operating staff had to be created exclusively by reorganization within the Division together with an intensive training programme. The results were encouraging; for more than a thousand hours of operation for experimental physics, the fault rate was about 6% with an average PS output of more than 5 Tp/pulse (except when intensity was deliberately reduced).

A beam of higher density than before has been available from the Linac and continued machine experiments have led to further improvements in performance. In September, a beam of 2.8 Tp/pulse was accelerated to full energy in one of the four rings, with 95% emittance figures of $E_\theta = 28$ and $E_\phi = 12$ (in units of $\pi \times 10^{-6}$ rad m), to be compared with the design target values of 33 and 12, respectively, for 2.5 Tp/pulse at PS injection. The high density was obtained by efficient RF trapping and by using a dynamic working point, achieved by programming this parameter in such a way that the Laslett Q-shifts catch a minimum crossing of stop-bands. The maximum reached using all four rings is, up to the present, 14 Tp/pulse, or about 40% more than the original design figure.

The main problem at high intensities is a strong longitudinal bunch-to-bunch instability. Fortunately, this can be controlled if a more stable distribution of the particles within the bunch is induced by "shaking" the bunches, and the injection of a...
signal close to the synchrotron oscillation frequency into the RF phase loop has this effect. Continuing experimental studies aim at better understanding of machine behaviour and preparation for progress towards still higher beam intensities. The important subject of transverse and longitudinal beam stability limits is also being studied theoretically.

Evaluation of the last year's data on the width of a large number of stop-bands led to specifications for multipole lenses to complete the system of correcting elements. These, with their power supplies and controls, are now in production.

The vacuum has been improved by reducing the quantity of untreated ferrite and the number of seals on water-cooling circuits within the chamber, and adding a special titanium sublimation pump at a critical point; average pressure has come down from 7×10^{-8} to 2×10^{-8} torr. New injection and ejection septum magnets of more refined mechanical design have been installed, and a variety of other improvements carried out, mainly with the object of increasing reliability and simplifying operation. More spares are being provided, and work on documentation continues.

The Booster control equipment in the Main Control Room has been reorganized and a mobile console giving access to most of the programs available on the main unit has been provided in the Booster building. The PSB requirements for the new overall computer control system have been specified.

Accelerator studies

Studies have been principally devoted to acquiring a better understanding of beam behaviour at the intermediate intensity level (5-6 Tp/pulse) now standard with 800 MeV injection from the Booster.
Matching of the incoming 800 MeV beam, with various numbers of turns injected into the Booster, has been considerably improved, reducing the initial transverse emittance blow-up. Emphasis has now shifted to optimization of the corrections, in order to diminish emittance growth caused by crossing stop-bands.

Instabilities become worse at intermediate intensity. To damp them, octupoles are used to g - a wide tune spread, and in consequence the position of the working point in the tune diagram requires precise control throughout the accelerating cycle. New quadrupoles are being used for this purpose.

The result of all these improvements was that the original target beam intensity of 10 Tp/pulse was reached in a development session towards the end of the year. A peak value of 10.19 Tp/pulse was successfully accelerated beyond transition energy. There remains, however, much more work to be done before the behaviour of beams at intensities above "intermediate" can be properly understood and controlled.

Whilst the present γr-jump system can handle the intermediate-intensity beam of 5 Tp/pulse within a 10 mrad longitudinal emittance without dilution, higher intensities will require a faster passage through transition. A new power supply for the quadrupole doublets should solve the problem; transition will be passed some two hundred times more rapidly than it would be without any manipulations.

Adiabatic debunching for SPS injection is being actively studied. This process can be facilitated by an increase of the momentum compaction parameter, and pulsing suitably placed quadrupoles to reduce γr has this effect; preliminary tests of the method have shown an improvement. Difficulties occur at high longitudinal phase-space densities owing to instabilities provoked by longitudinal coupling impedances, and efforts to discover the components responsible continue. Some have already been identified and their effects alleviated, as mentioned elsewhere, but recently other instabilities at very high frequencies (several GHz) were found.

The working party set up two years ago to study the conditions for survival of the main magnet has issued its final report, analysing the present status of the principal components (blocks made up of steel laminations, excitation coils, and poleface windings), and predicting the future rate of deterioration. The damage is essentially caused by the combined effect of pulsed magnetic forces and the degradation of organic materials (insulation, adhesives, etc.) owing to irradiation. Proposals to preserve the magnet in an adequate working condition include mechanical clamping of the end blocks, renewal of a few excitation coils, and replacement of all the poleface windings. The new poleface windings may be basically similar to the old ones, or of a completely new design; theoretical and experimental studies of alternative possibilities are sufficiently well advanced so that a decision may be made in 1975. During the annual shutdown, seven magnet units were repaired in situ and two others replaced by units renovated in the workshop; another unit has been repaired ready for installation next year.

A thyristor bypass has been installed in parallel to one of the two mercury-arc converter sets of the main magnet power supply. During the "flat top" period of the magnet cycle, the current is switched to the bypass and the magnet is powered by one converter set only. Besides reducing ripple, this technique also cuts down power consumption, resulting in a saving of 60 000 to 80 000 francs per annum, and lengthens the lifetime of the bypassed mercury-arc converters.
The auxiliary magnet system continues to be developed and expanded to meet new operational requirements and to compensate effects arising from the higher beam intensities coming into use. Additional dipoles for beam manipulation have been installed, and further units with larger apertures, including three for the continuous transfer system to feed the SPS, have been ordered. To eradicate interference between different injection processes occurring in the same cycle, and to reduce the risk of radiation damage, the eight bump coils used for fast extraction to the South-East Area have been replaced by four dipole bumpers, and for the same reasons septum bumpers are being designed for East Hall fast extraction. Compact high-energy quadrupoles for Q-tuning and for the continuous transfer system have been installed, and injection quadrupoles with enlarged apertures are being made to suit the widened vacuum chambers required for ejection to the SPS. A set of compact high-energy sextupoles (16 plus one spare) to control machine chromaticity is being manufactured. A variety of different power supplies will be required for all these units, and construction of a building to house them has begun.

Improvements are being made to the 800 MeV injection kicker magnet, and the most urgent items have already been completed. The new resonant charging supply is ready, and will be installed during the annual shutdown. A spare kicker magnet, with its vacuum tank, is being manufactured.

The redundancy—and hence overall reliability—of the RF accelerating system has been increased by providing a number of operational spare units kept on permanent standby. Instabilities which have appeared during intermediate-intensity operation are being investigated; some modifications to the beam control system are probably necessary. The implications of debunching for transfer to the SPS are being studied.

To obtain debunched beams of sufficiently small momentum spread for the SPS, it is necessary to make the longitudinal coupling impedance in the PS as low as possible. To this end, all ceramic vacuum chambers have been metallized or—where this process
was not possible—provided with a resistive bypass. Measurements revealed that the two hundred insulated vacuum joints (at either end of each straight-section) also contribute significantly to the coupling impedance, and they have therefore been fitted with capacitive bypasses combined with damping resistors.

Under the best conditions, a record low pressure of 9×10^{-8} torr has been reached in the vacuum chamber. The usual working pressure at intermediate intensity is around 2×10^{-7} torr, but this should improve with the reduction of outgassing as more equipment is made radiation-resistant.

This year has seen the successful commissioning of the new full-aperture kicker magnet system (FAK), which is now in routine operation serving up to four successive processes of fast ejection each machine cycle. Ejection from straight-section 16 takes place on the first turn, with kick enhancement by quadrupoles, whereas for ejection from straight-sections 58 and 74 the second and third turns respectively are used. In the last two cases, the machine Q-value is suitably adjusted by using quadrupoles or the poleface windings. The FAK controls are computerized, and construction of a compatible computer-controlled timing system for the whole fast ejection process has begun. Three additional kicker modules (making 12 in all) are being manufactured, both in order to cope with high-intensity working and to create an adequate degree of redundancy for reliability in operation.

Development work on large-aperture extraction (septum) magnets for fast ejection has been completed, and the first unit has been installed in straight-section 74. For the present, it is powered by a modified laboratory test supply, whilst the recently delivered power supply units are undergoing acceptance tests.

Profile monitors to provide a rapid appreciation of beam quality are under construction for all extraction channels. Sharing between slow and fast extraction during the same cycle from straight-section 16 has been improved by adding a second pulsed power supply for the orbit deformation ("bump") elements.

Internal targets can accept only a limited intensity without overheating, when they share higher-intensity beams with other forms of operation, there will be a serious possibility of damage, should the ratio suddenly change. An overload protection system is under construction. Another problem is rapid beam dumping, and for this purpose a model of a special target, using a mechanical resonance method for fast movement, has been built and tested.

Hardware and software for computer control of 800 MeV injection have functioned correctly, and the interactive procedure (centralized console and interpretative syntax) is being extended progressively to other PS controls, for example PSB-PS transfer matching.

The complete set of low-energy magnetic corrections is now computer-controlled, and the radial orbit corrections are being modernized. Some modifications will be required in order to cope with pulse-to-pulse intensity modulation, and hardware for this purpose has been ordered. Computer control for auxiliary magnet power supplies is being studied.
Analysis of the behaviour of the Ionization Beam Scanner (IBS) has been actively pursued. Difficulties encountered include the effects of nearby beam losses and sensitivity dependent upon beam position; remedies have been found and are being applied. A numerical analysis of electron collection in the IBS has been published.

In conjunction with the manufacturer, a new detector has been developed for the PS beam loss monitoring system. This basically depends upon emission of secondary electrons from an aluminum foil; in this case, the foil acts as cathode to an electron multiplier mounted in the same evacuated envelope. Essential advantages are fast response time, high radiation resistance, and wide dynamic range.

A gas curtain monitor to show the density distribution in slow-extracted beams is under development. Protons in the beam ionize the gas molecules, and the liberated electrons, multiplied by further gas ionization, are collected on an electrode array. A prototype has given encouraging results.

An active filter has been added to an existing 3 MW dc power supply in order to reach the tolerances specified for the magnet of the g−2 experiment. Current stability improved from ±3 × 10^{-4} to ±10^{-5}, and current ripple went down from about 10^{-4} to 10^{-6}.

Methods of protecting tungsten targets used in external beams from oxidation, due to the higher beam intensities planned from 1975, are being studied. Three possibilities are being tried out, coating with quartz or with tungsten silicide, or sealing the whole target inside a vessel filled with inert gas.

The demand for liquid hydrogen targets is increasing. A new type has recently been designed and constructed for the CERN-Freiburg Collaboration; it has the special feature of including a parabolic mirror to focus the Čerenkov light produced inside the target onto a photomultiplier.

New beam steering correction magnets with short time-constants have been constructed. The last of the 10 m electrostatic separators has been overhauled and modernized.

Experimental area

equipment

FURTHER DEVELOPMENT AND FUTURE PLANS

New Linac

The new Linac has progressed satisfactorily during the year, and work is almost up to schedule, in spite of a noticeable shortage of staff, most particularly in the field of mechanical design. Detailed design work has essentially confirmed the choice of alternatives outlined in the Design Study Report of October 1973.

Orders have been placed for the major components of the pre-injector; for quadrupole focusing magnets and their supplies, for the 400 MHz buncher-debuncher RF amplifiers, and for numerous other smaller items. Prototypes of the RF power modulator and the 45 kW stage of the 200 MHz amplifiers have been completed. Scale models of the accelerating tanks are being used to determine details of the final structure. An
experimental 500 keV beam installation has been set up for tests of ion source design, beam dynamics computations, and computer-controlled instrumentation. Prototype modules of the CAMAC-based control system are being tested, and the development of the computer configuration is proceeding, although this aspect cannot be finalized until the overall PS system has been defined.

The building construction is on schedule, and plans of the service and supply installations have been completed.

Considerable facilities for PS operation are provided by the present computer control system, centred on an IBM 1800. However, full computerization has not yet been achieved, and the system is already saturated. New requirements have appeared, such as programmed intensity, complex cycle sequences, etc. Therefore, a new system is under development; at present, it is based upon a hierarchical computer structure employing three main computers (PDP-11/45), front-end computers dedicated to specific tasks for the process control.
equipment, and central consoles. The computers will be linked through a special intercommunication system called “BIDUL”.

The design of the new system is complicated by the fact that applications on the present system must be transferred without causing undue disturbance to PS operation. Furthermore, it is desirable to use as much as possible of the existing controls hardware. A critical review of the design criteria, based upon a clarification of users' requirements, is at present under way. Important software tools have already been prepared, namely, an intermediate language for systems and applications programming (PL 11) and an interpretative language.
The scheme for pulse-to-pulse intensity modulation, to suit varying programme requirements with minimum proton wastage, is being developed, and its implications for various accelerator elements examined. Tests have shown that a good part of the modulation required can be obtained by changing the number of turns injected into the Booster, additional methods, such as longitudinal acceptance reduction at injection and the use of a “sieve”, are being tried. Beam losses are automatically checked at eight critical points, and this facility will later be extended to give a wider coverage. The pick-up electrodes will require a sensitivity-switching system, which has been designed.

Radiation problems associated with dump targets, including possible advantages and disadvantages of local shielding, are being studied. A reliable high-intensity dump, using a static absorber into which the beam can be diverted, is in course of construction for the ejection system supplying the ISR and the SPS.

By 1977/78 a typical “supercycle” of the new Linac-Booster-SPS_ISR complex will, as it is envisaged at present, still leave more than half the cycles available for “25 GeV” physics and the ISR. Moreover, on completion of the new Linac, the existing machine could be used as a source of, for example, polarized particles or light ions, to be accelerated in the PS. A proposal along these lines is being prepared, and studies could begin in early 1975.

![SUPERCYCLE Image](image-url)

<table>
<thead>
<tr>
<th>User</th>
<th>SPS</th>
<th>“25 GeV”</th>
<th>SPS</th>
<th>ISR</th>
<th>“25 GeV”</th>
<th>ISR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>CT</td>
<td>FE (\approx 10%)</td>
<td>CT</td>
<td>FE</td>
<td>FE (\approx 10%)</td>
<td>FE</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>SE (\approx 90%)</td>
<td>100%</td>
<td>100%</td>
<td>SE (\approx 90%)</td>
<td>100%</td>
</tr>
<tr>
<td>Intensity</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Key: CT: “continuous transfer”; FE: fast ejection; SE: slow ejection.

“25 GeV”: physics experiments using PS beam; Tp: Teraprotton = 10^{12} protons.

Figure 10 — One of the ways in which PS protons may be distributed when the SPS began operation. The sequence of magnetic field cycles, shown by the thick blue line, is repetitive, hence the term “supercycle”. For each individual cycle, the accelerated beam characteristics are tailored to meet users’ requirements with the minimum of proton wastage.

The layout of the “continuous transfer” system for injection to the SPS has been finalized, and considerable progress has been made on the components. Design of the fast bumper system magnets has been completed, and orders have been placed, together with those for vacuum tanks, terminations, and long-delivery components for the pulse.
Development work on the extractor (septum) magnet has started and a model of its power supply has been constructed for feasibility tests. The 2 m electrostatic septum is being designed.

Experimental areas

The West Hall will no longer be available for "25 GeV" experiments after mid 1975, and the South Hall beams will be mainly employed as apparatus test facilities, with reduced intensities on the targets. Therefore, a major reconstruction of the East Hall beams has begun, in order to intensify the exploitation of this area with higher primary beam currents and greater flexibility in the secondary beam layout. Detailed studies of beam optics were required, and several special beam transport elements have been designed and constructed; beam hardware has been adapted for the new conditions, and much more extensive monitoring facilities will be provided for the new layout. A new rectifier building is under construction, and the cooling water system is being extended. Full-scale operation for experimental physics is scheduled to recommence at Easter 1975.
Introduction

During the second half of 1974, the computing service provided by the CDC 7600/6500 reached and stayed at an acceptable level; the final acceptance of the system from the manufacturer was completed by the end of the year.

Following the continued poor performance of the CDC 7600/6500 system reported at the end of 1973, the Laboratory made representations at the highest level to Control Data Corporation, as a result of which a joint CERN and CDC Minneapolis senior management review board was set up to establish and follow through a joint programme to improve the situation. This was effective in achieving the acceptable computer service mentioned above. The programme comprised three main elements; namely a considerable improvement in the quality and size of the engineering and software support provided on site by CDC, the replacement of all the nine-track tape drives by new, improved models, and concentration of effort on stabilizing current software in preference to installing new CDC releases.

The difficulties encountered over the past two years in bringing the CDC 7600/6500 system into full operation have seriously interrupted the development programme of the computer service. This has now been reviewed by several interdivisional working groups, and plans are being worked out to meet the future data communication needs of the SPS experimental programme, as well as provide an on-site network and regionalized facilities in order to continue the policy of decentralization.

On the experimental data handling side, the Division has continued the development of the Omega and SFM systems, providing also programming support to groups using these facilities. In collaboration with TC Division, the development of the ERASME film measuring system has continued, effort having been put into adapting it to process 2 m chamber film in addition to BEBC film. In collaboration with the NP and TC Divisions, work has started on the development of data handling facilities for SPS physics in the West and North Areas.

As in previous years, the Data Handling Division has continued to give assistance to other Divisions in the application of computers to a wide range of problems throughout the Laboratory. The Division also continues to provide the library and document reproduction services for the Laboratory.
Data Handling Division

Following the removal, completed at the end of last year, to the new computer centre, the CDC 6500 has replaced the CDC 6400 in the role of the front-end input/output machine for the CDC 7600. The CERNSCOPE, FOCUS and HPD film measuring services are provided by the CDC 6600, whilst the CDC 6400 is used for the INTERCOM terminal service and as back-up for the CDC 6500 or 6600.

Late in 1973 and in the early part of 1974, poor hardware performance of the CDC 7600/6500 system added to the difficulties created by inadequacies in the software and magnetic tape handling facilities. Considerable effort was needed to bring the operational performance of the system to an acceptable level and a temporary halt was made in the software development programme in order to improve the system stability. At present the mean time between deadstarts in the combined CDC 7600/6500 is averaging seven hours compared with three hours at the end of 1973. Extensive testing of the new model 669 tape units has been carried out to ensure that they will provide the improvement in read/write performance required. New software drivers for these units have been incorporated in the operating system and the replacement of all the model 659 units was completed by the end of November.

The workload handled at present by the CDC 7600/6500 system is about 12,000 jobs per week of which 80% are submitted from the 10 remote input/output stations distributed over the CERN site. The on-line computing service for experiments has been

Figure 1 — Each logic circuit in the central computers consumes only a fraction of a watt; however, the total load constituted by many such circuits plus peripheral equipment is nearly half a million watts. Shown here are two 350 kVA motor generators used to convert 50 Hz mains to 60 Hz (US standard) Flywheels on the MG shafts remove power drop-outs of up to 0.5 s (CERN-153 4 74)
A very high level of availability has been achieved, round the clock, for this service during scheduled accelerator runs.

A concentrator system, SUPERMUX, has been developed to provide a connection to the central computer for high-speed terminals. At present 20 display terminals are connected in this way, using the INTERCOM system on the CDC 6400 for file editing, job submittal and interactive computing.

User facilities and operational procedures have been improved by the provision of special CERN software and by the development in control card procedures. Facilities for the performance analysis of individual jobs and of the central operating systems have been

![Figure 2 — Not a spectrum analysis but props supporting the false floor of the computer centre (CERN-36 375)](image1)

![Figure 3 — Of the half a million watts dissipated in the central computers some are removed by water and some by air. This view shows part of the air conditioning ducting in the roof of the computer centre. (CERN-86 473)](image2)
been introduced and are expected to play an important role in ensuring effective utilization of the central system resources. All of the software development work has been carried out with a significant reduction in the time required for special development sessions when the service is not available to users.

As part of a review of the Laboratory's future computing needs and ways in which these could be met, a large number of design studies have been made relating to the future extensions of the computer facilities and the rationalization of the interconnections of the many computer systems and terminals on site.

Considerable progress has been made in the level of advisory services provided for users and both a "First-Aid Guide" and an "Introduction to the Computer Service" for new computer users have been issued. In the program library the major effort has been directed towards the maintenance of the binary library, both for new packages and for those which are conversions from CERNCOPE. Contacts with outside libraries have been increased and, as a result, new programs have been made available to CERN users.

Research and development of programs, in fields such as linear algebra, numerical integration, ordinary and partial differential equations have continued. Studies have started on the numerical solution of Volterra integral equations and on non-linear least squares problems. In statistics, studies of goodness-of-fit tests for composite hypotheses have been made and studies in cluster analysis have begun. Work on the formula manipulation system SCHOONSCHIP continued and the system is now implemented at 30 different institutions. The Cambridge language BCPL (Basic Combined Programming Language) has been implemented on several CERN computers.

Data processing for bubble chamber film

Manufacture of ERASME scanning and measuring units has continued; the third unit, the first fully adapted to 2 m HBC film, was completed in June. The fourth unit is near completion and the fifth well advanced.

On-line geometry has been running regularly, with two scanning and measuring units in operation since September. Operator training was continued together with the preparation of programs for a \(\pi^+ \) 16 GeV/c experiment in the 2 m HBC. This experiment began production in November.

Some 1200 \(K^- p \) 9 GeV/c events from the autumn 1973 BEBC run have been measured and the preliminary results were presented at the Oxford Conference on Computer Scanning. Trial measurements have also been made for studies on how Mirabelle film could be processed on ERASME, and for the measurement of BEBC camera lens calibration plates.
On the HPD 1/CDC 6600 system some problems were encountered at the end of 1973, mainly provoked by configuration changes. Since January 1974 the total system has run with an availability of 98%.

In collaboration with TC Division and with outside groups, a study is being made on the hybrid bubble chamber system proposed for the North Area of Laboratory II.

Data processing for electronics experiments

Omega

During 1974 a total of 14 groups have used the Omega/Split-Field Magnet data handling system to record several tens of millions of triggers. No major changes have been made to the computer system but work has nevertheless continued on improving its performance and reliability. Similarly the ROMEO chain of programs for processing Omega events has been refined to increase its efficiency. The ORION file editing and job submittal system has been extended, 20 terminals now being permanently available.

Studies of the new requirements for data acquisition facilities and detector layouts at the SPS-Omega have been made.

Split-Field Magnet

At the Split-Field Magnet (SFM) the main activities have been user back-up during data taking and off-line production, together with the adapting of programs to specific experiments and to detector changes. The CII 10070 version of the track-finding program is now used for sampling during data taking. Off-line programs in particular have undergone a large amount of development especially with regard to efficiency, speed and flexibility and have been adapted to run on the Univac 1110, IBM 360/75, IBM 370/168 and CDC Cyber 74.

The first physics results using this data handling system have been published (CERN-Hamburg-Orsay-Vienna Collaboration) based on five million events processed with the program chain. At present several different experimental groups are running seven experiments at the SFM using the on-line data handling system.

General

Development of fast, special-purpose hardware processors is continuing. The point-finding processor for wire chambers is now completed, as is a straight-line-finding processor. Other applications of hardware processors and the use of associative memories have also been studied.

Work on the video tape project is continuing in NP Division and is reported on by that Division.

Programming support has been given to two ISR experiments and collaboration with an NP group on preparatory work for the SPS neutrino experiment has been continued.

Other activities

The TABLOID data base management system development has reached full production status. Programs have been coded in the TABLOID language to manage some 20 data bases in several different areas of application in both Laboratories. The INFOL...
information storage and retrieval program continues to attract new users. Some new features have been implemented to enhance its capabilities.

The PERT network analysis program has been provided with full graphical output facilities. Interactive graphics programs have been developed for neutrino horn design and for multidimensional cluster analysis. Graphics software has been provided to help automate some engineering drafting work and to help evaluate a new large flat-bed plotter. A GD3 User’s Guide, designed specifically for beginners, has been produced.

The Čerenkov disk counter, designed and constructed in collaboration with NP Division, has been installed at the Fermi National Accelerator Laboratory. A new version of the refractometer which was part of the above equipment has been designed for SPS requirements.

Hardware and computer software have been developed for high accuracy two-dimensional readout of multiwire proportional chambers under development for X and γ-ray detection. A high-density multiwire drift chamber has been developed for positron annihilation experiments at the École de Physique condensée, Université de Genève. In collaboration with NP Division a special drift chamber has been developed for X-ray imaging.

In collaboration with ESO new improved circuitry has been developed for the self-scanning photo-diode arrays.

For the electronics workshop a computer program has been developed to provide control data for a semi-automatic wire-wrap machine to speed up production of electronic devices.

The Division assisted with the organization of the 1974 CERN Computing School at Godøysund near Bergen in Norway and also provided a number of lectures for the school.

Twenty-six Technology Notes, a large number of them supported by demonstrations, were presented by the Division for the Technology Meeting. Subjects covered ranged from interactive programming, through high-speed data communication developments to multiwire proportional chambers.
Central Library

The project for the mechanization of the Library cataloguing procedures is nearing completion. The PDP-11 operating system has been modified to support a priority multi-user interactive system which allows queued information interchange with the central computers. The hardware and software modifications to allow high-speed communication with the central computers via the new SUPERMUX concentrator are being carried out. The full list of CERN periodicals has been input and transferred to the CDC 6500 where sorted lists have been produced in upper and lower case on line-printer, microfiche and microfilm, the latter for subsequent reproduction. Work is in progress to develop dictionaries to improve the speed and accuracy of input, and as an aid to future information retrieval.

Exchange of publications

Twenty-five CERN reports were issued, and reprints of 294 publications by CERN authors in scientific periodicals were distributed. Publications are now being exchanged with 715 institutions and libraries in 60 countries.

Document reproduction

Approximately 60,800 pages of typescript were reproduced in offset, with a total of about 41 million printed pages, and 17,000 slides were provided.

Plans for a rational regrouping of the printing services after removal to Building 510 have been worked out with the assistance of the Ecole supérieure suisse des Arts graphiques, and the construction work is now well advanced.
in low beta
(I-7)

Normal ISR

Luminosity cm\(^{-2}\) s\(^{-1}\)

10\(^{30}\) - 10\(^{31}\)

1973 - 1974

Development of ISR luminosity
From mid February, after the six-week annual shutdown, to the end of the year, the ISR were in operation for 3480 hours of which about 80% were for physics runs and their preparations and about 20% for studies on development of machine performance. Higher luminosities and significant reductions in beam-loss rates and background radiation have resulted from techniques developed toward the end of last year and from improved vacuum and electron clearing conditions. A luminosity in the ISR of $1.4 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$ was achieved at 26.5 GeV/c, with 24.5 A circulating in both rings, and with conditions suitable for taking physics data. The acceleration of beams to 31.4 GeV/c (2000 GeV equivalent) has also been improved to reach a luminosity of $2.4 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$.

A luminosity of $2.1 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$ at a single intersection, 1-7, was attained at 26.5 GeV/c with about 20 A in one ring and 24 A in the other. This was accomplished by the addition of a system (known as low-beta insertion) of steel-copper quadrupoles that reduces the height of the beams at the intersection. Studies with this system in the ISR will make it possible to continue work on the design for an insertion that could give even higher luminosities. Another interesting technological development has been the observation of a positive effect from stochastic cooling although more development is needed before the scheme becomes practical.

Nineteen colliding-beam physics experiments have been taking data at the ISR during the year; ten of these experiments have been completed. Preparations are under way for several accepted experiments that will be installed during 1975 and 1976. Proposals for future experiments continue to be numerous but, with their increased complexity and scope, it becomes more difficult to arrange for compatible installations at an intersection.

General problems of proton storage rings have continued to be investigated both theoretically and by observations of beam behaviour at the ISR. Parameters for various designs of colliding-beam facilities and their influence on performance have also been studied. Staff members of the Department have participated in several conferences and study groups throughout the world.
Intersecting Storage Rings Division

Observations on beam behaviour

Higher luminosities at all energies, with lower decay rates and backgrounds, have been achieved during the year. The improved performance has been made possible by a precise positioning of the beams' working line in the tune diagram using the technique, introduced last year, of gradual compensation of the space-charge tune shift during stacking and continuous monitoring by the Schottky method.

For beam currents up to at least 15 A and luminosities up to about 6×10^{30} cm$^{-2}$ s$^{-1}$, a working line avoiding all resonances below the eighth order was used routinely throughout the year. The best decay rates under these conditions showed a fractional loss of about 3×10^{-5} per hour, more than half of which was due to beam-beam collisions, and background problems were virtually eliminated. For higher luminosities, fifth-order resonances were accepted in the stacks, with the result that decay rates were typically about fifty times higher than pure beam-beam and beam-gas collision rates. Background radiation under these conditions was acceptable for some physics experiments but not for all.

Towards the end of the year, successful trials were made with a new working line that is situated close to an integral resonance. In this mode of operation, made possible by a modification to the transverse feedback system, low-order resonances can be avoided for beam currents up to and beyond the present vacuum limit. These new conditions, which are also well suited for operating the ISR with the low-beta insertion described later, were used during the last six physics runs of the year when luminosities were around 10^{31} cm$^{-2}$ s$^{-1}$.

The highest luminosity in the whole ISR that has been achieved during the year is 1.4×10^{31} cm$^{-2}$ s$^{-1}$ at 26.5 GeV/c with 24.5 A circulating in both rings. Currents of 30 A have been reached in each of the rings, but with unstable beams and rapidly deteriorating vacuum conditions.
The process of accelerating the beams by phase displacement to 31.4 GeV/c (2000 GeV equivalent energy on a fixed target) has been improved this year. A luminosity of $2.4 \times 10^{30} \text{ cm}^2 \text{s}^{-1}$ was reached at this energy with over 9 A circulating in both rings.

With the average pressure in the vacuum system well below 10^{-11} torr and very good clearing fields, beam decay is no longer influenced by effects, such as the electron-proton instability, that arise from ionization electrons trapped in the beams' potential.

General studies have been continuing on beam behaviour that can benefit future development of the ISR and design parameters for other colliding-beam facilities. Further work on longitudinal instabilities has included measurements on the ratio of longitudinal impedance to mode number by a comparison of dipole and quadrupole oscillations. Results were in agreement with those to be expected from the impedance measurements that had been made systematically on almost all pieces of hardware before their installation in the rings. The experimental cavity was used for preliminary studies on enhancement of longitudinal Landau damping by a passive cavity.

To prepare for the future installation of a large solenoidal magnet at one of the intersections, a small model solenoid was placed in the ISR to investigate coupling between vertical and horizontal betatron oscillations. Results agree with theoretical calculations that predict an increase in coupling by about a factor of two when the large solenoid is in operation in the ISR.

The growth of emittances of injected beams as a function of time has been measured. Under good conditions, the growth in vertical emittance appears to be close to that predicted by intrabeam scattering. But the horizontal emittance seems to grow much faster than what would be expected from intrabeam scattering and this effect is as yet not understood.

Beam-beam effects at currents much higher than have yet been reached in the ISR were simulated by exciting the non-linear lens described last year. Results were in rough agreement with theoretical predictions and showed enhanced beam decay and reductions in beam lifetimes.

Limitations to performance, remedies and anticipated developments

The beam-induced pressure rise in the vacuum system is still the most serious limitation to improved performance of the ISR. Efforts to overcome this source of difficulty are described in a later section of this report.

A second limiting factor is transverse coherent instability combined with the restrictions imposed by beam-beam non-linear resonance excitation, on the amount of Landau damping that can be applied. For a possible increase in luminosity by a factor of about two, development has started on an extension in bandwidth to 50 MHz of the feedback system for transverse stabilization.

It is hoped that the ISR will eventually be able to make use of the full increase in density of beams from the PS when it is operated with its Booster. Longitudinal instabilities of the injected beam still lead to considerable dilution but a feedback system is being put into operation. A system is under construction for compensating the beam loading of the RF cavities of the ISR that will be increased when beams of higher intensity from the PS are accepted. An initial prototype cavity was first installed in Ring 1 for tests and a final prototype, using a 25 kW tetrode, was tested with ISR beams before the end of the year. Construction of the required fourteen units of the system has begun.

Studies have continued on the reduction of the vertical size of ISR beams through stochastic cooling, described last year. Further development in equipment and diagnostics has resulted in a demonstration of the basic feasibility of the method. Near the end of the year in a run of thirteen hours, during which the system was alternately on and
off, a small amount of cooling was actually observed. Further development must be carried out before a worthwhile decrease in beam height in a reasonable amount of time can be obtained.

Working lines and resonance suppression

Towards the end of 1973, a dynamically corrected working line (known as 8C) was developed for keeping beams in a region free from resonances below the eighth order. As the beams were stacked, the working line was progressively corrected to offset the detuning effects of space-charge forces. During 1974, this technique has been extended for use at all ISR energies, with the result that decay rates and background have been significantly reduced.

The same principle has been applied to a new working line (known as ELSA) which is situated close to the integral resonances, Q_H and $Q_V = 9$. With this line, stacks up to 24 at 26 GeV/c can be made that are free of all resonances below the eighth order. At the end of the year, this line was used for a series of physics runs with low decay rates and very high luminosities.

Figure 2 — The working lines now in use at the ISR, shown as heavy marked lines in the Q_V-Q_H diagram. The lighter lines are low order resonances.
An extended working line (known as 5V), which crosses fifth- and seventh-order resonances, has been used to reach maximum beam currents of 30 A in machine development studies and, with 24.5 A in both rings, to obtain a luminosity of $1.4 \times 10^{31} \text{ cm}^2 \text{ s}^{-1}$ with conditions suitable for physics experiments. This line combines a pre-stress with dynamic corrections for space-charge effects.

Other high-current, resonance-free working lines have been studied. Stacks were made that were split into two parts with a gap at the place of the fifth-order resonance. In the middle of the year, systems of sextupoles and octupoles were installed in the ISR for compensating third- and fourth-order resonances. With these lenses, tests have been made on resonance compensation and on the removal of particles influenced by these resonances in preparation for studies of working lines with large Q-spreads that would include third- and fourth-order resonances.

The low-beta insertion

Luminosity at an intersection of the ISR can be increased locally by the addition of a system of quadrupoles, known as a "low-beta insertion", that focuses the beams to smaller vertical dimensions at the crossing point. Preliminary studies last year showed that a system of steel-copper quadrupoles could provide an increase in luminosity by about a factor of two and would also be useful as a first stage in the development of other designs. Such a system has now been put together and installed at intersection I-7.

In each ring there are five quadrupoles which were made available quickly through loans from the Daresbury and DESY Laboratories and from spares in the ISR and PS Departments. To reduce the number of power supplies, the corresponding quadrupoles in each ring are connected in series. The five required supplies were also available as spares. They were adapted for this use and passive filters were added to meet specifications on stability and current ripple. A new vacuum chamber for the intersection was designed and constructed. To study the size and position of the beams, special vertical scrapers were built and installed. Orders for all the new components were placed near the
Figure 3(h) — The actual insertion installed at intersection 1-7 (CERN-719174)

beginning of the year; assembly and tests of equipment started in midsummer. The entire system was completely installed in the ISR by October.

The excitation conditions for the quadrupoles were calculated for achieving maximum luminosity with the appropriate matching to the rest of the ISR. With these parameters, the first successful tests of the insertion were carried out in October. The matching was found to be as expected and a reduction of beam height by a factor of 2.3 at intersection 1-7, compared with its height at 1-5, was observed. In November, a luminosity of 2.1×10^{11} cm$^{-2}$ s$^{-1}$ was achieved at 1-7 with circulating currents of 19.8 A in one ring and 24.1 A in the other. Further observations of the behaviour of the ISR with this low-beta insertion will continue during the coming year, and the higher luminosities that it can provide will be used for physics experiments.

Developments in the vacuum and electron clearing systems

Ever since the beginning of operation of the ISR, a major limitation in attempts to reach higher circulating currents has been the vacuum system. Although the system has been greatly improved and extended, so that the average pressure in the 2 km long system is now below 10^{-11} torr, this limitation still persists. At the record beam currents of 27 to 30 A, there are sharp increases in pressure arising from ion-induced gas desorption.

With the aim of reaching stable beam currents up to 30 or 40 A, attempts to improve the vacuum stability continue. More sublimation pumps are being added at critical locations, all new chambers are glow-discharge cleaned before installation, some regions
are baked to 350°C, and titanium sleeves are being inserted in some sections. Considerable effort is also made to reduce the risk of accidental contamination. In order to understand the underlying phenomena, laboratory studies are being carried out to analyze surface conditions, contaminants and remedies.

The number of leaks in vacuum components such as flanges, valves, feedthroughs and bellows is not large compared with the extensive amount of equipment. But their occurrence results in reduced performance of the machine and, sometimes, prevents its operation. To improve the reliability of such hardware, studies are being made in the laboratory and the results of these investigations are incorporated as quickly as possible into the continuing modification programme for the vacuum system. However, the replacement of components in such a large system often takes many months before completion.

The clearing-electrode system has been improved, in particular at the intersections where it is more difficult to keep the residual neutralization by trapped electrons sufficiently small. A new control system for the clearing fields has been built and installed. As a byproduct of these developments, measurement of the clearing currents can determine the average pressure in a sector or in one entire ring more accurately than is possible with the pressure gauges.

ISR Statistics of operation

After the annual six-week shutdown, the ISR started operation again with no difficulty in mid February. From that time to the end of the year, the machine was in operation for 3480 hours, of which 2348 hours were used for taking physics data, 447 hours for filling, beam adjustments and luminosity measurements, and 685 hours for studies of machine performance and development and for starting up the machine after lengthy shutdowns. A total of 449 hours were lost (but usually rescheduled) because of ISR faults, an accidental rupture of the vacuum chamber at intersection 1-2, perturbations in the 18 kV network, and lack of beams from the PS. The schedules of operation have followed a pattern similar to that of last year.

The distribution in time for colliding-beam physics at the standard operating momenta of ISR beams, and the values for beam currents and luminosities at these momenta, are shown in the following table.

<table>
<thead>
<tr>
<th>Momentum GeV/c</th>
<th>Running time per cent</th>
<th>Beam current range amperes</th>
<th>Luminosity (\times 10^{9} \text{ cm}^2 \text{s}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8</td>
<td>13.4</td>
<td>4 — 6</td>
<td>0.5</td>
</tr>
<tr>
<td>15.4</td>
<td>16.4</td>
<td>6 — 10</td>
<td>2</td>
</tr>
<tr>
<td>22.5</td>
<td>22.5</td>
<td>7 — 18</td>
<td>7</td>
</tr>
<tr>
<td>26.5</td>
<td>37.2</td>
<td>8 — 22</td>
<td>12.7</td>
</tr>
<tr>
<td>31.4</td>
<td>5.4</td>
<td>4 — 9</td>
<td>2.4</td>
</tr>
<tr>
<td>Different in each ring</td>
<td>5.1</td>
<td>various</td>
<td>various</td>
</tr>
</tbody>
</table>

ISR staff have also operated the beam line to the West Hall for 2960 hours.
Running conditions for physics

There has been a wide range of operating conditions during the year because of the increasing complexity of the physics experiments together with the continued development in performance of the machine. The differing requirements of the experiments are not always compatible and the scheduling of separate runs to suit the needs of particular experiments has become more frequent. The other experiments may or may not be able to take useful data during these runs.

Experiments differ also in their sensitivity to background radiation. For example, the detectors in the Split-Field Magnet have been able to operate successfully at luminosities up to 10^{31} cm$^{-2}$ s$^{-1}$ but beam losses must be kept very low and rather frequent scraping is needed. Towards the end of the year, the situation at intersection 1-4 was somewhat aggravated by a locally poor vacuum at high currents. In contrast, highly selective experiments studying low-cross-section processes have been able to benefit from runs of several hours with beam currents above 20 A and luminosities over 10^{31} cm$^{-2}$ s$^{-1}$.

The greatly increased control of the tune of the machine and the new working lines free from lower-order resonances have provided beams with low loss rates for physics runs at circulating currents up to 20 A. For currents up to 15 A, fractional loss rates below 10^{-6} per minute, observed rather frequently, are consistent with those to be expected from nuclear scattering on the residual gas and from the collisions occurring at the intersections, the latter making the greater contribution.

With the lower average pressure in the vacuum system and the lower beam loss rates, the rate of decrease of luminosity slowed to about one per cent per hour, and it was possible to schedule longer physics runs. But some experiments required short runs at various energies with the small interaction diamonds produced by application of the Terwilliger focusing scheme. For these experiments, repeated calibrations of the luminosity monitors by the Van der Meer method have given results reproducible to ± one per cent. Beams with a different energy in each of the rings have been used to provide a means for varying the centre-of-mass energy at fixed momentum transfer.

Operational improvements and equipment behaviour

For improved injection into the ISR, new pickup electrodes are in operation in the beam-transfer lines. A new static method of screening the stray fields of the injection kicker magnets has been tested on a model and a full-scale prototype is being built. Magnets for damping vertical injection errors were installed and successfully brought into operation at the beginning of the year. A bunch-to-bunch feedback system, for stabilizing bunch oscillations, has been installed in Ring 2 and, in tests, damped the oscillations of all the 20 bunches.

Several devices for beam diagnostics have been added or improved. Measurements of the beams' Q-values are now performed automatically under computer control with the new Q-meters. A new detector of the amplitude of betatron oscillations is currently in use for optimization of injection. The system for monitoring the position of the beams is being modernized by use of all-solid-state amplifiers. Standard counter, telescopes are being installed in all intersection regions to simplify luminosity measurements and to look for sources of localized high backgrounds.

With the generally low loss rates observed in the ISR beams this year, the cleaning of beams by scraping, so important last year, has been needed only occasionally except for
the removal of halos from stacks that have been circulating for a long time. But for measuring beam size and position, new vertical scrapers were installed at intersection 1-5 at the beginning of the year. Controlled by the computer, their movement across a beam can give an automatic plot of the vertical current profile and provides an accurate, although destructive, method for measuring luminosities. Measurement of the secondary electron emission from the scraper blades can determine the edges of a beam to an accuracy of 10 μ. By using these scrapers, it was possible to obtain an improved vertical calibration for the electrostatic pickups and the closed-orbit bumps made for luminosity measurements. Similar scrapers were installed at intersection 1-7, for use with the low-beta insertion.

Although background radiation at the intersections has been considerably reduced this year, there are indications that some remaining background comes from protons that are scattered but not absorbed by the dump blocks. In an effort to reduce such background effects, collimators have been designed and built for installation, early next year, downstream of the dumping region. They consist of stainless steel blocks, 300 mm long, that can be moved vertically and inclined for precise alignment with the edges of the beams.

At the beginning of the year, modifications were made to the beam dumping system in Ring 2 similar to those made in Ring 1 in 1973. The elimination of thyratrons and
their replacement by 40 kA spark gaps has improved the reliability of the system. The new 0.5 ohm dumping system has been assembled in the laboratory and life tests have shown that the present spark gaps can handle pulse currents up to 60 kA. Tests on other components for this new system, particularly on the termination resistors, are in progress.

All of the ISR magnets were realigned in the vertical plane early in the year and several were also realigned in the horizontal plane. Later, a complete resurvey of the magnets in the vertical plane was completed. The beam position monitors, both in the ISR and in the beam-transfer lines, were realigned. Many new pieces of equipment, including the sextupole and octupole systems, have been aligned to their specified positions.

Better reliability and performance of all of the high-stability power supplies in the ISR complex throughout the year has resulted from continuous effort. Nevertheless, various weak points still exist and are being eliminated systematically.

Computer control has been extended to include such equipment as the vertical scrapers, the experimental non-linear lens and a new system for measuring currents in the main magnets. Automatic measurement of working lines has been improved and first steps taken for automatic collection of data from the Schottky scan instrumentation. The procedures for control of acceleration of ISR beams to 31.4 GeV/c were refined. A complex orbit correction program, which had previously required the use of the CERN central computers, can now be carried out on the ISR control computers. The computer core stores have been increased to meet the needs arising from the additional complexities of operation.
Experimental areas in 1974

Nineteen physics experiments took data at six of the ISR intersections during the year and ten of these experiments were completed. Near the end of the year, another experiment was installed and began testing. All of these experiments have needed support assistance in a wide range of specialized fields (vacuum, mechanical engineering, electronics, surveying, modifications and measurements of magnets, power supplies, etc.) and in varying degrees according to the complexity of the experiment.
At intersection 1-1, experiment R 105 (high transverse momentum measurements) and experiment R 106 (search for monopoles with plastic detectors) continued from 1973 and were completed by the end of September. The area at 1-1 was subsequently modified for experiment R 107 (search for multigamma events) which was installed during the last two months of the year. For this experiment, the Department designed and constructed special remotely operated supports for the movement of large-solid-angle detectors.

At intersection 1-2, experiment R 201 (particle production at small angles) was completed at the end of March but use of the small-angle spectrometer was continued by the same group in experiment R 206 (associated multiplicities and rapidity distributions). At the beginning of the year, a barrel-shaped hodoscope was installed around the crossing point for this experiment and for experiment R 205 (correlations associated with high transverse momentum) that uses the wide-angle spectrometer.

At the Split-Field Magnet facility, in intersection 1-4, six experiments have taken data or made preliminary tests, in addition to the data taken for the SFM detector studies (R 403). Experiments R 401 (isobar production), R 407/R 408 (correlations at large angles) and R 411 (double isobar production) were completely installed, about half of the
extra detectors were put in place for experiment R 406 (search for new particles), and experiments R 410 (correlations at large angles) and R 412 (large transverse momentum events) were almost completely installed. For each of these six experiments, many additional pieces of equipment were put in place, such as neutron counters, Čerenkov counters, dE/dx and time-of-flight counters, hodoscopes, etc. The rapid alternation of experiments, although somewhat inefficient for the use of the facility, has allowed the various groups to gain experience and collect preliminary data. It was made possible through the provision of many special change-over mechanisms.

At intersection 1-6, experiment R 602 (elastic scattering) was reinstalled at the beginning of the year, was completed at the end of July, and then removed to allow the reinstallation of experiment R 603 (A++ spectroscopy) which was completed in November. Immediately afterwards, experiment R 605 (search for charmed particles) was installed and started taking data.

At intersection 1-7, experiment R 701 (observation of p-p collisions with streamer chambers) continued until its completion in July, benefitting from improvements and additions made at the end of 1973 with help from the Department. Immediately after the completion of the experiment, this intersection was equipped with the Icw-beta insertion.

At intersection 1-8, experiment R 801 (total cross-section and correlations) continued to take data in varying configurations, including additional specialized detectors, and supplied trigger and correlation signals for the other two experiments in this area. These were experiment R 802 (particle production in the forward direction) for which the installation of the special wide-aperture vacuum chambers was completed at the beginning of the year, and experiment R 803 (inclusive particle production at very low p_T and x = 0) that uses a low-momentum spectrometer at 90°, newly installed in the spring. The three experiments at 1-8 were completed by the end of the year.
Preparations for future experiments

During the year, several new experiments were being actively prepared for installation in 1975 and 1976. For three experiments, considerable rearrangement and additions to large magnetic spectrometers are planned and the design and construction of the required electro-mechanical equipment is in progress. For another experiment, that will use special re-entrant vacuum structures to be described later, studies have shown that circulating beams can be made so “clean” that detectors can approach them to within 5 mm. Assistance was also provided for preparations for a test experiment that will use liquid-argon calorimeters, whose mechanical design was done in the Department, and lithium-foil transition detectors.

At one intersection, the crossing point is to be surrounded by a large superconducting solenoidal magnet (being built elsewhere at CERN) with a longitudinal field of 1.5 tesla. The effect of such fields on circulating beams has been studied both theoretically and by means of a model solenoid inserted in the ISR. Four compensating magnets and their power supplies have been designed, and special attention is being paid to make the large solenoid compatible with a high-luminosity insertion at the intersection region.

Computations, model work, mechanical and electrical design are in progress for another large-solid-angle experiment with a large and complex array of detectors and for which magnetized iron rings are to be fitted closely around an intersection.

With the increased size, complexity and sophistication of new ISR physics experiments, and those being proposed for the future, there is continuing design effort on the study of layouts aiming at maximum compatibility between two or more experiments and at optimum use of the limited number of ISR intersection areas.

Figure 13 — Model solenoid magnet installed in the ISR to investigate effects to be expected from a large solenoid that will surround an intersection for a future physics experiment at the ISR (CERN-260J 74)

Figure 12 — Liquid-argon calorimeter being assembled for testing (CERN-72S 74)
Intersection vacuum chambers

At the beginning of the year, the vacuum chambers at two intersections (1-6 and 1-8) were changed for new experiments and the chambers for four other intersections have been rebuilt during the course of the year. Two of these have been reinstalled (at 1-1 and 1-6); the other two are awaiting installation (at 1-2 and 1-8) in 1975.

Three of these four chambers have the previously used type of bicone at the crossing points but the accessories differ in order to meet particular requirements. New accessories include clearing electrodes made from 0.2 mm thick titanium sheet (now standard), damping resistors deposited on 0.5 mm thick alumina plates, and mini-gauges and mini-pumps. All these components have much less mass than previous designs and are less likely to disturb the recording of the collision events under study.

The new central vacuum chamber intended for intersection 1-2 is a cylinder of 500 mm diameter and has an all-around thickness of about 0.3 mm.

For an experiment to be installed at 1-8, a specially designed, thin-walled, rectangular re-entrant vessel (known as a Super Roman Pot) is to be incorporated in each downstream arm. These vessels will move, under computer supervision, in a direction normal to the beam pipe so that detectors inside them can be placed as closely as possible to the circulating ISR beams. In the fabrication of these vessels, techniques were developed for forming double-curvature, thin-walled (0.17 mm) windows. To meet the high vacuum requirements of the experiment, the intersection will be equipped with four new liquid helium cryopumps, particularly effective for the removal of hydrogen.

The first titanium bicone chamber was produced in May and was later connected to undulating, thin-walled titanium arms. This prototype intersection chamber is undergoing tests in the laboratory. To achieve its fabrication, many technological problems had to be resolved, particularly the means for making joints between stainless steel and titanium leak-tight at bake-out temperatures. It is hoped that titanium chambers of this type can be installed soon in the ISR intersections since they would provide more transparency for emergent particles and are being urgently demanded by the experimental teams.

Figure 14 — Remotely controlled re-entrant vacuum vessels with very thin (0.17 mm) central windows, that will be installed in each downstream arm of intersection 1-8. Detectors for a coming physics experiment placed inside these "Super Roman Pots" can be moved very close to the circulating ISR beams (CERN-65 175)
The possibility of a substantial increase of the luminosity at one of the ISR intersections by the focusing action of superconducting quadrupole magnets has been further explored. Studies have been carried out in parallel concerning both beam dynamics theory and possible engineering design. They have resulted in a new scheme for such a high-luminosity insertion that matches the linear characteristics of the rest of the ISR and also shares the chromaticity correction to minimize excitation of non-linear resonances. The tentative layout takes into account the space requirements for all the system's components together with its possibilities for compatibility with colliding-beam physics experiments. The studies have led to a determination of parameters for the superconducting quadrupoles, the necessary sextupolar components and to the required tolerances on field distributions and stray fields.

Groups at other European laboratories who are specializing in superconductivity work of this nature have been kept informed of these studies. The Rutherford Laboratory has expressed interest in making a prototype quadrupole based on the required performance specifications, and technical and procedural discussions are under way.

Meanwhile, further design has continued and tests have been made on various conductors and on short model windings with encouraging results. Contacts with industry have been established concerning superconducting wire and cryogenic apparatus. Through field computations, the geometry has been defined for a full-scale model quadrupole with cold iron and a three-sector structure of the windings. Computations have been made on the limits of stability under various operating conditions and the expected transients in case of quench. Preparations to wind one test pole are well advanced.

It is expected that this work on the quadrupoles for a high-luminosity insertion will be of great value in assessing the possibilities for using superconducting magnets in future large storage rings. Successful application of this technology will be advantageous for such projects, but it will be some time before these potential benefits can be clearly assessed with the confidence necessary for sound, large-scale engineering design.

A small group has been engaged in studies of large storage rings (LSR) As a first step, there was an investigation of performance limitations in 400 GeV proton-proton storage rings using conventional (steel-copper) magnets, that resulted in a set of parameters to provide a luminosity of $10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$. The proposal of three distinct types of
interaction region, adapted to different experimental requirements, was examined by a working group of CERN high-energy physicists who designed arrangements for typical experiments and suggested some improvements in the interaction-region parameters.

During the first two weeks of October, a Performance Study on Proton-Proton Storage Rings was held in the Department. Staff from both Laboratory I and Laboratory II of CERN participated together with accelerator specialists from most of the large high-energy physics laboratories elsewhere in the world. A critical appraisal was made of the parameters of the tentative design, including the influence of requirements for physics experiments on the design of the machine. As a result of this productive two-week meeting, some desirable changes were indicated but no doubts arose concerning the main concepts. These recommendations are being taken into account in the subsequent design work. Although the continuing LSR design studies are now being directed more towards the use of superconducting magnets, the knowledge gained in the study of a machine with conventional magnets is directly relevant, particularly for the design of insertions for experimental physics and service functions.

In the course of the Performance Study, options involving particles other than protons were also considered, particularly the possibility of having antiprotons in one ring and of adding a ring for electrons. It seems feasible to incorporate an antiproton option that would give a luminosity in the range of 10^{28} to 10^{29} cm$^{-2}$ s$^{-1}$. An electron-proton colliding-beam facility also seems a feasible addition to an LSR complex. The high proton energy is a substantial advantage both for the e-p physics and for the machine design; useful luminosities could be obtained with electron energies up to about 20 GeV. However, more understanding is needed on the stability and lifetime of proton beams under the conditions required for successful e-p collisions. In particular, the choice between coasting and bunched proton beams in e-p designs will be strongly influenced by such stability questions.

Both antiproton-proton and electron-proton facilities would require additional equipment but they seem sufficiently important to justify further detailed study. Because of the complexities of incorporating an e-p facility into a p-p system, the addition of an electron ring should preferably be considered as an integral part of the overall design.

Modification of beam-transfer line TT2

Previous Reports have described the project for modifying the beam-transfer line TT2 in order to alternate the injection of beams from the PS into the ISR and the SPS. During this year, most of the hardware for this modification has been delivered or constructed within the Department. Early in the year, tests on a prototype of the pulsed power supplies showed that they would meet specifications, and the full order is now on hand together with the necessary electronics and the digital-to-analogue converters. The laminated cores for the input quadrupole of the system and its spare have been received. The entire system is to be controlled by a computer which is also on hand and preparatory work on the software has begun. Extensive testing of all these components is in progress in order to be ready for installation at the beginning of next year.
1974 saw completion of the final step in the revision of the Organization's legal status in its host countries, made necessary by the 300 GeV Programme, when, on 16 December, the new "Contrat de Superficie" for the territory occupied by the Organization in Switzerland was signed by the Directors-General and Mr P. Nussbaumer, Minister Plenipotentiary in the Swiss Département politique fédéral.

In the autumn, the decision was taken to bring together all the safety services—Health Physics, Medical, General Safety and Fire—into a single unit, to be called the Health and Safety Services.

Work on the review of pension policy continued, and the five-yearly salary review was completed during the year. A major review of the Organization's General Conditions of Contract also took place, resulting in proposals being put before the Finance Committee to replace the existing General Conditions, which had been in force since 1955. These reviews form part of a continuing programme to maintain the Organization's statutory provisions up to date.
Finance Division

During 1974, the fluctuations in the exchange rates of various currencies, and especially of the Swiss franc, were as substantial as or even more substantial than those encountered during the previous financial year. There was a veritable run on the Swiss franc by sellers of dollars, despite the exceptional measures (imposition of a negative bank interest of 3% on foreign holdings in Swiss francs, etc.) taken by the Swiss authorities in November.

For those currencies which accounted for more than 95% of our covering purchases, the exchange rates varied as follows:

<table>
<thead>
<tr>
<th>Currency</th>
<th>Beginning of January</th>
<th>End of July</th>
<th>Beginning of November</th>
<th>End of December</th>
</tr>
</thead>
<tbody>
<tr>
<td>French franc (SF per 100 FF)</td>
<td>69/65</td>
<td>63</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>DM (SF per 100 DM)</td>
<td>120</td>
<td>115</td>
<td>110</td>
<td>106</td>
</tr>
<tr>
<td>$ (SF per $1)</td>
<td>3.40</td>
<td>3.00</td>
<td>2.83</td>
<td>2.60</td>
</tr>
<tr>
<td>£ (SF per £1)</td>
<td>7.70</td>
<td>7.10</td>
<td>6.70</td>
<td>6.05</td>
</tr>
</tbody>
</table>
Thus the Swiss franc rose even more sharply during the last six weeks of the financial year, with the result that our foreign currency holdings, valued at the exchange rates applying at the end of December, had theoretically depreciated by some 5%, the holdings in German marks accounting for the largest share of the amount in question.

The economically and financially totally unjustified depreciation of the German mark in relation to the Swiss franc took all the experts by surprise. However, this drop in value, which existed on the actual date on which our accounts are closed, 31 December 1974, is more than offset by the more favourable exchange rates during the financial year and by those resulting from forward purchases maturing at the beginning of the financial year 1975.

As in 1973, calculations were made in order to estimate how much the Organization might have gained as a result of the increased purchasing power of the Swiss franc. They predicted, for Laboratory I, a gain between 1.2 and 1.5 million Swiss francs, while the new method of calculating the cost variation index indicated, for the financial years 1973 and 1974, a saving almost equal to that obtained by these very complex analyses. The application of this new method produced a figure of 1.4 million Swiss francs. This amount will be returned to the Member States in the form of a reduction in their contributions for 1975.

The short-term interest rates for Swiss francs, which were 10-12% at the beginning of the financial year, dropped to 7-7.5% in October/November only, rising again in December to 9-10%, so that the maximum benefit could be obtained from these high rates, while avoiding any risks.

The brake on the recruitment of technical personnel slowed down the preparation of a large number of specifications connected with the purchase of complex equipment. Moreover, suppliers are finding it more and more difficult to satisfy the requirements of the Organization's technical teams within the time limits allowed.

It is mainly for these reasons that it has been impossible to submit certain adjudications to the Finance Committee for approval before the end of the financial year. The result has been delays in settlements.

The accounts of the Organization may be summarized as follows:

<table>
<thead>
<tr>
<th>Expenditure</th>
<th>Budgets</th>
<th>Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>millions of Swiss francs</td>
<td>millions of Swiss francs</td>
</tr>
<tr>
<td>Base and ISR Programmes</td>
<td>407.51</td>
<td>398.07</td>
</tr>
<tr>
<td>Amount earmarked for SPS experiments</td>
<td>13.00</td>
<td>13.00</td>
</tr>
<tr>
<td>300 GeV Programme</td>
<td>227.12</td>
<td>227.20</td>
</tr>
<tr>
<td></td>
<td>634.63</td>
<td>638.27</td>
</tr>
</tbody>
</table>
The overspending of 3.64 million Swiss francs concerns expenditure for which no provision could be made in the budgets (taxes, services rendered to third parties, etc.) and is covered by compensatory income.

Income

<table>
<thead>
<tr>
<th>Budgets</th>
<th>Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>millions of Swiss francs</td>
<td>millions of Swiss francs</td>
</tr>
<tr>
<td>Contributions from Member States</td>
<td>608.64</td>
</tr>
<tr>
<td>Bank interest</td>
<td>4.31</td>
</tr>
<tr>
<td>Brought forward from previous financial year</td>
<td>5.06</td>
</tr>
<tr>
<td>Contribution from the 300 GeV Programme to the Basic and ISR Programme</td>
<td>13.85</td>
</tr>
<tr>
<td>Contribution from ESO</td>
<td>0.52</td>
</tr>
<tr>
<td>Miscellaneous income</td>
<td>2.25</td>
</tr>
<tr>
<td>Total</td>
<td>634.63</td>
</tr>
</tbody>
</table>

The excess of income amounts to 18.8 million Swiss francs. A total of 15.16 million will be reimbursed to the Member States (bank interest 13.06 million, unused reserves 0.65 million, miscellaneous 0.05 million, savings 1.4 million); the balance of 3.64 million francs is compensatory income.
Figure V - Functional distribution of expenditure at 1974 prices since the beginning of the Organization. The participation of the Federal Republic of Germany and France in the construction of BEBC is also shown.

- Research and operation
- Equipment and development
- Improvements (including construction of ISR and preparatory studies [1964-1970] for the 300 GeV programme)
- Buildings and service equipment
- Power and water
- Central services (including overheads for supplementary programmes)
- Laboratory II
- Services provided by Laboratory I.
Budget for Laboratory I

In December 1973, the Council approved the firm estimate for 1975, namely 367.6 million Swiss francs at 1973 prices. Application of the cost variation index of 6.4% approved by the Council at the same session brought this amount to 391.14 million francs.

In October 1974, the Finance Committee, in view of the current economic and financial difficulties, invited the Director-General to present a budget with a total, including the cost variation index, not exceeding 410 million francs. In November 1974, therefore, the Director-General presented a document (CERN/FC/1764) showing how a budget limited to 410 million francs could cover cost variation and the consequences of the salary and pension reviews, whilst having a minimum impact on the scientific programme.

At its Hundred-and-thirty-ninth Meeting, on 6 November 1974, the Finance Committee limited the cost variation index to about 7.6%, and fixed a ceiling for the budget of 410 million francs.

The 1975 budget, at 1974 prices, has in fact been reduced from 391.1 to 381.2 million francs. After applying the cost variation index of 7.56%, the total amount becomes 410 million francs, to which should be added the 19.4 million francs detailed below.

The contributions to be paid by the Member States in 1975 are as follows:

<table>
<thead>
<tr>
<th>millions of Swiss francs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(at 1975 prices)</td>
<td></td>
</tr>
</tbody>
</table>

The gross budget for 1975 amounts to 429.40 million francs, from which must be deducted:

- the cost of services paid for by Laboratory II 16.30
- the overheads covered by ESO 0.60
- the income from work carried out and charged for by the workshops 2.50 19.40

giving a net budget of 410.00 million francs, from which must be deducted:

- other miscellaneous income 11.00

Contributions payable by the Member States 399.00

Budget for Laboratory II

The total budget for the 300 GeV Programme, approved by the Council at its Forty-fifth Session (CERN/958/Rev.), is 1150 million Swiss francs, at 1970 costs and fixed prices. The annual budgetary profile was adopted by the Finance Committee at its Hundred-and-sixteenth Meeting (CERN/FC/1408) and was approved by the Council (CERN/1050).

For 1975, the firm estimate of 206.9 million Swiss francs, at 1973 costs, was approved by the Council at its Fifty-first Session. At the same session, the Council approved, on the recommendation of the Finance Committee, a cost variation index of 6.73% for 1974.

The budget for 1975 is therefore 220.8 million Swiss francs at 1974 costs. At its Fifty-third Session, of 18 and 19 December 1974, the Council approved for 1975 a salary cost variation index of 9.7% and an overall cost variation index of 7.56%. By applying these indices and taking into account the results of the salary review the 1975 budget at 1975 costs is 237.90 million Swiss francs.
In 1974, the boring of the tunnel was completed, nearly half of the tunnel was concreted and the installation of the machine elements in the tunnel was started. The auxiliary buildings are in various stages of completion, equipment being already in place and operating in some of these buildings. The power line to Génissiat has come into operation, supplying the main 380 kV power station on the site. Large numbers of components keep arriving on the site for testing and installation. The tenders for the main civil engineering contracts for the North Area have been sent out.

The budget for 1975 includes a contribution of 163 million Swiss francs to the Basic Programme, to cover the cost of services for the 300 GeV Programme.

Financial and Accounting Services

The great instability in the monetary situation during 1974 caused the Financial Service considerable concern. Short-term investments were at all times restricted to those offering full security. Purchases of currencies to provide partial cover for our commitments in French francs, German marks, US dollars and pounds sterling were made in accordance with our policy of selective coverage, with all the caution demanded by the situation.

The Accounting Service had to cope with an estimated 15% increase in the workload. The Personnel Accounting Section had to deal with additional checking work and parallel operations during the whole of the financial year in connection with the computerization of salaries and claims for reimbursement. The number of services rendered to visiting teams shows a rapid increase.

In spite of the substantial increase in the daily workload, the number of staff employed in the Financial and Accounting Services has not risen for several years, notwithstanding the many additional problems (long absences owing to sickness, etc).

Administrative Data Processing Service

A stage has now been reached at which applications on the existing computer and the use of the data give satisfactory results as far as quality of the information obtained and effectiveness are concerned. However, the flexibility and speed of the system made up of the present equipment are limited. The developments which would be needed to satisfy users' wishes in these fields are being examined. They relate both to the information circuits and the applications themselves and to the configuration of the equipment and the basic software. One such development, now in hand, is the extension of the central memory.

Improvements continue to be made to existing applications in order to provide fuller management information for the users and to speed up data acquisition. Finally, the studies in connection with a new application relating to stocks have now reached the actual analysis phase of the project.

* Including 66 million francs carried forward from 1974
Outside firms were used during the financial year to help with data punching. If the experiment had been conclusive, it would have been possible to reduce the data recording staff. Unfortunately, however, the result was very disappointing, and interfered considerably with the users' work. Moreover, the operation was found to be too expensive.

Purchasing

The salient factor in 1974 was the abrupt deterioration in the economic situation, which had a marked effect on purchasing. The frequent price increases caused by inflation were felt in running contracts through the contractual price revision formulas, as in a large number of blanket orders for standardized equipment, the cost of which was subject to market conditions.

The shortage of certain materials complicated supply problems and made it necessary to keep a closer watch on markets and repeat orders in view of the need to keep to established schedules.

The increase in the demand for contract labour and the shortage of skilled workers raised difficulties which were solved only by dint of continuous efforts.

The workload in connection with calls for tenders remained heavy because of large-scale projects in the experimental areas, around the new Linac and in the North Area.

Following the CERN contract law course, the professional training programme of the services was continued with a series of lectures on the Organization's particular financial and accounting problems.

The number of orders rose considerably, from 36,856 at the end of 1973 to 38,966 in 1974. At the same time, the number of invoices increased by 15% in relation to the previous year. Moreover, orders have become more complex as a result of the introduction of more and more price revision formulas of increasing complexity. The Invoice Office has thus been faced with a fairly difficult situation.

Stores

General activity in 1974 was considerably more intense than in 1973:
- the total value of standardized items drawn from stores by users rose by 40%;
- deliveries of equipment for the whole of the Organization increased by 34%;
- despatches of equipment outside rose by 9%.

This increased workload was dealt with by the same number of staff.

The emphasis was laid on improving working and management procedures, viz:
- the introduction of a system of selective stock management, geared to the importance of each item (this has resulted in a 10% increase in the stock turnover rate and a decrease of the interruptions in the supply of essential items);
- the automatic correction of forecast delivery dates;
- bringing the frequency of the running inventory into line with that of the movement of items;
- drawing up a draft plan for simplifying administrative procedures relating to equipment subject to embargo.
More than 150 technical specifications were drawn up in order to facilitate calls for tenders for standardized equipment. The new Delivery/Despatch Office set up in Laboratory II dealt with 7150 deliveries and 1695 despatches of equipment.

As a result of the enlargement of the West Experimental Area (Gargamelle), the plan for a new storage area for equipment belonging to the Divisions was finalized and approved by the Stores Users' Committee and the Construction Committee.

Figure 4 — Development of stock movements since 1969
During 1974:
the total value of issues of standardized items was 34.3 million Swiss francs, representing an increase of 40% in relation to 1973.
The value of items issued for Laboratory II amounted to 7.8 million Swiss francs (23% of the total value of items issued);
the self-service system accounted for 4% of total issues;
the annual rate of stock turnover was 2.8;
the average stock level was found to be between −3% and +11.2% of the authorized stock limit of 11.7 million Swiss francs. At the end of the year, the value of the stock was 21% above the authorized limit;
52,149 deliveries and 10,457 despatches were recorded for the Organization as a whole;
12,780 delivery requests and orders for standardized material were drawn up.
The Standardization Groups made 1,523 proposals (introduction or elimination of items in stock). As a result of these proposals, 786 new items were introduced into stores and 660 items, representing a value of 238,148 francs, were removed. The Recovery Service sold equipment within the Organization to the value of about a million Swiss francs (including 250 tons of paper and 800 tons of metal waste).

Insurance contracts covering fire and flood risks have been under review. Work is still going on in connection with claims arising from the serious flood damage caused by storms in June 1973. Such matters involve long and painstaking enquiries, culminating in settlement of bills for repairs and replacements for every CERN Division amounting in total to over 3 million Swiss francs.
Two serious accidents involving CERN personnel have also given rise to a considerable amount of activity in co-operation with the Legal and Security Services, and the insurance companies.
The Service administers the Staff Insurance Scheme, including the investment accountancy, and provides the secretariat for the internal and Finance Committee Working Groups on Pension Policy.

The financial year 1973 was the first for which the audit was carried out by the Bundesrechnungshof (Federal Court of Audit) of the Federal Republic of Germany. At its Fifty-second Session, in June 1974, the Council approved the Accounts for the financial year 1973 and took note of the auditors’ report for that year (document CERN/1145) and the Finance Committee report relating thereto.
The auditors carried out a partial audit for the financial year 1974 during September and October, 1974.
1974 EXPENDITURE

LABORATORY I

(Basic and ISR Programmes)

(in thousands of Swiss francs)

<table>
<thead>
<tr>
<th>Breakdown</th>
<th>1974 Budget</th>
<th>1974 Expenditure</th>
<th>Differences</th>
<th>Directorate-General</th>
<th>Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAND TOTAL</td>
<td>407,510.0</td>
<td>398,069.3</td>
<td>-9,440.7</td>
<td>13,583.9</td>
<td>Physcs I</td>
</tr>
<tr>
<td>Workshop jobs to be charged</td>
<td>-7,706.1</td>
<td>+ 493.9</td>
<td></td>
<td></td>
<td>Physcs II</td>
</tr>
<tr>
<td>Sub-total</td>
<td>415,210.0</td>
<td>398,069.3</td>
<td>-9,440.7</td>
<td>13,583.9</td>
<td>Theoretical Physics</td>
</tr>
<tr>
<td>1. Personnel</td>
<td>199,540.0</td>
<td>198,783.2</td>
<td>-756.8</td>
<td>12,759.6</td>
<td>Proton Synchrotron</td>
</tr>
<tr>
<td>10) Staff members</td>
<td>179,860.0</td>
<td>178,222.4</td>
<td>-1,638.5</td>
<td>1,863.9</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>12) Laboratory staff</td>
<td>4,970.0</td>
<td>5,211.3</td>
<td>+ 241.3</td>
<td>-379.0</td>
<td>ISR Administra-</td>
</tr>
<tr>
<td>14) Fellows</td>
<td>5,580.0</td>
<td>5,371.0</td>
<td>+ 451.8</td>
<td>5,866.6</td>
<td>tion</td>
</tr>
<tr>
<td>15) Consultants and associates</td>
<td>8,630.0</td>
<td>8,759.9</td>
<td>+ 145.9</td>
<td>5,029.1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>199,540.0</td>
<td>198,783.2</td>
<td>-756.8</td>
<td>12,759.6</td>
<td>ISR</td>
</tr>
<tr>
<td>2. Operation</td>
<td>86,220.0</td>
<td>81,411.3</td>
<td>-4,808.7</td>
<td>805.3</td>
<td>Administration</td>
</tr>
<tr>
<td>20) Site and buildings</td>
<td>14,630.0</td>
<td>12,635.6</td>
<td>-1,994.4</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>21) Service equipment</td>
<td>10,490.0</td>
<td>12,366.0</td>
<td>+1,876.0</td>
<td>6.97</td>
<td></td>
</tr>
<tr>
<td>22) Accelerators</td>
<td>6,780.0</td>
<td>4,324.7</td>
<td>-2,455.3</td>
<td>276.0</td>
<td></td>
</tr>
<tr>
<td>23) Equipment for experiments</td>
<td>12,320.0</td>
<td>10,930.7</td>
<td>-1,389.3</td>
<td>4,760.6</td>
<td></td>
</tr>
<tr>
<td>24) Beams</td>
<td>3,230.0</td>
<td>3,845.4</td>
<td>+ 615.5</td>
<td>58.6</td>
<td></td>
</tr>
<tr>
<td>25) Data handling</td>
<td>9,820.0</td>
<td>10,341.3</td>
<td>+ 521.3</td>
<td>809.3</td>
<td></td>
</tr>
<tr>
<td>27) Power, water</td>
<td>17,400.0</td>
<td>16,915.4</td>
<td>-484.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>25) Administration</td>
<td>11,550.0</td>
<td>12,052.2</td>
<td>+ 502.2</td>
<td>799.7</td>
<td></td>
</tr>
<tr>
<td>3. Capital outlays</td>
<td>116,350.0</td>
<td>125,080.9</td>
<td>+8,730.9</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>30) Site and buildings</td>
<td>12,700.0</td>
<td>17,464.2</td>
<td>+ 4,764.2</td>
<td>82.8</td>
<td></td>
</tr>
<tr>
<td>31) Service equipment</td>
<td>11,490.0</td>
<td>9,198.1</td>
<td>-2,291.9</td>
<td>1,132.2</td>
<td></td>
</tr>
<tr>
<td>32) Accelerators</td>
<td>28,570.0</td>
<td>29,711.4</td>
<td>+ 1,141.4</td>
<td>2,630.7</td>
<td></td>
</tr>
<tr>
<td>33) Equipment for experiments</td>
<td>27,870.0</td>
<td>32,118.9</td>
<td>+ 4,248.9</td>
<td>14,559.7</td>
<td></td>
</tr>
<tr>
<td>34) Beams</td>
<td>20,420.0</td>
<td>24,517.3</td>
<td>+ 4,097.3</td>
<td>4,407.3</td>
<td></td>
</tr>
<tr>
<td>35) Data handling</td>
<td>15,730.0</td>
<td>11,071.0</td>
<td>-4,659.0</td>
<td>2,600.7</td>
<td></td>
</tr>
<tr>
<td>38) Stores</td>
<td>1,000.0</td>
<td>+ 1,000.0</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Provisions earmarked for SPS physics</td>
<td>13,000.0</td>
<td>-13,000.0</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>67,888.5</td>
<td>67,888.5</td>
<td>0.0</td>
<td>30,449.6</td>
<td>40,449.6</td>
</tr>
<tr>
<td>1974 EXPENDITURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40,449.6</td>
</tr>
</tbody>
</table>

Notes:
- Operation, Site and buildings, Service equipment, Accelerators, Equipment for experiments, Beams, Data handling, Site and buildings, Service equipment, Administration, Capital outlays, Site and buildings, Service equipment, Accelerators, Equipment for experiments, Beams, Data handling, Site and buildings, Service equipment, Administration, Capital outlays, Site and buildings, Service equipment, Accelerators, Equipment for experiments, Beams, Data handling, Site and buildings, Service equipment, Administration, Capital outlays.
BUDGET 1975

LABORATORY I

(Basic and ISR Programmes)

(in thousands of Swiss francs)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAND TOTAL</td>
<td>429,400</td>
<td>15,180</td>
<td>65,090</td>
<td>62,570</td>
<td>3,295</td>
<td>73,925</td>
<td>41,695</td>
<td>48,000</td>
<td>119,645</td>
</tr>
<tr>
<td>Workshop jobs to be charged to Divisions</td>
<td>-7,800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-7,800</td>
</tr>
<tr>
<td>Sub-total</td>
<td>437,200</td>
<td>15,180</td>
<td>65,090</td>
<td>62,570</td>
<td>3,295</td>
<td>73,925</td>
<td>41,695</td>
<td>48,000</td>
<td>127,445</td>
</tr>
<tr>
<td>1. Personnel</td>
<td>227,200</td>
<td>14,460</td>
<td>32,190</td>
<td>35,870</td>
<td>3,075</td>
<td>34,435</td>
<td>18,985</td>
<td>23,940</td>
<td>65,095</td>
</tr>
<tr>
<td>10) Staff members</td>
<td>204,565</td>
<td>2,010</td>
<td>30,380</td>
<td>30,800</td>
<td>2,850</td>
<td>33,775</td>
<td>17,985</td>
<td>22,940</td>
<td>63,825</td>
</tr>
<tr>
<td>12) Laboratory staff</td>
<td>5,975</td>
<td>6,700</td>
<td>960</td>
<td>4,250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14) Fellows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15) Associates</td>
<td>9,960</td>
<td>5,750</td>
<td>850</td>
<td>820</td>
<td>225</td>
<td>660</td>
<td>440</td>
<td>150</td>
<td>1,065</td>
</tr>
<tr>
<td>2. Operation</td>
<td>86,210</td>
<td>710</td>
<td>9,505</td>
<td>9,500</td>
<td>200</td>
<td>6,070</td>
<td>11,300</td>
<td>2,700</td>
<td>46,135</td>
</tr>
<tr>
<td>20) Site and buildings</td>
<td>15,240</td>
<td>10</td>
<td>910</td>
<td>820</td>
<td>5</td>
<td>145</td>
<td>375</td>
<td>375</td>
<td>12,600</td>
</tr>
<tr>
<td>21) Service equipment</td>
<td>11,185</td>
<td></td>
<td>905</td>
<td>1,400</td>
<td></td>
<td>115</td>
<td>1,090</td>
<td>670</td>
<td>6,705</td>
</tr>
<tr>
<td>22) Accelerators</td>
<td>5,525</td>
<td></td>
<td>645</td>
<td></td>
<td></td>
<td>3,970</td>
<td></td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>23) Equipment for experiments</td>
<td>8,915</td>
<td></td>
<td>4,970</td>
<td>3,480</td>
<td></td>
<td>20</td>
<td></td>
<td>255</td>
<td>190</td>
</tr>
<tr>
<td>24) Beams</td>
<td>3,045</td>
<td></td>
<td>180</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25) Data handling</td>
<td>11,870</td>
<td></td>
<td>905</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td>9,445</td>
<td>150</td>
</tr>
<tr>
<td>27) Power, water</td>
<td>18,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18,200</td>
<td></td>
</tr>
<tr>
<td>28) Administration</td>
<td>12,230</td>
<td>700</td>
<td>1,080</td>
<td>900</td>
<td>195</td>
<td>555</td>
<td>390</td>
<td>340</td>
<td>8,070</td>
</tr>
<tr>
<td>3. Capital Outlays</td>
<td>123,790</td>
<td>10</td>
<td>23,305</td>
<td>17,200</td>
<td>20</td>
<td>33,420</td>
<td>11,410</td>
<td>22,210</td>
<td>16,215</td>
</tr>
<tr>
<td>30) Site and buildings</td>
<td>14,805</td>
<td></td>
<td>545</td>
<td></td>
<td></td>
<td>700</td>
<td></td>
<td>1,100</td>
<td>12,450</td>
</tr>
<tr>
<td>31) Service equipment</td>
<td>10,920</td>
<td>10</td>
<td>1,810</td>
<td>1,500</td>
<td>20</td>
<td>965</td>
<td>690</td>
<td>2,390</td>
<td>3,335</td>
</tr>
<tr>
<td>32) Accelerators</td>
<td>30,885</td>
<td></td>
<td>1,945</td>
<td></td>
<td></td>
<td>16,090</td>
<td></td>
<td>12,850</td>
<td></td>
</tr>
<tr>
<td>33) Equipment for experiments</td>
<td>28,285</td>
<td></td>
<td>14,845</td>
<td>9,400</td>
<td></td>
<td></td>
<td></td>
<td>4,320</td>
<td>20</td>
</tr>
<tr>
<td>34) Beams</td>
<td>23,425</td>
<td></td>
<td>2,960</td>
<td>4,800</td>
<td></td>
<td>15,665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35) Data handling</td>
<td>15,170</td>
<td></td>
<td>1,200</td>
<td>1,300</td>
<td></td>
<td></td>
<td>10,720</td>
<td>1,550</td>
<td>200</td>
</tr>
</tbody>
</table>
1974 EXPENDITURE AND 1975 BUDGET

LABORATORY II

(300 GeV Programme)

(in thousands of Swiss francs)

<table>
<thead>
<tr>
<th>Breakdown</th>
<th>Financial year 1974</th>
<th>Budget 1975</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Budget</td>
<td>Expenditure</td>
</tr>
<tr>
<td>TOTAL</td>
<td>227,120.0</td>
<td>227,200.5</td>
</tr>
<tr>
<td>1. Personnel</td>
<td>24,480.0</td>
<td>23,431.4</td>
</tr>
<tr>
<td>10) Staff members</td>
<td>23,680.0</td>
<td>22,631.8</td>
</tr>
<tr>
<td>19) Fellows</td>
<td>800.0</td>
<td>759.6</td>
</tr>
<tr>
<td>2. Operation</td>
<td>23,460.0</td>
<td>24,130.5</td>
</tr>
<tr>
<td>20) Site and buildings</td>
<td>1,800.0</td>
<td>2,248.8</td>
</tr>
<tr>
<td>21) Service equipment</td>
<td>2,200.0</td>
<td>2,559.5</td>
</tr>
<tr>
<td>22) Accelerators</td>
<td>1,410.0</td>
<td>1,373.7</td>
</tr>
<tr>
<td>23) Equipment for experiments</td>
<td>—</td>
<td>170.1</td>
</tr>
<tr>
<td>24) Beams</td>
<td>—</td>
<td>146.6</td>
</tr>
<tr>
<td>25) Data handling</td>
<td>500.0</td>
<td>1,205.8</td>
</tr>
<tr>
<td>27) Power, water</td>
<td>800.0</td>
<td>367.5</td>
</tr>
<tr>
<td>28) Administration</td>
<td>2,500.0</td>
<td>2,008.5</td>
</tr>
<tr>
<td>— Contribution to general overheads of Laboratory I</td>
<td>13,850.0</td>
<td>13,850.0</td>
</tr>
<tr>
<td>3. Capital outlays</td>
<td>179,180.0</td>
<td>179,638.6</td>
</tr>
<tr>
<td>30) Site and buildings</td>
<td>39,800.0</td>
<td>57,668.7</td>
</tr>
<tr>
<td>31) Service equipment</td>
<td>12,000.0</td>
<td>11,827.1</td>
</tr>
<tr>
<td>32) Accelerators</td>
<td>120,900.0</td>
<td>94,277.9</td>
</tr>
<tr>
<td>33) Equipment for experiments</td>
<td>—</td>
<td>336.3</td>
</tr>
<tr>
<td>34) Beams</td>
<td>6,480.0</td>
<td>15,490.3</td>
</tr>
<tr>
<td>35) Data handling</td>
<td>—</td>
<td>38.3</td>
</tr>
</tbody>
</table>
In accordance with established practice, the five-yearly review of CERN salaries and allowances was carried out in 1974. Members of the Personnel Division conducted a detailed enquiry into salaries, allowances, bonuses and indemnities. Seventy-one employers from national research laboratories and various industries in the Member States were contacted. The salary levels of the other international organizations were also used as a reference. The proposals made by the Finance Committee Working Group and approved by the Council will be put into effect from 1 January 1975. Other internal groups have continued to prepare documents on CERN's policy with respect to recruitment, contracts, promotion and termination of contract.

Following the introduction of the new Staff Rules and Regulations in 1973, a start was made on codifying the administrative rules and practices of the Organization. The personnel are kept informed by means of "information sheets" on this subject.
TOTAL NUMBER OF PERSONS AT CERN ON 31.12.1974

<table>
<thead>
<tr>
<th>Departments</th>
<th>Laboratory I</th>
<th>Supernumeraries</th>
<th>Associates</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Staff Members</td>
<td>CERN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fellows</td>
<td>Member States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Divisions</td>
<td>Laboratory Staff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temporary Staff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Auxiliaries</td>
<td></td>
</tr>
<tr>
<td>Directorate-General</td>
<td>TOTAL</td>
<td>26</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Physics I</td>
<td>TOTAL</td>
<td>425</td>
<td>3</td>
<td>1315</td>
</tr>
<tr>
<td>NP</td>
<td>303</td>
<td>3</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>MSC</td>
<td>120</td>
<td>1</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Physics II</td>
<td>TOTAL</td>
<td>436</td>
<td>1</td>
<td>134</td>
</tr>
<tr>
<td>TC</td>
<td>434</td>
<td>1</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Theoretical Physics</td>
<td>TOTAL</td>
<td>23</td>
<td>31</td>
<td>87</td>
</tr>
<tr>
<td>TH</td>
<td>22</td>
<td>15</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Proton Synchrotron</td>
<td>TOTAL</td>
<td>489</td>
<td>2</td>
<td>509</td>
</tr>
<tr>
<td>EA</td>
<td>25</td>
<td>9</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>MPS</td>
<td>461</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Applied Physics</td>
<td>TOTAL</td>
<td>279</td>
<td>21</td>
<td>323</td>
</tr>
<tr>
<td>ISR</td>
<td>TOTAL</td>
<td>348</td>
<td>6</td>
<td>359</td>
</tr>
<tr>
<td>ISR</td>
<td>347</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>TOTAL</td>
<td>1141</td>
<td>2</td>
<td>1171</td>
</tr>
<tr>
<td>DI + HS + PIO + TM</td>
<td>181</td>
<td>6</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>FIN</td>
<td>205</td>
<td>2</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>144</td>
<td>3</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>611</td>
<td>1</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>3167</td>
<td>8</td>
<td>4454</td>
<td></td>
</tr>
<tr>
<td>Laboratory II</td>
<td>417</td>
<td>1</td>
<td>430</td>
<td></td>
</tr>
</tbody>
</table>

NP = Nuclear Physics
MSC = Synchro-cyclotron Machine
TC = Track Chambers
TH = Theoretical Studies
NP = Nuclear Physics
MSC = Synchro-cyclotron Machine
TC = Track Chambers
TH = Theoretical Studies
DI = Directorate
HS = Health and Safety Services
PIO = Public Information Office
TM = Translation and Minutes Service
FIN = Finance
PE = Personnel
SB = Technical Services and Buildings
The personnel management courses, which are aimed at the assessment of results and were initially organized for the administrative Divisions, have been extended to certain scientific and technical Divisions. The technical training and language courses have been further intensified; most of the technical courses took the form of concentrated four-hour sessions, including lectures, exercises and practical work. A crash course in English has been organized for the SB Division; the experiment has proved successful with regard to both the results obtained and the interest shown by the students.

The number of fellows, associates and students exceeded 1300 (including 900 not paid by CERN).

Exchanges of views on the subject of the reintegration of members of the personnel into the social security systems of their home countries are still taking place with Germany, Belgium and Switzerland. The Organization has asked for fresh negotiations with France as a result of the changes in the operation of the French social security system.

The Rehabilitation Board for handicapped persons provided for by the Staff Rules and Regulations has been set up and has started work.

The Medical Service, which has been incorporated into the new Health and Safety Services, concentrated on a study of the state of health and medical fitness for work of certain occupational groups and all personnel aged over 50; the results are, in general, satisfactory.

The Scientific Conference Secretariat, which organized two Summer Schools, also helped in organizing and receiving the participants at several meetings, including the one on technology, which was held in April.

The accommodation facilities offered by CERN proved their value to the families of new members of the personnel, about 200 of whom were housed in furnished flats, and to short-term visitors and students, about 5000 of whom were accommodated in the Hostel.

Figure 3 — Electronics course organized by the Training and Education Service
(CERN-62 375)
Figure 4 — Fluctuations in the numbers of staff members and auxiliaries in 1971, 1972, 1973 and 1974. The upper line represents the CERN staff total. The arrivals and departures include changes in contractual status (temporary becoming staff member, for example).

The computerized staff records, which are updated with the aid of magnetic tape cassettes, are used as a basis not only for periodical lists or statistical surveys, but also for the more detailed information needed for the work of the various working groups. They have also been used since March by the salary calculation programs.

Figure 5 — Turnover of staff members and auxiliaries between 31-12-1973 and 31-12-1974.
It has been possible to make some improvements in the working conditions of the telephone and mail services. Two additional switchboards have been installed in the telephone exchange and the mail office has been allocated extra premises, in order to reduce congestion in call and message traffic.

Several staff information brochures have been produced or updated and edited. They provide the information needed by new members of the personnel, especially associates, or by those preparing to leave CERN, and deal with various subjects, such as customs questions, schooling, social matters, accommodation, etc.

Figure 5 — Breakdown of the CERN staff total on 31-12-1974

<table>
<thead>
<tr>
<th>Some personnel statistics at 31 12 74</th>
<th>Laboratory I</th>
<th>Laboratory II</th>
<th>CERN</th>
</tr>
</thead>
<tbody>
<tr>
<td>staff members + auxiliaries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>55%</td>
<td>51%</td>
<td>55%</td>
</tr>
<tr>
<td>Women</td>
<td>45%</td>
<td>49%</td>
<td>45%</td>
</tr>
<tr>
<td>Family</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persons receiving the family allowance</td>
<td>84%</td>
<td>84%</td>
<td>84%</td>
</tr>
<tr>
<td>Average number of children</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Average age of children</td>
<td></td>
<td></td>
<td>0 years</td>
</tr>
<tr>
<td>Breakdown according to occupational category and average age</td>
<td>%</td>
<td>Age</td>
<td>%</td>
</tr>
<tr>
<td>Physicists and scientific programmers</td>
<td>12%</td>
<td>38.4</td>
<td>11%</td>
</tr>
<tr>
<td>Engineers</td>
<td>9%</td>
<td>40.2</td>
<td>17%</td>
</tr>
<tr>
<td>Technicians</td>
<td>24%</td>
<td>39.0</td>
<td>35%</td>
</tr>
<tr>
<td>Draughtsmen</td>
<td>8%</td>
<td>38.6</td>
<td>10%</td>
</tr>
<tr>
<td>Manual workers</td>
<td>19%</td>
<td>40.7</td>
<td>17%</td>
</tr>
<tr>
<td>Operators</td>
<td>6%</td>
<td>38.3</td>
<td>1%</td>
</tr>
<tr>
<td>Administrative staff</td>
<td>8%</td>
<td>40.8</td>
<td>2%</td>
</tr>
<tr>
<td>Office staff</td>
<td>10%</td>
<td>35.1</td>
<td>8%</td>
</tr>
<tr>
<td>Auxiliary service staff</td>
<td>8%</td>
<td>40.8</td>
<td>1%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>39.0</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure 7 — Monthly totals of fellows, associates and students present at CERN in 1971 and 1974.
Technical Services and Buildings Division

There were no changes in the organization of the Division in 1974, and the number of staff members and auxiliaries remained steady at about 610, with five posts blocked for staff attached to ESO as part of the collaboration between that Organization and CERN.

The Division consists of a central management and six groups, whose activities are described below. They are: new works (Laboratories I and II), alteration and structural maintenance of buildings, maintenance and operation of technical installations, mechanical engineering and specialized workshops, transport, equipment handling and cleaning.

The budget for the Division amounted to 83.3 million Swiss francs in 1974, including 29.7 million for personnel. The budget may be broken down as follows.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount (Swiss francs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>19.1</td>
</tr>
<tr>
<td>Power, water</td>
<td>17.1</td>
</tr>
<tr>
<td>Maintenance, operation, alterations</td>
<td>23.9</td>
</tr>
<tr>
<td>Workshops</td>
<td>14.5</td>
</tr>
<tr>
<td>Transport</td>
<td>6.1</td>
</tr>
<tr>
<td>Direction</td>
<td>2.6</td>
</tr>
<tr>
<td>Total</td>
<td>83.3</td>
</tr>
</tbody>
</table>
This amount included neither the cost of alterations to installations and workshop jobs put out to contract (11 million francs) which is charged to the budgets of other Divisions, nor the cost of the work for Laboratory II in which personnel from the SB Division took part. The estimated number of staff from the Division working for the 300 GeV Programme was 102 in 1974, 50 of whom were engaged in construction work.

New works

The following work on the Laboratory I site was completed during 1974: the erection of the assembly hall for ESO (N° 275) and rectifier building WRB2 in the West Area (N° 273); the rebuilding of the PS cooling plant; the construction of a system for the recovery of cooling water so that it can be re-used as industrial hot water, changing the layout of the North road in connection with work on tunnel TT60 for Laboratory II. Work continued on the large-scale design studies for the West Area buildings to house the neutrino experiments and the bubble chamber Gargamelle, and the civil engineering contracts were awarded. Construction will begin in February 1975, as a start was made on driving the foundation piles in November. Calls for tenders for the various technical installations are now being sent out. Work on the main structure of hall 186 and laboratory 28 (for the NP Division) was started at the beginning of November.

Figure 2 — One of the SB Division's design offices. (CERN-313 3 75)
The Division is carrying out design studies on behalf of the Site Installation Group of Laboratory II, for civil engineering work and general technical installations. The very large construction programme in the North Experimental Area continues to be a considerable drain on the Division's design resources, particularly in the civil engineering field, and it was necessary to employ a number of temporary design staff.

As part of the collaboration between CERN and ESO, the Division's engineers and designers continued to help in the work on the essential services for the Observatory at La Silla in Chile, with special emphasis on the reconstruction of the water and electricity systems.

The Maintenance Group made a special effort in 1974 in the interests of saving energy throughout the Laboratory. The energy crisis which has affected the entire world has certainly made its effects felt at CERN. A campaign was waged against wasteful consumption while an over-all policy of saving electric and heating power was followed. Considerable fuel oil savings were achieved, amounting to about 4000 tons, or 30% of the normal annual consumption.

The annual variation in the consumption of power, water, fuel oil and gas from 1969 to 1974 is given in the following table.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid supply</td>
<td>158 306</td>
<td>166 111</td>
<td>192 184</td>
<td>203 242</td>
<td>222 719</td>
<td>242 660</td>
</tr>
<tr>
<td>Stand-by generators</td>
<td>---</td>
<td>8 481</td>
<td>17 434</td>
<td>21 665</td>
<td>20 751</td>
<td>18 063</td>
</tr>
<tr>
<td>Total</td>
<td>158 306</td>
<td>174 592</td>
<td>209 618</td>
<td>224 907</td>
<td>243 470</td>
<td>260 723</td>
</tr>
<tr>
<td>Maximum instantaneous power (kW)</td>
<td>36 009</td>
<td>36 800</td>
<td>47 200</td>
<td>53 000</td>
<td>55 000</td>
<td>58 500</td>
</tr>
<tr>
<td>Cooling water (1000 m³)</td>
<td>7 183</td>
<td>6 712</td>
<td>8 063</td>
<td>8 665</td>
<td>8 364</td>
<td>7 493</td>
</tr>
<tr>
<td>Drinking water (m³)</td>
<td>485 894</td>
<td>472 636</td>
<td>545 197</td>
<td>482 443</td>
<td>419 417</td>
<td>464 040</td>
</tr>
<tr>
<td>Heavy fuel oil (tons)</td>
<td>6 848</td>
<td>10 181</td>
<td>12 989</td>
<td>14 076</td>
<td>15 818</td>
<td>11 902</td>
</tr>
<tr>
<td>Gas (m³)</td>
<td>115 457</td>
<td>120 256</td>
<td>113 118</td>
<td>100 588</td>
<td>115 328</td>
<td>112 618</td>
</tr>
</tbody>
</table>

The extensive modernization and improvement of equipment continued with, for instance, the commissioning of a mobile 1 MVA motor-generator set, the replacement of the ISR water supply piping and a system for recovering the water from the machines. A large-scale design study is on hand with a view to modernizing the central heating plant of Laboratory I because of the energy situation mentioned above and the obsolescence of the present equipment.

A close watch was kept on the quality of the CERN water supply throughout the year and two joint operations were undertaken with the local authorities to clean the mains. A pilot filter station has been installed, and a design study for a filter station undertaken.

Responsibility has been accepted for more and more installations on the Organization's two sites without increasing the number of staff, by awarding more extensive general maintenance contracts. By way of example, the following Laboratory II installations...
are now maintained by the Division: the new "La Berne" pumping station, six lifts, including three special 25 ton goods lifts, four sumps, and the lighting, heating and ventilation systems of the new buildings.

The total number of emergency repair calls for the whole of CERN was about 5500.

Alterations

The number of requests for re-fitting and making alterations to buildings amounted to 2600 for the year, involving an amount of over 125 million Swiss francs.

The Group handled a number of major jobs, including converting the former computer centre into a printing shop (750,000 Swiss francs), erecting the building for the plate chambers (450,000 Swiss francs) and altering the PS main control room (375,000 Swiss francs).

The Group also handled the maintenance of the roads and buildings on the site. This work is necessary to keep CERN's real estate in good order. The corresponding 1974 budget was 1.9 million Swiss francs, which is still very low in comparison with the amount of the investments concerned.

Central Workshops

The Central Workshops Group was reorganized during the year. Work preparation and distribution and sub-contracting were made the responsibility of a newly-created Work Preparation and Distribution Section.

Work done for the Divisions increased from 8.8 million Swiss francs in 1973 to 9.3 million in 1974, while the value of work put out to contract was 2.5 million. The workload at the end of the year was very heavy, reaching saturation point in certain fields, making it increasingly necessary to put work out to contract. Much of this workload came from Laboratory II, but there was also a heavy demand for work connected with BEBC and for preparation for SPS physics.

On the subject of equipment, a start was made on the installation of the large vacuum oven in its pit in November.

Quality Control Section

This Section received more than 500 work and study requests in 1974. Although this figure is lower than that for 1973, it represents a greater number of working hours.

The increase in the workload bore particularly heavily on the Metrology Section, and additional inspectors had to be temporarily engaged, while it became necessary to purchase a second machine for making three-dimensional measurements.
Main Workshop

The workload increased from 20,000 hours at the beginning of the year to over 33,000 by the end of December. There were considerably more requests for the secondment of fitter-mechanics. A special feature was the creation of a permanent team for the assembly and improvement of the rotary condensers (ROTCO) of the new SC. The SC improvement programme as a whole and the repairs to the BEBC magnets, among other work, created a large demand for staff to be seconded.

Work done for Laboratory II included the building of components for the transfer systems for injected and extracted beams. Some very difficult jobs had to be done also for the ISR (radio-metal vacuum chamber, tooling for hot-forming titanium) and for BEBC (turning a lip joint 1.80 m in diameter, modifications to the expansion system). The machining of the components of the $g-2$ vacuum chamber should also be mentioned.

West Workshop

The "Plexiglas" and "Araldite" sections had a great deal of work, including in particular the manufacture of a set of scintillation counters, for which the scintillator material had to be cast in the workshop.

Figure 3 — Alterations to the base and piston guide skitt of the big European bubble chamber (CERN-342 2.74)
Heavy demands were also made on the sheet-metal shop, whose work included jobs for the ISR, with the development of a hot-forming method for a titanium alloy to be used in the construction of a vacuum chamber for one of the intersections. A start was also made on the manufacture of a series of cryogenic pumps.

With regard to equipment, considerable improvements were made in the electron beam welding installation to make it more reliable and versatile. Very promising developments were made in the field of pneumatic motors and air bearings. These techniques were applied to the construction of a centrifuge for the manufacture of parabolic mirrors.

Wire Chamber Manufacture Shop

This Section completed two extensive programmes concerning the chambers intended for the experiments with the Split-Field Magnet and with Omega. Work on modern chambers has to be performed in air-conditioned premises because of the tolerances required. The amount of manufacturing work on hand and the work expected in connection with the SPS physics programme have made it necessary to extend these premises, bringing their total area up to 310 m².

Figure 4 — Construction of a vertical centrifuge machine mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high-precision parabolic mirrors (CERN-71 475).
Surface Treatment Shop

The electro-plating and polishing of large items necessitated the manufacture of special tanks. The anodizing installation was considerably modified to deal with the SPS extraction electrodes.

As in the past, there has been a great deal of photo-mechanical work to do, on account of the manufacture of printed circuits and of the increasing number of high-precision chemical machining jobs.

Studies on the action of various types of water were carried out, with special emphasis on the corrosion of magnet cooling systems.

There has been further fruitful collaboration with the Karlsruhe Nuclear Centre on the electrolytic polishing of niobium superconducting cavities.

The total distance covered by all CERN vehicles during 1974 was 1,800,000 km, which includes 285,000 km of long-distance journeys. Outside haulage contractors covered about 75,000 km on behalf of the Organization.

The number of vehicles in the fleet increased from 330 to 375, including light and commercial vehicles, heavy vehicles, tractors, trailers, cranes, etc., all of which are maintained by the Transport Service.

While carrying out its everyday duties (moving furniture and effects, transporting passengers for conferences, visits, site maintenance, refuse collection, etc.), the Service also took part in the dismantling and reassembly of BEBC, storing the neutrino discs.
(6000 tons in all) setting up the Gargamelle, g – 2 and neutrino experiments, off-loading the giant transformers for Laboratory II and installing the first magnets in the 300 GeV accelerator tunnel.

With regard to cleaning, the floor and window areas requiring maintenance totalled 295 000 and 35 000 m² respectively at the end of 1974. This work is carried out by specialist firms under the supervision of the Cleaning Section, which is also responsible for the upkeep of working clothes worn by the Organization’s personnel and for running the dormitories.

Meeting on Technology

The various groups of the Division contributed towards the success of the Meeting on Technology Arising from High-Energy Physics by presenting 21 noteworthy items, including 16 within the fields covered by the Central Workshops Group.
Health Physics Group

The main effort of the Group was devoted to the evaluation of the radiation risks during the operation and maintenance of the accelerators and when using radioactive sources, and to the control of the release of radiation or radioactivity from the installations. A substantial effort went into the routine evaluation of radiation exposures of personnel within the Laboratory.

The injection of proton intensities of up to $2.5 \times 10^{12} \text{s}^{-1}$ from the Proton Synchrotron into the Intersecting Storage Rings resulted in only a slight increase in the level of induced radioactivity in the rings but the beam dumps were becoming important sources of radiation. Measurements of dust and loose radioactivity showed values which did not exceed 2% and 7% of the maximum permissible level for the rings and beam dumps respectively. Stray radiation dose rates were low all around the ISR.

The annual shutdown of the Proton Synchrotron caused an exposure of personnel of 37 rem distributed among 115 people. This was a decrease of 35% in dose compared to the previous year and was achieved by better planning and organization of the work.
Beam-dump facilities for beams with intensities of up to $5 \times 10^{12} \text{s}^{-1}$ were studied with respect to their radiation hazard theoretically and experimentally and recommendations for their construction were given. The work on the rearrangement of the beam layout in the PS East Hall required extensive supervision and advice from the Health Physics Group. The neutrino facility operating with intensities of up to $3 \times 10^{12} \text{s}^{-1}$ gave rise to radiation protection problems both during and after operation. Releases of radioactive gas and stray radiation required improvement of existing protective measures and of the shielding. In spite of the increased beam intensities (up to $4.5 \times 10^{11} \text{p s}^{-1}$) ejected into the West Hall, particular radiation restrictions could be avoided thanks to the very short period of this mode of operation (one day).

The reconstruction of the Synchro-cyclotron was essentially complete by the end of the year. Dismantling and reconstruction caused a total dose to personnel of 145 rem, satisfactorily distributed among the people associated with the work. A new radiation monitoring system was built and installed in the SC Hall, ISOLDE, and experimental areas of the Synchro-cyclotron.

Forty-four containers of radioactive waste were prepared and dispatched to the Swiss authorities. Sixty-five new radioactive sources were registered on the source inventory which totalled 820 sources.

The site monitoring stations equipped with CaF$_2$ Dy TLD dosimeters, which are read monthly, showed good correlations with other instruments. Dose rates to regions outside the CERN site were found acceptable and within the limits prescribed.

Personnel monitoring

Forty-four thousand γ films and 26000 neutron films were used for personnel monitoring. The total dose received by personnel and resulting from the operation of the Laboratory was 390 rem. The total dose in January and April showed peaks up to twice the average monthly dose for last year; they were due to the PS shutdown and the modification of the neutrino facility. The study of personnel monitoring devices other than the film badges used at present was continued.

Instrumentation and research

Monitors for induced radioactivity were developed. The effluent-water monitoring system was completed. Problems associated with low-level counters used for stray radiation measurements on the site were thoroughly investigated and an improved system developed. A proposal was made for a computer-based data-handling system for use with these monitors. The low-level counting-room installations were completed and equipped with a computer-based pulse-height analyser. The new calibration building was completed and put into use.

Preparation of equipment for further radiobiological experiments with pion and neutron beams included the testing of a counter telescope and the design of a special ionization chamber. Preliminary tests were made with 60Co γ-rays on the biological systems to be used in these experiments.
Breakage of a plexiglas Marx generator tube during a 9 bar pneumatic pressure test (CERN-124 1274)

General Safety Group

A large number of plans and specifications for industrial and experimental installations were sent to the Group for study and comment. Among the projects examined or being examined were:

- the housing and installation of a large multiplate wire chamber array behind the Gargamelle bubble chamber;
- increased storage facilities for liquid hydrogen and deuterium for BEBC;
- liquid argon impactometers for the ISR;
- superconducting particle separators;
- a hydrogen target inside the SC machine hall;
- an electrolysis plant for producing deuterium;
- the West Area neutrino ramp building, with a semi-open area housing a 35 m³ liquid hydrogen dewar;
- a large vacuum oven in Hall 153.

The inspection of new installations, and the regular tours of inspection of laboratories, experimental areas and workshops conducted together with the Safety Officers and Safety Monitors have continued to be of value in exposing a variety of safety hazards that tend to be forgotten or neglected in day-to-day activities.
In close collaboration with the users, particular attention was given to improving the technical and operational safety of experimental apparatus in which inflammable gases and vapours are used. The Mechanical Section continued to carry out its task of routine inspections, quality control and acceptance testing of pressure vessels, process components and lifting equipment. The improved system of control of toxic materials is becoming well established, and a storage depot for waste chemicals is being built. In the field of industrial hygiene, close co-operation was maintained with the Medical Service.

In the area of fire prevention, advice was given on methods, installations, equipment and, where required, building modifications. For Laboratory II, guidelines were prepared for the experimental halls, auxiliary buildings and the SPS machine itself.

The General Safety Group continued to collaborate with ESO and an inspection of the observatory complex in Chile was carried out, leading to a number of recommendations. Mechanical and quality-control inspections of telescope components and other equipment were also performed on behalf of ESO.

In September, a three-day conference on safety was held at CERN, attended by representatives of a number of European laboratories.

ACCIDENT SITUATION

<table>
<thead>
<tr>
<th></th>
<th>Laboratory I</th>
<th>Laboratory II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of accidents reported</td>
<td>244</td>
<td>19</td>
</tr>
<tr>
<td>Number of accidents involving absence from work</td>
<td>63</td>
<td>5</td>
</tr>
<tr>
<td>Number of disabling accidents per 100 000 worked hours*</td>
<td>0.58</td>
<td>0.50</td>
</tr>
<tr>
<td>Number of lost days</td>
<td>8286**</td>
<td>35</td>
</tr>
<tr>
<td>Number of lost days per 100 000 worked man-hours (including penalty for one fatal accident**)</td>
<td>76.17</td>
<td>132</td>
</tr>
</tbody>
</table>

* 100 000 hours is approximately equal to a working life of 50 years

** This value is very high owing to a fatal accident which is counted as 7500 lost days (7500 working days are equivalent to about 30 working years).
Central Services

A special effort was devoted during the year to reviewing the visits service with a view to reducing the staff effort required whilst making CERN more comprehensible to its visitors. These numbered nearly 11,000 in 1974. Proposals have now been formulated with a view to introducing more exhibition and demonstration equipment supplemented by audio-visual aids.

Valuable experience was obtained in the preparations for the Technology Meeting in April, where the PIO was particularly active in establishing standards, preparing photographs and documentation and setting up the central exhibition. The Technology Meeting stimulated interest in the Organization and beneficial long-term effects are being nurtured.

The CERN COURIER had a successful year and, in spite of rising paper costs and increasing circulation, was able to maintain its financial position through increased revenue from advertisements. The editor made an extended visit to the United States where the COURIER is already widely read and was encouraged to consider ways in which high-energy physics activities in all the main laboratories could be more fully covered. A major survey was undertaken to revise the existing distribution list and so cut unnecessary costs.

Following the completion of the 31 minute technical film on BEBC and the 22 minute general introductory film, aimed particularly at visitors, called in the four languages in which it has been dubbed, “Inside CERN”, “Dévoiler l’inaccessible”, “Grosse Maschinen für kleinste Teilchen”, “Cenro Europeo della fisica delle particelle”, work has continued...
on the preparation of the technical films covering the construction of the SPS. So far short films on the underground works and site surveying have been completed and one on the magnets is well advanced.

In addition to regular contacts with the news media, the Norwegian technical press was invited to CERN following their visit to the laboratories of Professor Pappas in Oslo. The journalists spent three half days with the Organization, seeing the installations, meeting Norwegian members of staff and talking to senior personnel. A meeting with the press in Belgium was also arranged, it was well received and generated a number of positive comments on CERN.

General Services

The General Services include the firemen, first-aid staff and site police, the conference room technicians and the gardening staff.

The work of these three sections, which is closely bound up with the general level of activity at CERN, has of necessity increased further. For the Security Service, the progress made with the construction of Laboratory II has resulted in more work for the site police, who had already become increasingly busy in 1973, and more calls for action of all kinds. As a result, still more contract labour has been employed. The conference room technicians, too, have had to shoulder an increasing work-load in connection with the ever greater number of conferences, seminars and colloquia, both at CERN and elsewhere. In addition to carrying out normal maintenance, our technicians have completely renewed certain installations, in particular the simultaneous interpretation facilities in the Council Chamber. Last but not least, while continuing to keep the grounds of Laboratory I in good condition and to improve their floral decoration, the gardening staff have taken great pains to make the wide stretches of the Laboratory II site look attractive.

Translation and Minutes Services

The volume of work in 1974 remained about the same as in 1973. Translation and Minute writing for the Working Group on Pension Policy and the Working Group on Salaries proved to be fairly heavy commitments, as the meetings usually took place at about the same time as Council sessions and committee meetings.
The Council gave its approval to the Programme for the Construction and Bringing into Operation of the CERN 300 GeV Laboratory at its Forty-fifth Session held on 19 February, 1971.

Eleven of the twelve Member States of CERN participate in the Programme viz. Austria, Belgium, Denmark, France, Federal Republic of Germany, Italy, Netherlands, Norway, Sweden, Switzerland, United Kingdom.

It has been agreed that the cost of the Programme should not exceed 1150 million Swiss francs at 1970 costs and constant prices and the duration of the Programme should not exceed eight years.

The Council appointed Dr J B. Adams Director-General of CERN Laboratory II.
Undoubtedly the most visible evidence of progress on the 300 GeV Programme in 1974 was the completion of the boing of the machine tunnel and the start of the installation of the machine components in the completed part of the tunnel.

On the last day of July, the giant boing machine broke through the rock face into LSS1 and so returned to the place from which it had set out 17 months before. In those 17 months it had bored 7 km of tunnel at an average speed of 20 m/day, and it had kept on course over the whole distance to within a few centimetres. As though to demonstrate its accuracy and manouevrability, it arrived back at LSS1 only a few millimetres off course. The molasse rock through which the machine boored the tunnel, proved very similar to that predicted by the core-boings carried out in 1970, although the quantity of hydrocarbons, especially methane gas at high pressure, encountered at several places during the boing was not foreseen. However, neither methane gas, nor the occasional ingress of water, nor the more frequent zones of fractured rock held up the machine for more than a few days at a time. Everyone concerned with this very difficult and very risky operation should be congratulated on having carried out an excellent job safely and on schedule. The boing machine and its long wagon train have now been brought out of the tunnel and are stored temporarily on site.

In March, about two months after the boing machine had passed LSS4, the final operations to complete the civil engineering of the tunnel started at LSS4, going towards LSS3, in the opposite direction to that of the boing machine. By July the tunnel was completed from LSS4 to LSS3 and at the end of September the sector LSS3 to LSS2 was ready. By the end of the year, half the circumference of the machine tunnel was completed.

As soon as the first sextant of the tunnel was finished, installation of the machine components began, starting with the pipework and cable trays. The first magnet, a quadrupole, was installed in this sextant at the end of October and by the end of the year the sextant was completely equipped with all its bonding and focusing magnets, a total of 140 magnets stretching over a distance of about 1 km. The installation system is arranged sequentially, one operation following another in a logical order, with the teams spread out round the tunnel one behind the other. The whole sequence moves round the tunnel at a rate of one half magnet period or 32 m per day. Owing to the rehearsals of this complicated operation, carried out in the laboratory during the late summer, it was possible to start in the tunnel at the planned rate of installation right from the first day.
Progress with the other components of the SPS, no less important than the machine tunnel and the installation work, is fully reported in the different sections of this Report. In general, most components are progressing satisfactorily and most of them are in the manufacturing stage in industry, or here at CERN being tested, or awaiting installation. We are still experiencing considerable difficulty in getting the European industries to keep to their delivery schedules and the amount of help we have to give many firms, large and small, in solving production problems seems far greater than a few years ago. Also we are finding that more and more firms seem to expect their customers to check the goods they produce rather than carry out the necessary inspection and quality control themselves in their own factories. As a result, many more man-hours than were foreseen, have to be spent by our staff in checking the deliveries from industry.

Despite these difficulties, we still plan to complete the installation of the SPS by the middle of 1976, and to commission the accelerator in the second half of that year, so that high-energy protons can be fed to the West Experimental Area by the end of 1976.

John Adams

John B Adams
Director-General
CERN Laboratory II
The 300 GeV Accelerator Programme

Offices and laboratory area

During the course of the year the office and laboratory area of Laboratory II was completed by the construction of a garage for the site security vehicles, and a storage building giving an additional 2000 m² of floor space for the SPS machine components. Also, the fuel storage capacity of the central heating plant was increased by 50% by adding a third storage tank, and a restaurant was opened for the staff in Block III.

Electricity supply to the site

The 380 kV grid line from Génissiat and the main electrical substation on the site were completed and commissioned this year. The Laboratory II site is therefore now supplied with electricity from the French EDF network, ready for the testing of the main components of the SPS in 1975. A special metering system using a computer is being installed which will keep a continuous check on the power consumption of the machine. Discussions on the electricity supply contract with EDF are reaching final agreement.

< Figur 1 — The 90 MVA transformer (CERN 170.10.74)

Figure 2 — The 18 kV switchboard in the electricity substation (CERN-145-11.74)

Photo — Success 107, vol. 14, 1074
Water supply to the site

Construction of the water pumping station by the lakeside at Vengeron is on schedule and is planned to start operating in the middle of 1975 as foreseen. The 10 km long pipeline from this pumping station to the site is complete. Both water reservoirs on the site, giving a total capacity of 10 000 m³, are also completed and in service. The first part of the CERN pumping station, next to the water reservoirs, which distributes primary water around the site, came into service at the beginning of the year and four of the seven auxiliary buildings are now supplied with water from this pumping station. The civil engineering work for the water towers to cool the outgoing primary water before it is discharged into the Nant d'Avril was completed at the end of the year. In order to comply with the local environmental regulations, a water recycling and reheating system has been designed to minimize the differences in temperature of the outgoing water.

Tunnel engineering

At the end of 1973, half the circumference of the machine tunnel had been bored. Boring continued in 1974 and at the end of July the tunnelling machine regained LSS1. Thus the 7 km of machine tunnel were completed in 17 months, at a rate which increased from 12 m/day at the beginning and averaged over 22 m/day for the last few kilometres. The quality of the rock through which the boring machine passed was very similar to that predicted by the trial borings carried out on site during 1970 and 1971 but the quantity of hydrocarbons encountered, particularly methane gas at high pressure, was not foreseen. The boring machine and its auxiliary equipment proved to be well adapted to the rock and there were no major breakdowns during the whole period of tunnelling. All this equipment has now been removed from the tunnel and is stored temporarily on site.

The final concrete work to complete the machine tunnel started at LSS4 in March and by the end of the year, half the circumference of the tunnel, a length of about 3.5 km, was ready for the installation of the SPS components.

The excavation of the three transfer tunnels, which connect the SPS with its injector, the CPS in Laboratory I, and its two experimental areas was completed during the
course of the year. The total length of these tunnels is about 3 km and they were excavated using explosives. The excavation of the neutrino tunnel and neutrino area was also completed at the end of the year. About one third of the length of these tunnels has been lined with concrete.

By the end of the year about 80% of all the tunnel engineering was complete. Considering the uncertainties and risks inherent in this kind of civil engineering the work has been carried out with remarkable success and such delays as have occurred have been either absorbed in the safety margins provided in the scheduling or minimized by reorganizing the work.

Auxiliary buildings

Only one of the seven auxiliary buildings at the top of the vertical shafts to the machine tunnel was finished in 1973. In 1974 the other auxiliary buildings were completed, with the exception of the neutrino building which awaits completion of the neutrino shaft. No significant delays occurred despite the fact that the contract for the heating installations had to be transferred to a new firm when the original one went bankrupt.

The central control building was completed early in the year and handed over to the Controls Group in April. The electrical substation building was completed in August and the adjacent area for the reactive power compensator was finished by October.

Installation of service equipment

The first system for heating and ventilating the machine tunnel came into operation in August and the second one in November.

The cooling-water stations in three of the auxiliary buildings were completed during the year and have been provisionally accepted, and the stations in two other auxiliary buildings are partly complete. The installation of the pipework for the demineralized water is finished in four auxiliary buildings and is proceeding in two others. Also, the pipework for the demineralized water has been installed in three of the vertical shafts and in two sextants of the machine tunnel.
The installation of the electrical equipment began late in 1973 and has continued throughout 1974. Seventeen of the eighteen 18 kV to 380 kV transformers were delivered to the site and ten are installed and working. Low-voltage equipment in five of the auxiliary buildings was completely installed. The installation of cable trays and power cables began as the shafts and tunnels became available during the year and, by the end of the year, about one third of the final installations were complete.

North Experimental Area

Work on the infrastructure (roads, drains, etc.) of the North Experimental Area began in the second half of the year, and test borings were carried out over this part of the site to assist the firms tendering for the civil engineering. All the civil engineering plans for the North Area were agreed during the second part of the year and a request for tenders for this work was sent out. The adjudication of the contract was made at the end of December and work is planned to start on site in March-April 1975. Execution drawings for this civil engineering construction are being prepared by an external design office and 33% of them were completed by the end of the year.

Requests for tenders for the service equipment for this Area were sent out towards the end of 1974. The contract for the cranes was adjudicated in November and the contract for the heating and ventilation will be ready early in 1975.

Magnet Group

During 1974 large quantities of magnets and components of all types were delivered to the Assembly Hall of Laboratory II. The work of the Group has been concentrated on reception, testing, assembly and on all aspects of the final preparation of components for installation in the ring tunnel.
The detailed installation and alignment procedures have been worked out in collaboration with the Mechanical Design and Survey Groups and by the end of the year the first sextant of the machine had been installed.

The basis of the SPS magnets is the very high quality steel sheet. This has been produced well within the mechanical and magnetic limits imposed by CERN's specification and somewhat ahead of the required delivery schedule. Over 90% of the 16,000 tons required has now been delivered to the various magnet manufacturers and the continuous collaboration between the steel supplier and CERN has resulted in the overall average coercivity being maintained within 0.002 oersted of the nominal value.

The remarkable precision of the steel production, together with careful mixing of the different batches by the manufacturer of the magnetic circuits for the dipoles has given the required uniformity in injection field level. Well over half of the dipole yokes have
now been delivered and the precision of their fabrication has been verified by magnetic measurements on more than 300 complete dipoles.

The manufacture of one of the two types of dipole excitation coils continues to be the most crucial concern of the Group although it is expected that, with the advent of coils from the second manufacturer early in 1975, the requirements for installation can be met, with some adjustments to the installation sequence.

The quadrupole manufacturer has maintained the full production rate of about three quadrupoles per week so that at the start of installation over half of the 216 quadrupoles required had been delivered.

A total of 12 enlarged quadrupoles are needed, which will be located at the extraction regions of the machine. They are 11/9 scale versions of the normal quadrupoles and their focusing strength must track precisely with the main quadrupoles. The first few of these have arrived and careful magnetic measurements have shown that they can be made to follow the normal quadrupoles to within 1 part in 1000 throughout the acceleration cycle.

All the 240 injection orbit correcting dipoles have now been delivered and measured, 75% of the chromaticity sextupoles are at CERN and the first Landau damping octupole has arrived.

The design of small harmonic multipole magnets was finished during the year and a prototype built in collaboration with the Parameters Section. A request for tenders for 130 units has been sent out and fabrication should start in the first half of 1975.

During the year, preparations were completed for the fabrication of the copper bus bars for connecting the main dipoles and quadrupoles. This allowed the installation of the magnetic circuit to begin two weeks ahead of schedule, at a rate of one half-period (32 m) per day.

With the start of installation, the main activities of the Group were concentrated on the various aspects of the final preparation of the components. This involves precise mechanical and magnetic measurements, on the basis of which the properties of each magnet are adjusted and the alignment references defined. At the start of magnet installation in October, the Laboratory II Assembly Hall was an impressive sight, with over 300 dipoles, 100 quadrupoles and many smaller magnets, stacked awaiting final selection for installation.

Figure 10 — Brazing of the copper bus bars for connection of the main magnet system (CERN-219 10.74).
The assembly of the main power supplies for the dipoles and quadrupoles is continuing; about two thirds of the supplies are now installed. The design of their electronics system is complete and most of its subunits have been ordered.

The main element of the reactive power compensator, a large saturable core reactor, is now being manufactured. All components of its associated harmonics filter have arrived at CERN and are being assembled.

The manufacturers of the 180 auxiliary rectifiers have started their production according to schedule and nine of these have been delivered. An order for a further 22 units needed for the North extracted beam was placed recently.

Tests on the prototype auxiliary rectifier and its regulation equipment have been successful. As a consequence, the design of the advanced electronics system for these rectifiers could be frozen. Specifications were drawn up for part of this system and tenders for its manufacture requested from industry.

The accelerating system is taking its final shape, despite several difficulties which were encountered during the manufacture of the major components. A first batch of all the most important items is now available so that final testing under real conditions can be started.

Welding and brazing problems with the accelerating cavities initially caused serious concern. However, the first tank section of the first cavity was delivered to CERN at the end of October and four other sections were delivered by the end of the year. Eleven drift tubes, required for tuning measurements of the tank sections, were finally brazed together at CERN in October; a complete set for the first tank section was finished at the end of November.

Figure 11 — One SPS RF cavity section. There will be two RF cavities in the SPS, each of them consisting of five such sections. (CERN-331174)
The supports, vacuum joints and cooling components for the accelerating cavities are completed. The interlock system has been designed.

A great number of the vacuum windows are now available as well as one complete set of couplers. As a consequence of further investigation of the higher passbands of the accelerating structure, loops have been added to the coupler lids, which will terminate the structures also for higher waveguide modes.

The first of the three 500 kW terminating loads has been delivered and tested at the maximum available RF power level of 100 kW. Extrapolations to 500 kW indicate that the load will not be overheated at this power level. Final tests will be made as soon as a 500 kW power level is available.

Concerning the power transmission lines, problems were encountered with the first full-size ceramic discs, owing to cracks produced during the manufacturing process. After an investigation of different manufacturing processes with different disc forms, the problem has now been solved. During tests the final discs cracked at a field level corresponding to a power level of 2.5 MW, which is well above the required 500 kW. All components of the two lines are now available. The installation has been shifted to the beginning of next year owing to changes in the tunnel and access pit installation schedule.

At the beginning of the year, some difficulties were experienced by the manufacturer with the prototype 125 kW power amplifier unit, owing to parasitic higher modes in the tetrode cavity. By using damping loops and ferrite suppressors these modes have been eliminated. This unit has since passed the acceptance tests, and it now constitutes the last link of a power amplifier chain which was built up on the site and which is used to test components of the accelerating system at the 100 kW power level.

All components for the first 500 kW power amplifier, including the 1.25 MVA anode power supply, screen grid and control grid power supplies, filament voltage regulator, cooling system, coaxial power adding network, interlock and control system and high power tetrode cavities have arrived at CERN and have been installed. Commissioning at full output power was achieved before the end of the year. Most of the components for the second and third 500 kW power amplifiers have also been delivered and are being installed. Commissioning of the first 10 kW driver amplifier (built at CERN) has started.

The Faraday cage, which will house the low-level system, is already installed. Work has continued on the development and the construction of the electronic equipment for this system. More of the elements of the phase and the radial loop have been built in their final form. These elements include, phase coherent mixers from 200 MHz to the new IF frequency of 10.7 MHz, wide dynamic range levelling circuits, synchronous detectors and normalization circuits, and RF log detectors.

Orders for other elements (crystal filters, microwave components) have been placed. The phase programme circuitry has been assembled, and the equipment for frequency generation (coarse and fine frequency programmes) is under construction. Digital control of the RF frequency has been studied theoretically and the corresponding equipment is being developed.

The pick-up electrodes working together with the low-level system have been defined as follows. The radial PU system will make use of a modified version of the closed orbit display electrodes. The prototype of the phase PU electrodes was accepted after measurement and the final version is being built. The full-scale prototypes of the wide-band PU electrodes have been measured with satisfactory results, and the final design has started. It should be mentioned that a CPS version of the wide-band electrode developed by the SPS was installed halfway through the year and has been working satisfactorily.

The longitudinal coupling impedances presented to the circulating proton beam by the vacuum system elements have been determined. For most of them this coupling impedance has been calculated approximately, but for the most dangerous ones, namely the bellows assemblies of the vacuum chamber, the resonances have been measured and the effect of damping resistors has been determined experimentally. The longitudinal
coupling impedance of the vacuum pump manifolds used in the CPS ring has also been measured with the highest possible accuracy, in connection with debunched beam instabilities observed in the CPS at an intensity of \(6 \times 10^{12}\) ppp. This was done as a consequence of further studies on longitudinal transfer procedures from the CPS to the SPS which have been actively pursued both theoretically and experimentally on the CPS.

In parallel to the work concerning the SPS RF system, another 200 MHz system, containing four cavities and the corresponding power amplifiers, has been developed and will be used in the CPS for bunching. The first cavity (prototype) will be installed during the next long shutdown of the CPS. The low-level system will be built up mainly from components developed for the SPS system.

Injection transfer line

The layout of the TT10 transfer line which brings the CPS beam to the SPS has now been finalized. At its upstream end some modifications have been made in order to simplify the civil engineering at the branch-off point from the existing TT2 tunnel. Two collimators, one quarter wavelength apart, will be installed at the beginning of TT10 to make a pencil beam for initial SPS injection studies. Each collimator will have four collimating holes with different but fixed cross-sections and one large opening for unobstructed passage of the beam. Each of these holes can be placed on the beam axis through a lateral displacement of the collimators.

Figure 12 — One of the 0.5 m long quadrupoles for the TT10 beam line from the CPS to the SPS. (CERN-29175)
The first of the 30 quadrupoles of 0.5 m length for TT10 was delivered early this year. It showed the expected field distribution and the pole profile could be approved for series production. The delivery of the series started in August and is now practically finished.

The horizontal and vertical bending magnets and the air-cooled steering magnets for TT10 are available. The septum magnets for injection were all delivered in the second half of the year and the measurements of their magnetic field, in particular the stray field in front of the septum, are under way. The supports for all magnetic elements of TT10 have been ordered and their delivery is expected early next year.

Fast kicker magnets for injection, extraction and beam dumping

Short-length prototypes of the beam dumping and extraction kicker magnets have been built in order to check the construction principles, the field distribution and the time response of the final magnets. As magnetic material they use the new ferrite type 8C11, of which the saturation flux density exceeds 0.3 T and which has an excellent vacuum behaviour. The beam dumping kicker prototype has been pulsed for more than one million pulses of 10 kA amplitude and 25 µs duration without difficulty. These two kicker prototypes will be installed in the SPS and used to excite horizontal and vertical betatron oscillations for beam diagnostics and Q-measurements.

A prototype of the horizontal sweeper magnet for beam dumping, made of 0.35 mm thick laminations, has been built and measured. It showed a satisfactory field distribution and is now undergoing life tests with the nominal pulses of 30 kA amplitude and 30 µs duration.

All components for the final kicker magnets, i.e. ferrite blocks, magnet frame, vacuum tanks, ceramic feedthroughs, supports and alignment systems have been ordered. In spite of the late delivery of some items from industry, the assembly of the final magnets started almost on schedule in November, in a part of the clean room which had been specially arranged for this purpose.

In order to obtain the desired pulse response, each magnet is connected to a number of matching capacitors and terminating resistors. These are housed in up to eight matching boxes which are fixed to the bottom plate of the vacuum tank of each magnet.

![Assembly of the first reflector kicker magnet of the SPS. (CERN-115 12 74)](image-url)
120 such boxes are needed in total and their design and components are standardized as far as possible for all the kicker systems. They are now being assembled in parallel with the magnets.

The pulse-forming network prototype with a characteristic impedance of 7.5 Ω, which delivers 4 kA pulses whose duration is adjustable between 1 and 24 μs, has been extensively used this year to test the reliability of different kinds of high-voltage switches. The “thygragontron” circuit has been finally chosen for all the kicker systems. This composite switch consists of a ceramic, deuterium-filled thyratron paralleled by three ignitrons in series. The thyratron gives the precise timing of the beginning of the pulse and the fast current rise, while the chain of ignitrons takes over most of the current after a few microseconds. Moreover, the thyatron used are of the new type CX1171B, in which the normal anode has been replaced by a second cathode assembly. In this way the “thygragontron” can pass the current in both directions and is insensitive to voltage reversals caused by reflection. Its expected lifetime is of the order of 10⁷ pulses.

To obtain pulses with an adjustable duration and with the required fast rise and fall time each pulse generator will have three HV switches, which are called main switch, dump switch and tail clipper. The former two will be of the “thygragontron” type while the tail clipper consists of a single thyatron. All these switches will be mounted in coaxial housings, filled with silicon oil. A total of 20 housings is needed. Their design has been completed and most of the components are on order.

A pulse generator prototype with a characteristic impedance of 3 Ω for the beam dumping system has also been built and tested at 60 kV. It has been shown that with careful adjustment of the pulse-forming network it is possible to produce 10 kA, 25 μs current pulses with oscillations superimposed on the pulse flat top, of an amplitude of 1 kA.
±10% of the mean pulse current. These large high-frequency current oscillations induce very high stresses in the components and lead to wear of electrical contacts through corona discharges. Therefore this pulse generator is now being used to test carefully the lifetime of all components of the beam dumping system and to improve their design where necessary.

For the high-voltage coaxial cables which connect the kicker magnets in the SPS tunnel to the pulse generators in the auxiliary buildings, it has been decided to use the same improved 50Ω RG 220 U cable which will be used in the CPS ten-turn extraction system. Different numbers of cables will be used in parallel to obtain the impedances required for the different kicker magnet circuits, which lie in the range from 3Ω to 10Ω.

The HV capacitors for all PFN's are being delivered on schedule. To avoid fire hazards, it is forbidden to fill the PFN tanks with mineral oil. The use of alkarel (trade names pyraline and elophen) gives rise to technical and human problems since it attacks a number of insulating materials and irritates the skin. Therefore all PFN tanks will be filled with silicon oil.

The 70 kV d.c. power supplies for the injection and beam dumping kickers have been ordered and their construction is progressing on schedule. For fast extraction and Q-measurements, where several pulses per machine cycle must be generated, resonant charging supplies will be used. A prototype resonant charging power supply has been successfully tested with the 4 kA pulse generator and can make two 4 kA pulses, 80 ms apart, with an overall repetition time of 2 s. The parameters for the different final resonant charging supplies have been defined. Their components have been standardized and have all been ordered. The same components will also be used in the pulse generators of the pulsed dipoles for integral and pulsed quadrupoles for half integral fast-slow extraction. Assembly will start in February 1975 with the power supplies for the Q-measurements.

The interfacing of the kicker systems with the SPS computers has been finalized and the software defined. Both have been tested by coupling the 4 kA pulse generator and the prototype resonant charging power supply with the NORD-10 computer located in the Assembly Hall and it is now possible to operate this system remotely from the computer.

Extraction system

A full-scale, 3 m long prototype of the electrostatic septum (ES) made of 0.15 mm diameter tungsten wires with a 1.5 mm pitch, has been constructed. A reliable method of mounting and stretching the wires with individual springs has been developed.

The vacuum system of the ES has been designed to be capable of operating at pressures down to 10⁻⁹ torr. Such a good vacuum would be desirable when the ES tanks are installed in the SPS, since it limits the number of ions which are created by the circulating beam and which can cause breakdown after drifting through the wires of the septum into the high-field region of the ES.

High-voltage tests have been made in the laboratory with the 3 m ES model using cathodes of titanium and of peraluman oxidized in a chromic bath. The latter type of cathode is also used in the electrostatic septa at the CPS. It was found that the voltage holding capacity of a titanium cathode depends strongly on the vacuum pressure. Typical values of the maximum electric field that could be maintained reliably with the titanium cathodes across a 17.5 mm gap were 100 kV/cm at 10⁻⁶ torr and 70 kV/cm at 10⁻⁹ torr. With the peraluman cathode and a 17.5 mm gap, the maximum field was 130 kV/cm at all pressures in the range from 10⁻⁶ torr down to 3×10⁻⁸ torr, which is the lowest pressure that could be obtained with the peraluman cathode since the latter cannot be baked. It is therefore intended to install peraluman cathodes in the ES tanks for the first
extraction tests. However, the oxide layer on the peraluman cathode is easily damaged by breakdowns across the gap of the ES. The most likely cause of these breakdowns at a pressure of 3×10^{-5} torr will be the ions, which are created by the circulating beam and escape into the high-field region. For this reason the ES will be equipped with clearing electrodes above and below the circulating beam which have the purpose of collecting the ions created by the beam, before they can drift into the septum gap.

Meanwhile, all other components of the ES, i.e., vacuum tanks, pumping modules, HV feedthroughs, electrode supports, tank supports and the long supporting beams, have been ordered and their delivery is progressing at a satisfactory rate. A test assembly of one tank using final components has been made and two final tanks will be fully equipped before the end of the year.
All the equipment for the 300 kV electrical circuits, i.e., power supplies, cables, plugs and resistors, have been ordered and enough components to make the electrical circuit of one complete extraction system were available at the end of 1974.

All components of the thin (4 mm) and thick (16 mm) septum magnets have been ordered and before the end of 1974, enough components for one complete extraction system had been delivered. A test assembly using final components has been made and by the end of 1974, four final tanks were fully equipped.

A prototype of the thick septum magnet has been submitted to a life test. After 3×10^8 pulses the test was interrupted since one of the conductor holes had become obstructed. The reason for this is now being investigated. When the septum was dismantled, the insulation of the return conductor, which consisted of glass-fibre impregnated with polyimide and cured at 300°C, did not show any sign of wear.

The copper of the busbars for the septum magnets has been delivered and the brazing of the busbar modules was started in November. The 25 kA quick disconnecting systems were assembled and completed at the end of 1974.

The delivery of the bumper magnets for extraction is proceeding satisfactorily and will be completed early in 1975. The first sextupole for extraction was delivered in October and the delivery of all sextupoles will be completed in March 1975. Magnetic measurements on the bumpers and sextupoles are in progress. The delivery of the quadrupoles and octupoles for extraction will start in January 1975 and should be completed at the end of June 1975.

Beam monitors

The beam monitors of the extraction system and of the transfer lines for the injection beam from the CPS to the SPS and for the extracted beams to the West and North Experimental Areas have been standardized. There are three types of monitors. First, the secondary emission monitors with full foils for beam intensity measurements, with two...
split foils for beam position measurements or with a grid of narrow foils for beam profile measurements. Second, the miniscanners which drive a single flag or wire through a beam to measure, also by means of secondary emission, the profile of beams of small cross-section such as near the extraction system and just upstream of targets. Third, the luminescent screens observed by closed circuit TV cameras. The hardware for all these beam monitors is the responsibility of the BT Group, while the electronics is provided by the Controls (CO) Group. A total of about 250 small vacuum tanks with their supports have been ordered for these beam monitors and their delivery started in October 1974. Some of these tanks will house a combination of several of the types of monitors listed above.

Prototypes of the actuating mechanisms for the different beam monitors have been developed and built by the Group. All actuating mechanisms (135 for secondary emission monitors, 70 for miniscanners and 35 for TV) have been ordered.

In October 1974, 110 secondary emission monitoring heads were ordered as well as the radiation-resistant cerium-stabilized view windows for the luminescent screen monitors. The transparency of these windows remains good to doses above 10^8 rad. The luminescent screens themselves were ordered in December.

Beam tests have been made with the final versions of the secondary emission monitors and miniscanners in a particle beam in the West Hall, using the electronics made by the CO Group. These tests have been entirely satisfactory. Great attention has been paid to earthing problems in the design of the electrical circuits and of the monitoring heads. In addition the vacuum tanks themselves are supported by vetronite insulating pads and are insulated from the rest of the vacuum system with insulating flanges. As a result excellent signal-to-noise ratios have been obtained in the beam tests.
Extracted proton beams to the West and North Experimental Areas

The layout of these beam lines is now well defined. In the first half of this year some minor changes were made as a result of more detailed knowledge of the layout of the secondary beams downstream of the targets.

The contract for the 15 m and 30 m beam transfer quadrupoles, which will be used for all extracted proton beam lines, was placed in 1973. The beginning of the quadrupole delivery has been delayed by about six months, owing to technical difficulties, mainly in the manufacture of the coils. The first prototype quadrupole was delivered in September. It showed the expected field distribution and the pole profile could be approved for the series production. There is a real danger that the late delivery of these quadrupole magnets will adversely affect the dates when the first proton beam will be available for experiments.

The contract for the 0.7 m and 1.4 m long steering dipoles for the extracted beam lines was placed at the end of 1973 and the first steering dipole will be delivered early in 1975.

For deflecting the extracted proton beam lines, main ring bending magnets of type MBB will be used and these are all included in the present contract of the Magnet Group. The required modifications and the special supports for their use as vertical or tilted bending magnets have been designed. The electrical and hydraulic connections for these magnets have been adapted to their use in the transfer lines. All this material is on order and has been partially delivered. A first magnet for vertical deflection has been assembled and tested.

The C-shaped, 3 m long pulsed bending magnets for the two beam switches in the underground switchyard of TT60, which direct the proton beam to the targets for the RF separated beam and the wide- and narrow-band neutrino beams, have been ordered. Their manufacture is on schedule and the first magnet will be delivered early in 1975.

The design of the steel septum splitter magnets has been completed. There will be two types of magnet, one type with two steel septa on opposite sides of the gap, to be used in the three-way splitter arrangement for the West Area, and a second type with a single septum, to be used for the two-way splitters in the North Area. The cores will be made of...
solid steel and the coils will be made of mineral insulated conductors, since they operate under extremely high doses of radiation. Part of each magnet will be surrounded by a thin stainless steel skin, which will act as the vacuum enclosure. Short models of the two types of steel septum magnets have been made and measured magnetically. Separate contracts for the manufacture of the coils and the cores of the splitter magnets were placed in December 1974. Copper collimators upstream of the splitter magnets will protect the iron septa from the incident proton beam. The design of these collimators has started.

Beam dumps and targets

Beam dump absorber blocks will be used for the disposal of the SPS beam either in LSS4 in case of internal beam dumping or in TT20 and TT60 after extraction during machine studies. A detailed study has been made of the thermal and thermo-mechanical effects which occur during the absorption of a fast extracted burst of 10^{13} protons of 400 GeV, which has a kinetic energy of 640 kJ. Each beam dump will consist of a core surrounded by two cast iron half-shells with an outside diameter of 0.96 m and a length of 4 m. With the exception of the core for the dumps in LSS4, for which design and model work still continues, all other design work on the beam dumps was completed by December 1974. The cast iron half-shells for all dumps have been ordered and the cores and supports for the dumps of TT20 and TT60 were ordered before the end of this year.

Just upstream of the dump blocks in LSS4, scraper targets are foreseen for the reduction of the horizontal or vertical emittance or the momentum spread of the circulating beam and for removing off-momentum protons which are not trapped by the RF at injection or lost from the RF buckets during acceleration. The design of these scraping targets and their moving mechanisms is finished and prototype mechanisms are being made and tested. The vacuum tanks for these scraping targets were ordered in December 1974.

Cooling problems of external targets have been investigated in detail. For high-energy secondary beams it appears attractive to use thin plate targets which can conveniently be cooled by edge cooling. For the secondary beam optics such a target presents itself as a well-defined source in the direction perpendicular to the plane of the plate while the broadening of the source size owing to interactions of the secondary particles in the lateral target material has been shown to be not very important at high energies. For low energy secondary beams one can reduce the lateral broadening of the source size by machining longitudinal grooves in the target plate on each side of the region where the beam interacts. Prototype beryllium targets with longitudinal grooves have been manufactured by industry.

The design principles of the target stations for the slow extracted proton beams in the West and North Areas have been defined and the detailed design of the target stations for the West Area has started. The design principles of the target stations for the wide and narrow-band neutrino beams, which will use the full-intensity fast extracted proton beam, are still being studied.

Electronics

A large amount of local electronics in the auxiliary buildings will be required for the controls, protection and data acquisition of the special magnets, mainly the fast kickers and the extraction systems which will be installed in the SPS. Ten members of the Beam
Transfer Group work in the electronics laboratory. This laboratory produces the electronics for all the current experimental work and the magnetic measurements done by the Group and also builds prototypes of the final electronics as the parameters for these circuits are defined. After satisfactory performance of the prototypes, the industrial series construction of some of these circuits has now commenced.

Controls Group

All 24 computers of the original order have been delivered and provisionally accepted. When the design of the North Experimental Area was settled, it became necessary to order an additional computer, and this will be delivered in April 1975. Ten of the computers are in their final positions in the auxiliary buildings and in the control building, the rest are being used in the laboratories and Assembly Hall for the development of equipment and the tests of the large amount of apparatus that is now arriving, prior to installation in the tunnel and buildings. Experience is being gained, from which the reliability of the computers can be assessed. The statistics so far obtained are encouraging.

The message transfer system was delivered on schedule and installed in the control building. Ten computers have been connected to the system, some over longer links than will be required for the final installation, and have worked together satisfactorily. Several million messages have been passed between the computers, and it seems as if the specification for the reliability of the data links will be met, but several months' testing is needed to prove this. The system will be in routine use early next year.

Figure 22 — Installation of the message handling system in the main control room (CERN-20 1174)
Delivery of the CAMAC crates and power supplies was slow to start, but is now catching up on the schedule. Contracts for CAMAC modules were awarded to three firms in January. Deliveries from two have been according to schedule, but those from the third have been several months late, and it has been necessary to obtain some modules from another source for the initial installation. Over all, about half the CAMAC units required have been delivered, and a third installed.

The contract for modules for the multiplex system is proceeding satisfactorily and nearly half of the original order has been delivered. A contract for crates and power supplies was placed in February, and about a third have been delivered and installed, together with the modules. Additional requirements for the multiplex have become apparent during the year, as the design of other parts of the accelerator has been finished, and further orders for modules and crates have been placed.

The design of the timing system modules, which fit into the multiplex crates, was finished and a contract for the manufacture of 550 units was awarded in November. The design of the central timing generator is proceeding.

The design of a number of special purpose units has been completed during the year, and prototypes constructed. These include high-precision current measurement for d.c. supplies and special function generators for controlling the pulse power supplies and the magnetic correction elements. Contracts for the manufacture of these items will be placed early in 1975.

Details of the methods of controlling the apparatus in the secondary beam lines and providing facilities for the experiments to interconnect with the control system have been worked out in collaboration with the Experimental Areas Group.

On the software side, an improved version of the command language interpreter NODAL has been produced, which runs faster and has string-handling facilities. This has been integrated into the real time executive, SYNTRON, which is a modification of the manufacturers' SINTRAN II, and into the message transfer system software, so that it is now possible to call programs and pass data from one computer to another using NODAL statements. An inter-computer filing system, using named files, is also in operation. This just about completes the "system" work, and the major effort is now being concentrated on "data modules", which are small programs special to each basic type of equipment, and on applications programs.

The test control system in the Assembly Hall has been in continuous use for testing prototype and production equipment for the Beam Transfer Group and the Vacuum and Beam Monitoring Sections. Another computer has been set up for the on-line testing of data modules.

Figure 23 — Puri one of the three general-purpose control desks in the central control room. The section shown deals with computer acquisition and control and with the alarm system. (CERN-112 2 75)
After experience with the prototype control desk, three similar desks were ordered for the main control room, together with a fourth, simpler one for the safety control. These desks have been installed and are being equipped. One desk is complete and is in operation with its computer in a "stand alone" mode. This will be connected to the message transfer system early in 1975, and will then be available to test the remote control of equipment in the auxiliary buildings. Subprograms are being developed to provide the "building blocks" from which the necessary control and display programs can be constructed. Units for the large video signal switching exchange needed for the control desk display system have been delivered and the system is being installed. The modules for a similar system, to be used for switching analogue signals to oscilloscopes, have been ordered. All the television cameras, monitors and amplifiers for use in the auxiliary buildings have been delivered, and the construction of the special radiation-resistant cameras for use in the tunnel is proceeding to schedule.

The first fully automatic equipment for controlling the access to the tunnel by means of punched codes in the personal identity cards is nearly ready for test. Equipment for controlling access to the experimental areas is being designed. The outline design of the machine interlock system has been agreed, and construction of prototype equipment has been started.

On the instrumentation side, although the supplier had some difficulties with the manufacture of the beam position indicators for closed orbit control, enough units have been received and tested to equip the first half sextant of the machine, on schedule. Prototypes of the electronic equipment for these position indicators have been accepted, and delivery of the production units has started. The first batch of power supplies for the correction dipoles has been received, tested and installed in Auxiliary Building 2. The prototypes for the special enlarged position indicators needed in some of the long straight-sections are under test.

The first production beam current transformer and the prototype beam-ionization scanner have been tested in the CPS, with the complete data acquisition chains, working into a NORD-10 computer installed in the CPS control room. These tests have been very successful. One of each type of the secondary-emission monitors has been installed in a beam line in the West Experimental Area, together with the first of the production electronic units and a NORD-10 computer. These tests have been successful.
Progress with the other beam monitoring devices, wide-band pick-up, Q-measurement, etc., has been satisfactory.

The Installation Section has laid about 175 km of cables for the first machine sector and these cables are now being connected to the apparatus. Some difficulties in obtaining materials have been experienced by the cable manufacturers, but these have been overcome. Nearly all the racks have been received and installed in the auxiliary buildings, and a further order has been placed for the experimental areas. A large number of interconnection boxes are being manufactured.

The electronics drawing office and workshop have been fully occupied with the construction of prototypes and test boxes to enable the installation and commissioning of the many thousands of electronic units to proceed as quickly as possible.

The Mechanical Engineering and Drawing Office Sections have been busy finishing the detailed design of machine components. A big effort was also required to design all the tooling for the installation and alignment of equipment in the tunnel. In addition, practically all engineers and designers have had to spend a large proportion of their time following up the production and testing of machine components with outside manufacturers.

During this year, design work was started on equipment for the experimental areas. In particular, a so-called magnet plug-in system for use in high radiation areas has been developed and successfully tested on a prototype. The system permits the accurate positioning of a magnet on pre-aligned supports, with automatic connection of the electrical and water circuits, without human intervention nearby, merely by using a crane with a reference system for positioning. For tunnels which have no crane facilities, a special transport vehicle of 30 tons capacity has been designed for the precise positioning of beam dump blocks and splitter magnets. If necessary, it can easily be equipped with remote control.

Figure 75 — Test of a prototype magnet “plug-in” system (CERN-4892.75)
In order to cope with the present peak workload, a contract has been placed with an outside engineering firm, representing about eight man-years.

The peak workload has also been experienced in the Workshop Section. A large number of its experienced mechanics have been delegated to other groups, to give assistance with the construction of RF cavities, the assembly of beam observation stations and the completion of short straight-section assemblies, the fabrication of septum coils, magnet busbars and the welding of end pieces to magnet vacuum chambers. They have been replaced by regie labour in order to make full use of the workshop facilities. In addition, the workshop is subcontracting to about 30 different firms outside CERN.
The Vacuum Section has nearly completed the detailed design of the vacuum system in the ring and the transfer lines (up to the targets of the extraction lines). Series deliveries of vacuum components for general use in the machine are well under way. For pumps, joints, and tubes, deliveries are nearly complete. Deliveries have also started of special vacuum components for the long straight-sections in the ring. About 300 main magnets were equipped with complete vacuum chambers. Fitting of chambers in pre-assembled short straight-sections for the ring has started. The vacuum system of a model half-period was assembled and successfully pumped. Pumping tests were also made on a 40 m section of tubing for beam transfer lines, giving satisfactory results.

Testing of vacuum control equipment in the auxiliary buildings has started, using the local computers and the multiplex system for remote control. In November, assembly and leak testing of the vacuum system in the normal periods of the ring started.

1974 has been an important year for the Installation Section, since installation work is now under way in four out of six equipment buildings and in three sectors of the main ring tunnel. The installation of the services in the ring, such as lighting, communication systems, power and control cables, cooling water systems, etc., started on 8 July 1974, and has been progressing since at the average rate of one half-period, or 32 m per day. On 7 October 1974, the installation of machine components started with the tracing of their positions on the tunnel floor, and on 21 October the first quadrupole magnet was placed on its supports. Since then, the installation of magnets and their busbar system has been progressing at the same rate of 32 m per day. This was possible practically from the first day thanks to the trials previously performed on a half-period model installed in the Assembly Hall.

The dispatching and transport of all material and equipment needed for the installation is organized by the Installation Section, with the help of a computer program called TABLOID, developed for this purpose with the help of DD Division of Laboratory I. A large fleet of electrical tractors, handling vehicles and special trailers (total number about 200) has been ordered for this purpose and is now in use.

The contribution of the drawing office for the installation is accordingly decreasing. The general layout drawings for the main ring are now completed. Those for the transfer tunnels are being completed.
The Installation Section is also responsible for the storage of equipment on the Laboratory II site and has just taken into service a new storage building of 2000 m², in addition to a fully occupied outside storage area of 5000 m².

Radiation Group

The development of the radiation control system for the Laboratory II site has continued. Computer programs for logging and bookkeeping of personnel dose records and control of radioactive material have been developed and the procedures adapted accordingly. Prototypes of radiation measuring equipment for stray radiation and radioactivity were assessed both in laboratory experiments and in field measurements. Orders for all mobile measuring equipment can now be placed. In collaboration with the Health Physics Group of Laboratory I, the revision of the radiation safety codes and the radiation safety manual was completed.

Shielding calculations and program development for the Monte Carlo nucleon-meson cascade codes continued. Estimations and shielding assessments were made for many detailed shielding configurations in the beam transfer tunnels and experimental areas. A considerable effort was put into dose, remanent activity estimations and radiation heating calculations in close collaboration with other groups of the project.

Progress was made in the development of the muon transport codes; a program (KYLMUS) is now available for calculating muon penetration through complicated shielding geometries; this is supplemented by a muon transport program (TOMCAT) which takes into account all muon interactions up to very high energies. An assessment of muon radiation problems in the West Experimental Area is being completed in collaboration with the Experimental Areas Group.

Visitors and consultants from different universities contributed to the program development and shielding calculations. In close collaboration with the Fermi National Accelerator Laboratory, the evaluation of the results from the first radiation measurements at proton energies up to 300 GeV has been completed. The results confirmed the validity of our estimations based on the nucleon-meson cascade programs.

In 1974 an important part of the Radiation Group's activity was devoted to production, testing, calibration and installation of the radiation monitor system. Nearly all site monitor stations and the associated control stations have been delivered and about one third were installed by the end of the year. The links for data transmission have been specified and the first system and its connection to the computer have been successfully tested. Ventilation, water and air monitors are being constructed. For the monitor system developed for the tunnels and experimental areas, extensive tests on prototypes made it possible to select the components best suited for use in high-radiation environments. Delivery of the first tunnel monitors is planned for the middle of 1975. A contract was placed for a personnel alarm monitor and prototypes are due at the beginning of 1975. The system will provide the data for an improved personnel exposure control and will allow a fast logging of individual doses. The beam-loss monitor system is progressing according to schedule. First installation of ionization chambers and pre-amplifiers started before the end of the year. Background measurements of stray radiation on the site and of radioactivity in water, soil and plant samples have started.

Irradiations and selection of radiation-resistant materials continued. Whereas in 1973 relatively large series of similar components were tested, 1974 was characterized by a large variety of problems involving many different small series of components and
materials. In particular, tests were made on metals, ceramics, glasses, supporting materials for magnet coils, paints, lubricants and insulating oils, to mention only a few. The programme for testing electronic components in accelerators, reactors and gamma sources was continued. Some efforts were devoted to comparing the effects found in different radiation fields at the same dose.

The study of the handling of radioactive components in target stations and other highly radioactive areas continued in close collaboration with the Mechanical Engineering Group. A prototype plug-in magnet designed for target areas was built and has successfully passed a number of tests.

The topographical work on the Laboratory II site and in the surrounding areas in connection with the projected changes in the road network has been finished. The survey was made at a scale of 1/1000. The corresponding maps have now been drafted and issued. They are also available at different scales. Only small areas on the border of the North Area are still outstanding. The survey of the water-pipe, electricity and control cable network for the accelerator, including connection to the auxiliary buildings, has been completed. The 1/500 drawings of this large underground complex are still in progress and will be published in colour for easy understanding by the various users. Surveys at 1/500 of the areas surrounding the auxiliary buildings are under way. In addition to these major survey tasks the Topographical Section has had to deal with about 100 work requisitions for Laboratory II and 45 for Laboratory I.

The survey of the water-pipe, electricity and control cable network for the accelerator, including connection to the auxiliary buildings, has been completed. The 1/500 drawings of this large underground complex are still in progress and will be published in colour for easy understanding by the various users. Surveys at 1/500 of the areas surrounding the auxiliary buildings are under way. In addition to these major survey tasks the Topographical Section has had to deal with about 100 work requisitions for Laboratory II and 45 for Laboratory I.

The surface geodetic network was remeasured during the spring. It was extended to cover a larger area to satisfy the requirements of the North Experimental Area. Normally, the triangulation would be made with theodolites and the trilateration with the MA 100 tellurometer. This year it was possible to double the length measurements by using a geodolite loaned by FNAL. This independent check also provides better accuracy. The coordinates of the geodetic points and of the pillars now built over PA 2, PA 3 and PP 5 are known with a relative precision of 10^{-6}.

For the geodesist, the main event of the year occurred when the Robbins machine reached its starting point in LSS 1 on 31 July, at 10.32 a.m. The boring machine was guided by means of a geodetic traverse, using a gyroscopic theodolite operated manually for the first half of the circumference. For the second half, the traverse was carried out with a gyroscopic theodolite converted to automatic operation by the Electronics and Mechanics Section of the Group. The transverse error in the underground traverse proved to be less than had been predicted and for the last sextant, between PA 6 and PP 1, the transverse deviation was only 1.5 mm.

Once the main tunnel had been completed, the gyroscopic traverse was calculated over the whole length of the circumference without taking into account any reference from the surface network. After 7 km of underground traverse, starting from shaft 1 and returning to the same point, the closure vector was found to be only 70 mm. This result would have been sufficient for the civil engineering requirement, but in 1971 no-one would have taken the risk of being without a surface geodetic network and relying solely on underground measurements using a gyrotheodolite.

Measurements were carried out on the position of the first concrete lining all round the ring. These checks showed no systematic errors in the radial position of the tunnel. Owing to the tendency of the head of the Robbins machine to sink down, the statistical distribution of the measurements showed a systematic vertical error which had to be corrected. The second vault of the tunnel and the raft between LSS 4 and LSS 1 are now
completed and every 32 metres a geometrical check was made on the positioning of the
shuttering. The altitude of the floor screed was also checked, together with the position
of the electronic boxes in the floor of the tunnel.

When the second vault was finished, the brackets on the inner and outer walls of the
tunnel were installed between PP4, PA3 and PA2. The brackets make up the geodetic
reference figure for the layout of all the components of the accelerator. To match the
lattice of the synchrotron, the brackets were installed facing the upstream reference
marks on the quadrupoles every 32 metres. Consequently the geodetic reference figure
will be a chain of braced quadrilaterals all lengths of which are measured with invar
wires. To improve the rigidity of this long chain (1152 m between two shafts), additional
links were made using offset measurements with nylon wires between sets of two or three
quadrilaterals. The measurements have been carried out in sextants 4°3' and 3°2'. They
were separately adjusted by the least squares method in order to obtain the coordinates
of the brackets. When making the adjustment of the two sextants in a single computation
the difference in the coordinates at PA3 was 2 mm compared with the value obtained pre­
viously. As these results were in good agreement with the coordinates of the surface net­
work when transferred down to the floor of the tunnel, it was decided to use the latter as
fixed stations in the adjustment. The problems of processing the overall matrix of the SPS
geometrical reference figure are now solved, either by the iterative process or elimination
method. The solutions developed seem to be of marked interest to many users, both
inside and outside CERN.

The installation of the first quadrupole in the tunnel started on 8 October. Before
positioning this quadrupole, it was necessary to mark the location of the holes for the
magnet supports on the screed. The next task for the surveyor is to level the supports to
the correct elevation, taking into account the curvature of the earth. After two quadru­
poles have been accurately positioned between the brackets on the wall, the four dipoles
of half a period are installed and the tilt measured, using five pairs of reference points in
order to determine the mean plane of each magnet. By the end of 1974 the sextant
between PP4 and PA3 had been completely installed and aligned from the survey point
of view. The normal measurement rate of half a period a day has already been reached.
The geometry of the transfer tunnels T10, T20 and T60 has been completed. Stability measurements have started in T20; the bench marks installed in the tunnel have not displayed any movement greater than the measurement errors.

The geological reports on T10 and T20 have been published as well as that for sextant PP1-PA2, using the information provided by the consultant geologist.

This period has been marked by two major events, namely the approval by the Super Proton Synchrotron Committee and the Nuclear Physics Research Committee of the counter beam layout in the West Hall and of the plans in the North Area for the muon beam and for an eventual development line of the proton beam.

The counter beam layout to be installed by 1976 in the West Hall includes (see Figure 32):

- from Target T1: — S1, RF separated beam to Omega;
 — P1/Y1, attenuated proton beam feeding hyperon beam;
- from Target T3: — E1/H1, electron or hadron beam to Omega or to an alternate experimental position north of Omega;
- from Target T5: — H3, hadron beam;
 — N3, neutral beam.

The detailed optical design of the beams has progressed satisfactorily but two major problems are still under active study, namely the shielding layout needed to reduce the muon background at the end of the Hall to tolerable levels and the handling of equipment in the highly radioactive target area. Concerning the West Area Neutrino Facility, the decision to install both the wide-band and the narrow-band beam in the neutrino cave brought about modifications and additions to the civil engineering complex. These were incorporated in the plans without delaying the construction work. The excavation of the neutrino cave is finished and the production of the cast iron blocks to be used as a muon filter has progressed satisfactorily.

Figure 32 — SPS West Experimental Area—general layout
The North Area Master Plan, the first part of which was approved in October 1973, has been completed by defining the muon beam and hall EHN2 and a possible development line for the proton beam in case of extensions of the facilities after the 300 GeV Programme. Indeed, contrary to previous ideas, it was found appropriate to reserve the second experimental hall EHN2 for muon experiments only, while a future proton beam may be installed alongside the muon beam in the first part of tunnel 83 and then branch off from it to follow a line along the site which is independent of both halls EHN1 and EHN2. The design of the muon beam has been finalized with particular attention having been paid to reducing the halo to a few per cent.

The civil engineering plans for the entire area have been finalized for tendering (see the report by the Site Installations Group). The most important magnets to be used after the targets and along the beams have been designed and ordered. The power supplies for all beams in both West and North Areas (280 in total) have also been ordered. Extensive studies of controls and beam monitors have been undertaken or continued in close collaboration with the Controls Group and with the experimenters. They have resulted in a coherent proposal which was finally adopted. The DISC counter, used to tag particles up to the highest energy available, has been defined and all components for the first counter ordered. Also vacuum chambers and components for the West Area beams have been ordered.

Finally, on the administrative side, all persons working for the experimental areas in Laboratory I (PS Department and MPS Division) and Laboratory II have been transferred to the combined Experimental Areas (EA) Group.

Administration Services Group

Nearly all of the land has now been acquired, both on Swiss and on French territory. The perimeter of the site was adjusted in some places, particularly in the neighbourhood of the North Area, to facilitate the installation work. All these acquisitions were made without any expropriation.
Close contact has been kept with the local authorities. Good relations were established with the farmers cultivating those parts of the site which are not occupied by the Organization, the procedures adopted for this purpose are now well established. Measures have been taken to protect and improve the environment of the site.

The reorganization of the road network leading to the Laboratory, undertaken by the French Government, has been agreed with the administrations concerned, the work has mostly been completed.

In collaboration with the Site Installation Group, the project of a "foyer-hôtel" and a caravan park for the personnel of CERN enterprises and later for CERN visitors has been examined. This project will be carried through by the competent local administrations. The construction has now started.

The set of basic legal documents establishing the Laboratory has now been completed by the "contrat de superficie" for the Swiss part of the site. This contract was signed at the end of the year. Numerous legal problems arising from the relations with national and local authorities of the host states, and with firms and individuals, have been gradually solved.

The customs and tax service of the Laboratory is now fully operational. The arrival of goods which go through the customs on the site has considerably increased.
administrative arrangements for the tunnel connecting the two Laboratories has been made official by an agreement signed by the French and Swiss authorities.

Planning and Budgets Section

In 1974, the manufacture of most of the components of the SPS by industrial firms had reached the stage of series production and massive deliveries of components to the site have been taking place. Also, installation of machine components in the underground tunnel started in the course of this year.

Updated schedules covering the manufacture, testing and installation of the various components of the SPS have been issued at regular intervals to the staff at all levels in the Laboratory during the course of the year.

The major effort in planning arose from delays in delivery from some firms. It has therefore been necessary to reschedule the testing and installation stages originally foreseen in the programme. This has so far been possible by changes in the sequence of some of the activities concerned and also by taking up most of the slack originally built into the general time schedule. At present, the original target dates can still be achieved, but any further delays in deliveries are bound to result in delays of the overall programme.

While in the early stages of the programme the main problem in budgeting was to arrive at an accurate estimate of the various contracts, it now consists of making due allowance for the cost revisions resulting from the inflation now running at a high and still rising rate. As a result of the inflationary process a sum of 7.7 million Swiss francs (at 1974 costs) is now owing to the 300 GeV Programme for the years 1971, 1972 and 1973. It is to be expected that an additional amount will arise for 1974, which will be calculated in the early part of 1975, when all the official cost revision indices for 1974 will be known. For the related calculations it has become necessary to develop new computer programs which are now operational and which are shared with the Contracts and Purchasing Section of the Directorate.
The number of medium-size contracts and orders relating to the construction of the accelerator increased substantially during 1974. This period was also noteworthy for the negotiation of the first contracts for the North Experimental Area.

A total of 54 calls for tenders were sent out in connection with contracts in excess of 200,000 Swiss francs, the average number of firms consulted in each case being 45. Of these, 14 adjudications relating to contracts of more than 750,000 Swiss francs were submitted to the Finance Committee. Altogether, 60 contracts were signed with industry.

There were 340 price inquiries relating to contracts of less than 200,000 Swiss francs (as compared to 170 in 1973) and more than 5400 orders were placed (3200 in 1973).

The total value of orders and contracts signed in 1974 was about 134 million Swiss francs.

To ensure that European industry is better informed about the requirements of Laboratory II, an Information Sheet has been introduced, giving details of future adjudications. These sheets, which will be issued in addition to the six-monthly lists of forthcoming requirements, will each deal with a specific call for tenders; copies will be circulated to members of the Finance Committee and to a certain number of professional organizations representing industry.

For several major adjudications, namely those relating to the civil engineering work in the North Experimental Area, preliminary enquires were sent out to more than 160 firms in all the Member States.

Finally, the texts of the contractual documents accompanying the calls for tenders, and the procedure for drafting the contracts and orders, have been substantially improved with a view to achieving greater efficiency.

The 126 multipole magnets which form the harmonic correction system of the SPS have been designed and specified. A prototype has been built and its magnetic field measured. Production is planned to start in early 1975 so that the full complement may be installed in good time for the SPS running-in. The function of these correctors, some of which are quadrupoles, some sextupoles and others octupoles, is to correct the second-, third- and fourth-order stopbands which threaten the radial and vertical stability of the circulating proton beam. Recent experiments performed in collaboration with FNAL, Batavia, have demonstrated how these effects, left uncorrected, can severely limit the intensity accepted by an accelerator of the size of the SPS.

Magnetic measurements on the SPS main dipoles and quadrupoles analysed by the Parameter Section suggest that field imperfections which drive these resonances will be considerably smaller than at FNAL. Nevertheless, they will have to be corrected but the correction magnets need not be very strong. Typically these air-cooled devices are 44 cm long and weigh 30 kg. Each will be individually powered so that a pattern of azimuthal Fourier harmonics can be excited around the circumference of the machine. Because the amplitude and phase of this pattern varies throughout the acceleration cycle, each individual power supply will have its own waveform generator which generates a pulsed reference voltage specified in digital form by the control system.

In preparation for its role in co-ordinating the running-in of the SPS and its subsequent machine development, the Parameter Section has taken an interest this year in the performance of the many diagnostic devices currently being developed in the Controls Group. The Section also provides a link with the MPS Division, reviewing the development of the CPS as the injector for the SPS. To this end, members of the Section have
taken part in recent experiments to constrain the rather large longitudinal phase space of the CPS beam after debunching, within limits which can be accepted and accelerated in the SPS.

One of the novel features of the SPS is its control system on which depends the smooth and easy operation of the machine. As part of its work in preparing for commissioning the SPS, the Section is collaborating closely with members of the Controls Group in the study of the computer-generated displays through which the operators will run the machine. A number of standard display packages are being developed which will be the building blocks of the control desk software. The multipole correction system is being used as a test bed for their design before applying them to the control of other accelerator systems.

Personnel Section

The staff of the Personnel Section are now more involved with the personnel administration of Laboratory II staff than with recruitment as more than 450 personnel are being looked after by the Section. Work is going on to improve the storage and presentation of personnel information required either by the management of the Laboratory or for administrative purposes. Close links are maintained with the management and the staff of Laboratory II as well as with the appropriate services of Laboratory I.
CERN REPORTS

CERN 74-1 LAZARUS, P., LILLRAN, T., MATTHEWSON, R., TRACEY, W. Computer-aided control of separated bubble chamber beams

CERN 74-2 BROWN, K.L., ISELIN, C. DECAY TURTLE (Trace Unlimited Rays Through Lumped Elements) - a computer program for simulating charged particle beam transport systems, including decay calculations.

CERN 74-3 LAURENT, J.M. Analyse de la perte de poids des testicules de sows après irradiation aux neutrons de 14 et de 100 MeV.

CERN 74-4 GENTSCH, H., GYGI, E., HANNEY, M., SCHNEIDER, F. Image intensifier camera for streamer chamber photography

CERN 74-5 BENOÎT, R.E. Machine à bobiner les fils métalliques ultra-fins utilisés dans la fabrication des chambres à fils de petites dimensions

CERN 74-6 HARRISON, K. A versatile cable and connector assembly testing apparatus (NP 206)

CERN 74-7 BARTHÉLEMY, J.F. Calcul numérique des dérivées partielles successives des fonctions de deux et de trois variables, applications au développement de Taylor-Maclaurin

CERN 74-8 Topical meeting on intermediate energy physics, Zuoz, Switzerland, 4-13 April 1973

CERN 74-10 AXELSSON, O. On preconditioning and convergence acceleration in sparse matrix problems

CERN 74-11 DE ROER, W. Dynamic orientation of nuclei at low temperatures; a study of the mechanisms of dynamic polarization in polarized targets

CERN 74-12 LINDSAY, J., MILLERIN, C.T., TARLE, J.C., VERWEI, H., WENDLER, H. A general-purpose amplifier and read-out system for multiwire proportional chambers

CERN 74-14 BELL, M., DÔME, G. Numerical computation of field distribution and frequency in the lower passbands of a symmetrical periodic structure, pt. 2, results

CERN 74-15 JACOB, M. Hadron physics at ISR energies

CERN 74-16 SCHIEP, B. Introduction to reliability theory Lectures given in the Academic Training Programme of CERN 1973-1974

CERN 74-17 ISELIN, C. HALO - a computer program to calculate muon halo

CERN 74-20 LEUTZ, H., SCHMIDTNER, F.; WENNINGER, H. [Comp.] (CERN Track Sensitive Target Group) Selected physics data on neon-hydrogen mixtures.

Amsterdam-CERN-Nijmegen Collaboration. Multi-channel analysis of the reaction \(K^-p \rightarrow K^0 \rightarrow K^0 \pi^-p \) at 4.2 GeV/c.
Fifth international symposium on many particle hadrodynamics, Eisenach and Leipzig, 4-10 June 1974 Proceedings, ed. by Ranft, G and Ranft, J, Leipzig, Karl-Marx-University, 1974, p 140-143.

Amsterdam-CERN-Nijmegen Collaboration. The production of \(K^0\Delta^0 \) and \(K^*\Delta^+ \) in \(K^-p \) reactions at 4.2 GeV/c.

Clermont-Ferrand-Lyon-Strasbourg-CERN Collaboration. \(p^4He \) coherent scattering at 24 GeV: observation of elastic scattering and production processes by a missing mass method.

Adams, J B. The SPS - a European project

Addamollo, M; D'Adda, A; D'Auria, R; Napolitano, E; Sciuto, S; Di Vecchia, P; Gliozzi, F; Musto, R; Nicodemi, F. Theory of an interacting string and dual-resonance model.

Addamollo, M; D'Adda, A; D'Auria, R; Napolitano, E; Di Vecchia, P; Gliozzi, F; Sciuto, S. Unified dual model for interacting open and closed strings.

Addamollo, M; Del Giudice, E; Di Vecchia, P; Furini, S. Couplings of three excited particles in the dual-resonance model.

Ader, J P; Satin, P; Meyers, C. Exchanged naturality contributions from high-energy polarization measurements in two-body inclusive and exclusive reactions.

Aderholt, M; Lazevras, P; Leiraus, I; Matthews, R; Teffy, W. High-resolution ionization measurements in the region of the relativistic rise.

PAPERS PUBLISHED IN SCIENTIFIC PERIODICALS, BOOKS AND CONFERENCE PROCEEDINGS

Alberti, G., Grigoroiu, M.A., Thome, Z. D. Double scattering and final-state interaction in Xe—YNN.

Alberti, G., Gregoroff, A., Thome, Z. High momentum tail in spectator distribution.

Alberti, G., Poropat, P. Unfolded phase shift analysis.

Alberti, G., Rosa, L. π production on deuterium.

Albright, C.H. Charmed-particle production by neutrinos with the Weinberg SU(4) currents.

Albright, C.H. y and v distributions for neutral current reactions of the Weinberg-type.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

Albright, C.H., Cleymans, J. Pion distributions in elastic neutrino interactions.

ALTARELLI, G., CABIBBO, N., MAIANI, L., PETRONZIO, R. The nucleon as a bound state of three quarks and deep inelastic phenomena. Nucl Phys B69, 531-556, 1974

AMATI, D., TESTA, M. Quark imprisonment as the origin of strong interactions. Phys Lett 49B, 227-231, 1974

ANDERS, A., ANTONSEN, J., SIRKUNDENKOY, V., STUMPE, B., WISWOTT, D. Dynamic astigmatism and focus correction of the cathode ray tube of ERASME

ANDERS, H., SCHMIDT, L. Track detection in ERASME for the film from the new generation of bubble chambers.

ANGERTH, B., HULEK, Z. The tungsten evaporation limit of hot-cathode ionization gauges

ASNER, A. M. Stossspannungs-Messtechnik.

AVERTON, H. W., FRENCH, B. R., MOORE, J. P., QUERCIGHI, E. Study of the reactions \(\bar{p}\rightarrow\bar{A}, \Lambda\bar{S}p\) or \(\Sigma^+\bar{p}\) at 3.6 GeV/c

AUBERT, J. J., BROLL, C. Track parameterization in the CERN split-field magnet.
Nucl Instrum Meth. 120, 137-141, 1974.

AUBERT, J. J., BROLL, C. Track parameterization in the CERN split-field magnet.
Nucl. Instrum. Meth. 120, 137-141, 1974.

BAARLI, J. Consideration of some problems in dosimetry and radiobiology ofstopped negative pions

BACKENSTOSS, G., EGGER, J., KOCH, H., POVEL, H. P., SCHWITTER, A., TAUSCHER, L. Intensities and strong interaction attenuation of kaonic x-rays.

BACKENSTOSS, G., ZAKRZEWSKI, J. Exotic bound states of strange hadrons
Contemp Phys 13, 197-225, 1974

BAILON, P., BRICMAN, C., EBERHARD, P., FERRO-LUZZI, M., PERREAU, J.M., TRIPP, R.D., YPSILANTIS, T., DECLAIS, Y., SEGUINOT, J. The real part of the forward scattering amplitude in πp elastic scattering below 2 GeV/c

BAILON, P., BRICMAN, C., FERRO-LUZZI, M., PERREAU, J.M., TRIPP, R.D., YPSILANTIS, T., DECLAIS, Y., SEGUINOT, J. Measurement of the real part of the forward scattering amplitude in Kπ elastic scattering between 0.9 and 2.6 GeV/c.

BAILLIE, D. Computing facilities in support of high energy physics

BARBIERI, R., CAFFO, M., REMIDDI, E. A contribution to sixth-order electron and muon anomales,
Nuovo Cim Lett. 9, 690-692, 1974

BARBIERI, R., REMIDDI, E. Sixth order electron and muon (g-2)/2 from second order vacuum polarization insertion

BARBOUR, I.M., MOORHOUSE, R.G. High energy πn photoproduction amplitudes from fixed-t dispersion relations and duality.
Nucl Phys B69, 637-656, 1974

BARGMANN, H. Dynamic thermal shock resistance
Topics in applied continuum mechanics, ed. by ZEMAN, J.L. and ZIEGLER, F., Wien, Springer-Verlag, 1974, p. 174-181

BARGMANN, H. Recent developments in the field of thermally induced waves and vibrations
Nucl Eng Design 27, 372-385, 1974

BARGMANN, H. Stress waves in elastic rods induced by radiation heating

BELL, J.S. The Melosh transformation and the Pryce-Tani-Foldy-Wouthuysen transformation.
Bell, J. S., HFY, A. J. G. A theoretical argument for something like the second Melosh transformation.

Bell, J. S., KARL, G., LLEWELLYN SMITH, C. H. Isospin bounds for energy partition in \(\Xi \) and \(\bar{N} \) annihilation.
Phys. Lett. 52, 363-366, 1974

Bemporad, C., BEUSCH, W., DUFFY, J. P., POLGÁR, E., WEBSDALE, D., ZAIMIDOROGA, O., FLURI, L., FREUDENTREICH, K., GENTIT, F. X., MÜHLEMANN, P., ASTbury, P., LEE, J. G., LEBEREU, M. Coherent production of \(K^+\pi^-\pi^- \) on nuclei and determination of the \(K^+\pi^-\pi^- \) nucleon cross-section.

Bemporad, C., BEUSCH, W., DUFFY, J. P., POLGÁR, E., WEBSDALE, D., ZAIMIDOROGA, O., FREUDENTREICH, K., GENTIT, F. X., MÜHLEMANN, P., ASTbury, P., LEE, J. G., LEBEREU, M. Coherent production of \(K^+\pi^-\pi^- \) on nuclei and determination of the \(K^+\pi^-\pi^- \) nucleon cross-section.

BENVENUTI, C. Characteristics, advantages, and possible applications of condensation cryopumping.
J Vac Sci Tech. 11, 591-598, 1974

BENVENUTI, C. Study of a cryopump for possible use on the ISR.
Le Vide, 168, 235-241, 1973

BENINCASA, G.P., DANIELS, A., HEYMANS, P. Software system for open loop control of a synchrontron via special purpose consoles.

BENVENUTI, C. Characteristics, advantages, and possible applications of condensation cryopumping.
J Vac Sci Tech. 11, 591-598, 1974

BENVENUTI, C. Study of a cryopump for possible use on the ISR.
Le Vide, 168, 235-241, 1973

BERTENS, F. A., GADHUR, K. J. F., GASTMANS, R. Hard photon corrections for Bhabha scattering.

BERGER, E. L. Multiparticle production processes at high energy.

BERGER, E. L. Semi-inclusive rapidity correlations in cluster emission models.

BERNAUE, J. Neutral currents in semi-leptonic processes \(\Delta T = 0 \).

BERNAUE, J. Total muon capture rates, average neutrino energy and nuclear structure.

BERNAUE, J., CANANATTA, F. Total muon capture rates and the average neutrino energy.

BERNABEU, J., ERICSON, T.E.O., JARLSKOG, C. Parity violations by neutral currents in muonic atoms.
Phys Lett 50B, 467-471, 1974

BERNABEU, J., JARLSKOG, C. Polarizability contribution to the energy levels of the muonic helium ($\mu^4\text{He}$).
Nucl Phys B75, 59-71, 1974

BERNABEU, J., JARLSKOG, C. Polarizability contributions to the neutron-electron amplitude at threshold.

BERNABEU, J., ROS, J. Charge and current distributions in elastic electron scattering by lp shell nuclei.
Nucl Phys A220 1-12, 1974

BERNARDINI, M., BOLLINI, D., BRUNINI, P.L., FIORENTINO, E., MASSAM, T., MONARI, L., PALMONARI, F., RIMONDI, F., ZICHICHI, A. The energy dependence of $\sigma(e^+e^-\rightarrow\text{hadrons})$ in the total centre-of-mass energy range 1.2 to 3 GeV.
Phys Lett 57B, 200-204, 1974

BERTIN, A., CARBONI, G., GONZI, G., PITZURRA, O., POLACCO, E., TORELLI, G., VITALE, A., ZAVATTINI, E. Measurement of the initial population and decay rate of the ($\mu^4\text{He}n$) system in a helium target at 50 atm.
Phys Rev Lett 33, 253-256, 1974

BERTIN, A., VITALE, A., PLACCI, A., ZAVATTINI, E. Muon capture in gaseous deuterium.

BLIALAS, A., JACOB, M., POKRORSKI, S. Heavy particle production and cluster models of high-energy collisions.

BLANCHI, M., BAARLI, J., SULLIVAN, A., DI PAOLA, M., QUINTILIANI, M. RBE values of 400-MeV and 14-MeV neutrons using various biological effects.

BLAIR, W. CERN HPD status.

BLEICH-SCHMIDT, D. Monte Carlo study of light transmission through a cylindrical tube.
J Vac Sci Tech 11, 570-574, 1974

BÖCK, R.K. Initiation to HYDRA.

BÖCK, R.K., PAGIOLA, E., ZOLL, J. Software concepts for large application programs.
Computer Phys Comm 5, 400-403, 1973

BÖCK, R.K., ZOLL, J. Probleme der Stereoziagrammetrie in der Hochenergiephysik.
Bildmess Luft 91-98, 1974

Nucl Phys B79, 1-9, 1974
Observation of a diffraction minimum in the proton-proton elastic scattering at the ISR.

Phys. Lett. 49B, 491-496, 1974

Bohm, M., Joos, H., Kramer, M. Quark dynamics and strong meson decays

Bohm, M., Kramer, M. Generalized vector dominance and the pion form factor.

Bohm, M., Joos, H., Kramer, M. Meson spectrum, decays and form factors from a dynamical quark model

Phys. Lett. 53B, 300-300, 1974

Bonazzola, G.C., Breslani, T., Chavassa, E., Dallacasa, G., Fainberg, A., Ferrari, L., Iazzi, F., Mirpakhairai, W., Musso, A., Rinaudo, G., Minetti, B. On the (π^+, π^-) reaction in J^P_C

Bongher, B. Phenomenological upper and lower bounds on the πS wave scattering lengths
Nucl Phys B75, 333-342, 1974

Bonner, B., Johannesson, N. Constraints imposed by the data above 1 GeV on the low-energy $\pi\pi$ amplitudes.

Borgini, M., Di Boer, W., Morimoto, K. Nuclear dynamic polarization by resolved small-state effect and thermal mixing with an electron spin-spin interaction reservoir.
Phys. Lett. 48A, 244-246, 1974

Nucl. Instrument. Meth. 115, 235-244, 1974

Bourrelly, C., Fischer, J., Stekera, Z. Analytic parametrization of high energy forward scattering amplitudes, 2: K^+p and π^0p scattering.
Nucl Phys B57, 452-463, 1974

Bozzo, M., Ogilvie, J., Vanucci, J.P. A computer-controlled test system for MWPC electronics.
Nucl. Instrument. Meth. 112, 599-603, 1974

Bradamante, F. (CERN-Trieste High-Energy Group) Status report on the experiment $\pi^+ \rightarrow \rho^0$ and $\pi^0 \rightarrow \pi^+\pi^-$ on a polarized proton target to study backward scattering at 3.5 GeV/c.

BRAUN, H., CORNELSEN, M., MARTYN, H.U., ENRIQUEZ, O., NATALI, S., ROMANO, F., BERTRAND, D.,
CESETHY-BARTH, M., LEMONNE, J., RENTON, P., VILLAIN, P., WALDREN, D. A combined analysis of
the $K^+ \to \pi^+ e^+ \nu$ and $K^+ \to \pi^+ \nu$ decay modes
Phys Lett. 51B, 393-396, 1974

BRESKIN, A., CHARPAK, G., GABIOUD, B., SAULI, F., TRAUTNER, N., DUNKER, W.,
SCHULTZ, G. Further results on the operation of high-accuracy drift chambers

BRESKIN, A., CHARPAK, G., SAULI, F. Low-pressure drift chambers for heavily ionizing particles
Nucl. Instrum Meth 119, 7-8, 1974

BRESKIN, A., CHARPAK, G., SAULI, F., SANTHARD, J.C. Two-dimensional drift chambers
Nucl. Instrum Meth 119, 7-8, 1974

BROLL, C. (CERN-Hamburg-Orsay-Vienna Collaboration) Experimental results on inelastic diffrac­tion scattering in proton-proton collisions at the ISR
Seventeenth international conference on high energy physics, London, 1-10 July 1974. Proceedings,

BROWER, R.C., ELLIS, J. An asymptotically free Regge on field theory.

BRÜNS, T. Data transmission is faster with ternary coding
Electronics, 47, 110-120, 1974.

BUCCCELLA, F. An algebraic approach to the saturation of chiral SU_3 x SU_3
International school of subnuclear physics - properties of the fundamental interactions, Erice, 8-26 July 1971

and p$p elastic scattering and two-body annihilations at $\sqrt{s}=2$ GeV/c
Seventeenth international conference on high energy physics, London, 1-10 July 1974. Proceedings,

BÜSSER, F.W., CAMILLERI, L., DI LELLA, L., GLADDING, G., PLACCI, A., POPE, B.G., SMITH, A.M.,
YOH, J.K., ZAVATTINI, E., BLUMENFELD, B.J., LEDERMAN, L.M., COOL, R.L., LITT, L.,
SEGEL, S.L. A search for electron pairs at the CERN ISR

BÜSSER, F.W., CAMILLERI, L., DI LELLA, L., GLADDING, G., PLACCI, A., POPE, B.G., SMITH, A.M.,
YOH, J.K., ZAVATTINI, E., BLUMENFELD, B.J., LEDERMAN, L.M., COOL, R.L., LITT, L.,
SEGEL, S.L. A search for large transverse momentum electrons at the CERN ISR.

BÜSSER, F.W., CAMILLERI, L., DI LELLA, L., POPE, B.G., SMITH, A.M., BLUMENFELD, B.J.,
WHITE, S.N., ROTHENBERG, A.F., SEGEL, S.L., TANNENBAUM, M.J., BANNER, M., CHEZI, J.B.,
HAMEL, J.L., KASHA, H., PANSART, J.P., SMADJA, G., TEIGER, J., ZACCONI, H., ZYLBSTEIN, A.
Observation of high transverse momentum electrons at the CERN ISR.

BÜSSER, F.W., CAMILLERI, L., DI LELLA, L., POPE, B.G., SMITH, A.M., YOH, J.K., BLUMENFELD, B.J.,
LEDERMAN, L.M., COOL, R.L., SEGEL, S.L. Correlations between large transverse momentum π^0 mesons
and charged particles at the CERN ISR.

BÜSSER, F.W., CAMILLERI, L., DI LELLA, L., POPE, B.G., SMITH, A.M., YOH, J.K., BLUMENFELD, B.J.,
LEDERMAN, L.M., COOL, R.L., LITT, L., SEGEL, S.L. Correlations between two large transverse momentum π^0 mesons at the CERN ISR.

CABIBBO, N., KARL, G. Electron positron annihilation into hadrons and quantum electrodynamics
at high energy.

CABIBBO, N., KARL, G., WOLFENSTEIN, L. A new unitarity bound on $e^+ e^-$ annihilation

CABIBBO, N., TESTA, M. Quark additivity for mass splittings in the $p_\perp \to \infty$ frame.
CALDER, R.S. Ion induced gas desorption problems in the ISR Vacuum 24, 437-443, 1974
CALMET, J. A review of computational QED.

CAMPFELD, J. A., GREEN, H. S., LEHNERT, R. B. Bootstrap equations with restricted SU(3) symmetry and the Cabibbo angle.
Phys. Rev. D9, 2451-2455, 1974
CANESCHI, L. The Pomeron as a Regge pole above J=1.
CARTIERS, W. C., MODIS, T., NYGREN, D. R., PUN, T. P., SCHWARTZ, E. L., STICKER, H., STEINBERGER, J., WELHAMMER, P., CHRISTENSEN, J. H. Observation of the decay K_L^0->pi^+pi^-.
Phys. Rev Lett 30, 1336-1340, 1973
CHATCHIAN, M., KITAKADO, S., LAM, W. S., ZAMIL, Y. Regge-Mueller vs. parton model analysis of deep inelastic reactions.

Close, F.E. Electroproduction final states as \(\omega \rightarrow 1 \) Nucl. Phys. B73, 410-416, 1974
CLOSE, F.E. On the transformation between current and constituent quarks and consequences for polarised electroproduction structure functions

CLOSE, F.E., OSBORN, H., THOMSON, A.M. Current and constituent quarks, their implications for resonance excitations polarized and unpolarized inelastic structure functions
Nucl. Phys B77, 281-308, 1974

COCCONI, G. Concluding remarks — an interpretation of the present evidence about multiple hadron phenomena.

COCCONI, G. Second-order interference as a tool for the determination of hadron fireball dimensions.
DANEELS, A. Midt-Console — an interactive display for process control
Neue Technik 16, 389-397, 1974

DAVIES, H. E. The handling of data from experiments
Meeting on technology arising from high-energy physics, Geneva, CERN, 24-26 April 1974,

De ALWIS, S. P., STEIN, I. Why and how to make constituent and current quarks different.
Nucl. Phys 877, 509-544, 1974

De Boer, W. High dynamic orientation of protons, deuterons and carbon-13 nuclei
First specialized colloque amperé—pulsed nuclear magnetic resonance and spin dynamics in

De Boer, W., BORGHINI, M., MORIMOTO, K., NINIWESKI, T.O., UDO, F. Dynamic polarization of
protons, deuterons, and c-`bon-13 nuclei, thermal contact between nuclear spins and an electron
spin-spin interaction reservoir.
J. Low Temp Phys 15, 249-267, 1974

De bulk, W., Niniweski, TO. Dynamic proton polarization in propanediol below 0.5 K
Nucl. Instrum Meth 114, 495-498, 1974

De Brion, J. P., Pieschanski, R. Amplitudes for p and A2 Regge exchanges in A production
processes
Nucl. Phys 871, 484-501, 1974

De Rafael, E., Rosner, J. L Short-distance behavior of quantum electrodynamics and the Callan-
Symanzik equation for the photon propagator
Ann Physics 82, 369-406, 1974

Dehlm, G., Göbel, G., Wittek, W., Wolf, G., De Jongh, G., TAVERNIER, S., Charrière, G.,
Dunwoodie, W., Grant, A., Goldschmidt-Clermont, Y., Henri, V.P., Muller, F., Quinquard, J.,
Cornet, P., DuFour, P., Grand, F., Windmolders, R., Fu, C. Simultaneous production of
K*0(892) and Λ*(1236) in the reaction K*0 → Λ* + η from 4 to 5 GeV/c
Nucl Phys 575, 47-58, 1974

Deim, G., Göbel, G., Wittek, W., Wolf, G., De Jongh, G., Taverner, S., Cornet, P.,
DuFour, P., Grand, F., Henri, V.P., Windmolders, R., Charrière, G., Dunwoodie, W.,
Grant, A., Goldschmidt-Clermont, Y., Muller, F., Quinquard, J. A measurement of
K*(1420) decay branching ratios
Nucl Phys B75, 47-58, 1974

deutschmann, M., Grassler, H., Kirkh, H., Otter, G., Albrecht, K.F., Schreiber, H.J.,
Cocconi, V.T., Counihan, M.J., Hansen, J.D., Karimäki, V., Kellner, G., Morrison, D.R.O.,
Stroynowski, R., WahI, H., Dornan, P.J., Schmid, P., Thornton, P.R., Girtler, P., Kisyewelska,
D., Markytan, M. The "true" multiplicity distribution in K*^0 interactions and the two-component
model
Nucl Phys B70, 237-256, 1974

Deutschmann, M., Grassler, H., Kirk, H., Sixel, P., Speith, R., Sturm, W., Nowak, H.,
Kundt, U., Bosse, G.J., Propachi, E., Rosi, M., Stocker, B.U., Beslui, T., Dunker, P.,
Morrison, D.R.O., Stroynowski, R., WahI, H., Zajorska, J., Hrose, T., Stewe, J., Azooz, A.A.,
Schmid, P., Buschheck, B., Geriold, H.P., Bialkowska, H. Transverse spectra in η^0 and K*^0
interactions between 8 and 16 GeV/c.
Nucl Phys B70, 215-228, 1974

Deutschmann, M., Otter, G., Rudolph, G., Becker, L., Lohmann, W., Matthaeus, E., Schreiber,
H.J., Cocconi, V.T., Counihan, M.J., Hansen, J.D., Karimäki, V., Morrison, D.R.O.,
Sotiriou, D., Dornan, P.J., Pollock, B., Thornton, P.R., Kocher, D.J., Lambacher, H., Porti, P.
(Aachen-Berlin-CERN-London-Vienna Collaboration) K*(890) production in K*^0 interactions
at 16 GeV/c
Nucl Phys B81, 1-17, 1974

Deutschmann, M., Otter, G., Rudolph, G., Seyfert, H., Wieszorek, H., Böttcher, H.,
Nowak, W.D., Nowak, S., Cocconi, V.T., Counihan, M.J., Hansen, J.D., Jones, G.T.,
Kellner, G., Kettel, W., Kotanski, A., Morrison, D.R.O., Sotiriou, D., Bacon, T.C.,
Dornan, P.J., Thornton, P.R., Katz, P., Kisyewelska, D., Markytan, M., Strauss, J.
(Aachen-Berlin-CERN-London-Vienna Collaboration) Spin parity structure of the Q and L enhancements
in K*^0→(K^-π^+π^-)π at 10 and 16 GeV/c

FERRARA, S., ILOTOPoulos, J., ZUMINO, B. Supergauge invariance and the Gell-Mann-Low eigenvalue
Nucl Phys B77, 413-419, 1974

FERRARA, S., TESTA, M. Canonical dimensions in asymptotically conformal invariant theories
Phys Lett 49B, 95-98, 1974

FERRARA, S., ZUMINO, B. Supergauge invariant Yang-Mills theories
Nucl Phys B79, 413-421, 1974

FERRARA, S., ZUMINO, B., WESS, J. Supergauge multiplets and superfields.

FERRO FONTAN, C., RUBINSTEIN, H. R. Is α also the e$^+$ annihilation scale?

FIANDER, D C., GRIER, D., MARCH, K D., PEARCE, P. High voltage pulse generators for kicker magnet excitation.

FIELD, J H., FIORENTINI, G. Corrections to the g-2 frequency in weak focusing storage devices due to betatron oscillations.
Nuovo Cim 27A, 297-328, 1974

FIRTH, M. Cryogenics

FISCHER, E Ultra-high vacuum

FLÜGGE, G (CERN-Hamburg-Orsay-Vienna Collaboration) Experimental results on large-angle elastic pp scattering at the CERN ISR.

FRANZINETTI, C. Total v and $\bar{\nu}$ cross sections and inelastic processes.

FRIEDMAN, A Features connected with the use of deuteron targets in pd interactions at 5.55 GeV/c

FUBINI, S. Present trends in particle physics

FUBINI, S., REHIC, C Effective degrees of freedom in strong-interaction processes
Nuovo Cim 23A, 331-347, 1974

GARATTIÜLER, K., WILKIN, C. Elastic pion-deuteron scattering near the 3-3 resonance

GAILLARD, M. K. Some open questions in K decay

GATTO, R.; PREPARATA, G. Semile scaling in electron-positron annihilation.
GENTSCH, H., GYGI, E., HANNEY, M., SCHNEIDER, F. Image intensifier camera for streamer-chamber photography Nucl Instrum Meth 120, 431-436, 1974 Also publ as CERN 74-4

GEWENGER, C., GIESDAL, S, KAMAE, T, PRESSER, G., STEFFEN, P., STEINBERGER, J., VANNUCCI, F., WAHL, H., EISELE, F., FILTHUTH, H., KLEINNECHT, K., LUTH, V., ZECH, G. Measurement of the charge asymmetry in the decays $K_L^0 \rightarrow \pi^+\pi^-\nu$ and $K_L^0 \rightarrow \pi^0\pi^0\nu$ Phys Lett 48B, 483-486, 1974

GIEDSAL, S, PRESSER, G, STEFFEN, P, STEINBERGER, J, VANNUCCI, F, WAHL, H, EISELE, F, FILTHUTH, H, LUTH, V, ZECH, G, KLEINNECHT, K. The phase Φ_+ of CP violation in the $K^0 \rightarrow \pi^+\pi^-$ decay Phys Lett 52B, 119-121, 1974

GOTTFRIED, K. Coherent and incoherent multiple production in nuclei Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Proceedings, ed by TIRELL, G., Amsterdam, North-Holland, 1974, p 79-95; discussion, p 95

Gounaris, G.J. Duality in the current propagator
Nucl Phys, B68, 574-584, 1974

Gourdin, M. The quark parton model for deep inelastic lepton scattering

Grassberger, P., Kühnelt, H., Schwela, D Finite energy bounds for nN scattering
Nucl Phys B75, 493-508, 1974

Grassberger, P., Michael, C., Miettinen, H. I. Two-body quantum number exchange from many particle production data.
Phys Lett 32B, 60-64, 1974

Gumowski, I. Sensitivity of certain dynamic systems with respect to a small delay.
Automatica 10, 659-674, 1974

Gumowski, I., Schindl, K. Periodic solutions of a second-order phase lock system.
Seventh congress AICA on hybrid computation, Prague, 31 August 1973 Proceedings, Prague, p 139-142

Gupta, V. Constraints on the charged-multiplicity distribution from neutral-charged-particle correlations.
Nuovo Cim. Lett. 11, 668-672, 1974

Hagedorn, R. What happened to our elementary particles? (Variations on a theme of Jauch)

Hagedorn, R. Thermodynamics of strong interactions.

Hansen, P.G. Noyaux éloignés de la vallée de stabilité pour la désintégration bêta.
J Physique C5, 5-29, 1974

Hansroul, M., Townsend, D., Zanella, P. The application of multi-dimensional analysis techniques to the processing of event data from large spectrometers.

Harari, H. Multihadron production at high energies — phenomenology and theory.
HARDGRAVE, W.T. The prospects for large capacity set support systems imbedded within gen­eralized data management systems
GÜNTHER, A., LILYAT, B. and J. IPSs, H. Amsterdam, North-Holland, 1974, p. 549-556

HART, W. Some geometrical reconstruction techniques for the new chambers.
HPD collaboration meeting, Saclay, 22 September 1972 Proceedings, ed by BLAIR, W and

HASERT, F.J., KARE, S., KRENZ, W., VON KROGH, J., LANSE, D., MORFIN, J., SCHULTZE, K.,
WEERT, H., BERTRAND-COREMANS, G., SACON, J., VAN DONINCK, W., VILAIN, P., BALDI, R.,
CAMERINI, U., CUNDY, D.C., DAMLJENKO, I., FRY, W.F., HAIDT, D., NATALI, S., MUSSET, P.,
OSCULATTI, B., PALMER, R., PATTISON, J.B.M., PERKINS, D.H., PULLIA, A., ROUSSET, A., VENUS, W.,
WACHSMUT, H., BAYNIN, V., DEGRANGE, B., HAGUENAUX, M., KLEIBERG, L., NGUYEN-KHAC, U.,
PETITAU, T., BELLOTTI, E., BONETTI, S., CAVALLI, D., CONTA, C., FIORINI, E., ROLLLER, M., AUBERT, B.,
BLUM, D., CHIOUNET, L.M., HELLBER, P., LAGARRIGUE, A., LUTZ, A.M., ORKIN-LECOURTOIS, A.,
VIALLE, J.P., BULLOCK, F.W., ESTEN, M.J., JONES, T.W., McKINZIE, J., MYATT, G., SCOTT, W.G.
Observation of neutrino-like interactions without muon or electron in the
Gargamelle neutrino experiment.

HECHT, H., KROLL, P., JAKOB, H.P. Non-nucleon scattering amplitudes at energies between 1.5 and
14 GeV and small momentum transfer.

HEGERFELDT, G.C., KLAUDER, J.R. Field product renormalization and Wilson-Zimmermann expan­
sion in a class of model field theories

HEREWARD, H.G Equilibrium energy distribution in a non-linear potential well in the presence of
quantum fluctuations
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973 Proceedings, Berkeley,
LBL, 1973, PEP Note 53, 3 p

HEREWARD, H.G Influence of the Touschek effect on lifetime measurements in SPEAR
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973 Proceedings, Berkeley, LBL,
1973, PEP Note 67, 2 p

HEREWARD, H.G Possibility of observing turbulence in SPEAR
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973. Proceedings, Berkeley, LBL,
1973, PEP Note 57, 4 p

HEREWARD, H.G. Some possible causes of bunch shape distortion in SPEAR
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973. Proceedings, Berkeley, LBL,
1973, PEP Note 56, 3 p

HERTEL, P. Phase transitions due to gravitation.
International school of physics ‘Enrico Fermi’ — developments and boundaries of nuclear phys­
is, Varenna 19-31 July 1971 Proceedings, ed by MORINAGA, H., New York, Academic Press,
1973, p. 207-214

HEY, A.J. G., SU(6)_w and decays of baryon resonances
ings, ed by SMITH, J.R., Chilton, Rutherford Lab., 1974, p. 112-113

HEY, A.J. G., WEVERS, J. Quarks and the helicity structure of photoproduction amplitudes
Phys. Lett. 49B, 69-72, 1974

HINE, M.G.N. CERN and its work.

HITE, G.E., STEINER, F. New dispersion relations and their application to partial-wave amplitudes

HÖFERT, M., BAARLI, J. Some preliminary investigations on the contribution of muons to the stray
radiation level around the CERN 28 GeV Proton Synchrotron.
Third international congress of the International Radiation Protection Association, Washington,
Hoogland, W., Grayev, G., Hyams, B., Jones, C., Weilhammer, P., Blum, W., Dietl, H., Koch, W., Lorenz, E., Lütjens, G., Männner, W., Meissburger, J., Sterlin, U. Isospin-two \(\pi \pi \) phase shifts from an experiment \(\pi^+ p \rightarrow \pi^+ \pi^\mp n \) at 12.5 GeV/c Nucl. Phys. B69, 266-278, 1974

Humble, S. An impact parameter description of single and double diffraction dissociation. Nucl Phys B76, 137-156, 1974

Hyams, B., Jones, C., Weilhammer, P., Blum, W., Dietl, H., Grayev, G., Lorenz, E., Lütjens, G., Männner, W., Meissburger, J., Ochis, W., Sterlin, U. \(t \)-dependence and production mechanisms of the \(p, f \) and \(g \) resonances from \(\pi^+ p \rightarrow \pi^0 \pi^\mp n \) at 17.2 GeV. Phys. Lett. 57B, 272-278, 1974

Istel, F. Camac hardware — First international symposium on Camac in real-time computer applications, Luxembourg, 4-6 December 1973. Proceedings, Camac Bull No 9, suppl., 9-12, 1974

Itzykson, C. Fluctuating magnetic fields Commun Math. Phys. 36, 19-36, 1974

JACOB, M., STROYNOWSKI, R. The shape of the quasi-elastic peak. Nucl Phys B82, 189-200, 1974

Koch, H. Strong interaction effects in hadronic atoms

Komin, G.J. Unitarity and current algebra constraints in a low-energy Kπ model

Kroll, P. The slope of the proton-proton scattering amplitude at t=0.

Kuriyakopoulos, E. Isospin relations of inclusive reactions

Kuriyakopoulos, E. Some applications of isospin relations of inclusive reactions

Lambert, K.P., Van de Voorde, M. High radiation dose luminescent and optical dosimetry systems

Nucl. Instrum Meth. 120, 501-508, 1974.

Litchfield, P.J. Baryon resonances

Litchfield, P.J., Hemingway, R.J., Baillon, P., Albrecht, H., Burkhardt, E. Partial-wave analysis of the reaction K^+p → A(1815)π between threshold and 2170 MeV.
Nucl. Phys. B74, 12-18, 1974

Litchfield, P.J., Hemingway, R.J., Baillon, P., Albrecht, A., Putzer, A. Partial-wave analysis of the reaction K^-p → KΔ(1230) in the energy region 1915-2170 MeV.
Nucl Phys B74, 39-58, 1974

Litchfield, P.J., Hemingway, R.J., Baillon, P., Albrecht, A., Putzer, A., Schleich, H. Partial-wave analysis of the reaction K^-p → A(1520)π in the energy region 1915-2170 MeV.
Nucl Phys B74, 19-38, 1974

Litt, J., Meunier, R. Čerenkov counter technique in high-energy physics

Llewellyn Smith, C.H. Inelastic lepton scattering

Llewellyn Smith, C.H. An introduction to renormalizable models of weak interactions

Llewellyn Smith, C.H. An introduction to renormalizable models of weak interactions and their experimental consequences.

Llewellyn Smith, C.H. Unified models of weak and electromagnetic interactions.
LLEWELLYN SMITH, C H., NANOPOULOS, D V Remarks on neutral current phenomenology.
Nucl Phys. B78, 205-221, 1974

LOSTY, M J., CHALOUPKA, V., FERRANDO, A., MONTANET, L., PAUL, E., YAFFE, D., ZIEMINSKI, A., ALITTI, J., GANDOIS, B., LOUIE, J. A study of $\pi\pi$ scattering from $\pi\pi$ interactions at 3.93 GeVc.
Nucl Phys. B69, 185-204, 1974

Phys Lett. 48B, 385-387, 1974

LUNDBY, A. "Non-peripheral" two-body reactions.

MAISON, D., PETERMANN, A. Subtracted generalized polylogarithms and the SINAC program.

MANDULA, J.E., WEYERS, J., ZWEIG, G Spin constraints on the particle spectrum in a duality bootstrap.
Nucl Phys B77, 365-380, 1974

MANZ, A., SETTLES, R., WOLF, G., POPPLETON, A., POWELL, B Vidicon read-out for small bubble chambers.

MARTIN, A Aspects of the fundamental theory of high-energy particle-particle scattering (in particular, proton-proton).

MARTIN, A Bounds on observables in high energy collisions.

MARTIN, A Reconstruction of scattering amplitudes from differential cross-sections.

MARTIN, A.D. Exchange mechanisms in few-body reactions.

MATHIEWSON, A. G. The surface cleanliness of 316 L+N stainless steel studied by SIMS and AES.
Vacuum 24, 505-509, 1974

Messerli, R CERN HPD status.

MICHAEL, C Production mechanisms for vector and tensor mesons.

MIDDLEKOPP, W. C. Magnetic and electrostatic deflecting devices.

MIETTINEN, H. I A comment on the dual properties of strangeness annihilation processes.

208
Miettinen, H.I Phenomenology of BB interactions

Miettinen, H.I. Two-body correlations at the NAL-ISR energies

Minkowaj, P. Quark triplets in self-interaction and the light-cone structure of current commutators

Möhl, D. E. P. Space-charge effects at transition energy, an attempt to scale from the CPS to PEP-6 and other machines
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973 Proceedings, Berkeley, LBL, 1973 PFP Note 41, 11 p

Möhl, D. E. P., Morton, P. L. The use of rf-knockout to measure synchrotron oscillation frequencies and energy spread
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973 Proceedings, Berkeley, LBL, 1973 PEP Note 68, 14 p

Montague, B. W., Zotter, B. W. Very high-luminosity insertions for the CERN Intersecting Storage Rings
Nucl Instrum Meth. 120, 9-16, 1974.

Montanet, L. Are meson daughters observed in pp annihilations at rest?

Morel, A., Plaut, G. How do clusters look in semi-inclusive cross sections?
Nucl. Phys. B78, 541-551, 1974

Morrison, D. R. O. Experimental review of strong interactions at high energy.

Morrison, D. R. O. Recent results from European high energy accelerators

Mukhopadhyay, N. C., Cannata, F. The persistence of supermultiplet selection rules in nuclear weak and electromagnetic transitions.
Phys Lett 51B, 225-228, 1974

Münnich, F., Lode, D., Schrader, H., Höglund, Å., Pessara, W (ISOLDE Collaboration) The decay of 120Xe

Musset, P. Eut des résultats expérimentaux sur la recherche des courants neutres

Nanosoulos, D. V., Vlassopoulos, S. D. P. Implications of the recent “e⁺e⁻→ hadron + X” data on the leptonic world.

Neufeld, J. Comments on the theory of radiation risk, pts 1-2

Neurath, P. W., Brenner, J. F., Seles, W. D., Gelema, E. S., Powell, B. W., Gallus, G., Vasiola, E. Computer Identification of white blood cells

NILSSON, S. Study of the fragmentation $p K^- \Lambda^0$ and $K^+ \Lambda^0$ at 4.2 GeV/c.

OLIVE, D. Dual models

OLSSON, M.G. Resonance and background addition with application to a pole model of the $\Lambda(1220)$ resonance

OLSSON, M.G. Solutions of the multichannel unitarity equations describing the addition of a resonance and background; application to a pole model of photoproduction
Nucl. Phys. B78, 55-76, 1974

PŁOZ, F.P., YNDURAIN, F.J. Low-energy $\pi\pi$ scattering parameters

PARISSI, C. Large-momentum behaviour and analyticity in the coupling constant

PEETERMANS, A. Radioactive gas and aerosol production by the CERN high energy accelerators and evaluation of their influences on environmental problems.

PENZO, A. (CERN-Trieste High-Energy Group) Strip lines for read-out of multiwire proportional chambers

PIGUEET, O. Construction of a strictly renormalizable effective Lagrangian for the massive Abelian Higgs model

PIRLÁ, P., POKORSKI, S. Fast leading particles and long-range rapidity correlations between pions.

POKORSKI, S., VAN Hove, L. Independent production of particle clusters; a third general feature of high energy hadron collisions?

POMENTALE, T. Homotopy iterative methods for polynomial equations

PREPARATA, G. Massive quarks and large transverse momenta, I; large-angle two-body scattering

RADER, R., BARLOUTAUD, R., GRISELIN, J., PREVOST, J., TALLINI, B., FILTHUTH, H., LEICHER, R., SCHILCHER, H., MEYER, J., PETERSEN, J., SMITH, J.R., VRANJA, J. The reaction $K^- p \rightarrow \Lambda \pi$ from 0.80 to 1.84 GeV/c.
RANFT, G., RANFT, J. Azimuthal correlations and independent-cluster emission model

RANFT, G., RANFT, J. Semi-inclusive two-particle rapidity correlations at ISR energies and independent cluster emission model

RANFT, J. ROUTTI, J.T. Monte Carlo programs for calculating three-dimensional high-energy (50 MeV-500 GeV) hadron cascades in matter.

RÉNÉ, L. B. High-energy properties of a class of unitary eikonil models for multiproduction

ROSENZWEIG, C., VENEZIANO, G. Regge couplings and intercepts from the planar dual bootstrap.

ROUSSET, A. Neutral currents.

ROUSSET, A. Observation of single pion production in neutrino-like interactions without a charged lepton.

RÜHNHAGEN, H. R. Theory of nucleon-antinucleon annihilation

RÜHNHAGEN, H. R. Theory of inclusive processes

RUSSELL, R. D. Camac facilities in the programming language PL-11.
First international symposium on Camac in real-time computer applications, Luxembourg, 4-6 December 1973. Proceedings, Camac Bull., No 9, suppl., 79-82, 1974

RUSSELL, R. D. PL-11.

RUSSELL, R. D., SPARRMAN, P, KRIEGER, M. ORION — the Omega remote interactive on-line system.

SACIERER, F. J. Bunch lengthening.

SALIN, P. High-energy two-body photoproduction.

SALIN, P. Phénoménologie de Müller-Regge

SALIN, P., SOFFER, J. Conditions on exchange mechanisms for polarization effects in inclusive reactions.
Nucl. Phys B71, 125-137, 1974

SARKAR, S. Broken conformal Ward identities in non-Abelian gauge theories
SARKAR, S. Dimensional regularisation and broken conformal Ward identities

SARKAR, S. Mixing of operators in Wilson expansions

SARKAR, S. The Schwinger mechanism in non-Abelian gauge theories.

SATZ, H. Dual models and statistical bootstrap
Fifth international symposium on many particle hadrodynamics, Eisenach and Leipzig, 4-10 June 1974 Proceedings, ed. by Ranft, G. and Ranft, J., Leipzig, Karl-Marx-Univ, 1974, p 691-698

SAUDINOS, J., WILKIN, C. Proton-nucleus scattering at medium energies.

SAVON-NAVARRO, A. Phenomenological study of the differential cross-section of np and Kp elastic scattering at 5 and 10 GeV at all angles
Nuovo Cim. Lett. 9, 619-626, 1974

SCHMIDEMANN, Φ., HAGENBO, E. Half-lives of 121Cd and 121In isomers

SCHILLER, W. Machine studies in the ISR

SCHORM, B. On the choice of the class intervals in the application of the chi-square test.

SCHORM, B. On the choice of the class intervals for the chi-square test of goodness of fit.
Z. Angew Math. Mech. 54, 249-251, 1974

SCHORM, B. Programs for the Landau and the Vavilov distributions and the corresponding random numbers

SCHREMPP, B., SCHREMPP, F. Dual peripheral model up to Serpukhov energies.

SCHREMPP, B., SCHREMPP, F. Two-body reactions at high energies.
Fourth GIFT seminar on theoretical physics—strong interactions and high energies, Barcelona, 11-18 April 1973 Proceedings, GIFT 74-3, p. 328-424

SCHROEDER, W. U., JAHNKE, U., LINDENBERGER, K.H., RÖSCHERT, G., ENGFER, R., WALTER, H. 11K
Spectra of neutrons from μ capture in thallium, lead and bismuth
Z. Phys. 268, 57-64, 1974

SENS, J.C. Intersecting storage rings — review of recent results from the European Centre for Nuclear Research.

SENS, J.C. Single particle distribution at high energies.

SENS, J.C. Topics in particle physics with colliding proton beams.

SMITH, A. M. An experimental review of large transverse momentum phenomena.

SOFFER, J., WRAY, D. Size of polarization in inclusive processes

STRAUB, R. Introduction à la quantification des champs (théories Lagrangiennes perturbatives)

STRUBBE, H. Calculations with SCHOONSHIP

STRUBBE, H. Manual for SCHOONSHIP, a CDC 6000/7000 program for symbolic evaluation of algebraic expressions

'T HOOFT, G. Gauge field theory

'T HOOFT, G. Magnetic monopoles in unified gauge theories

'T HOOFT, G. Magnetic monopoles in unified theories

'T HOOFT, G. A planar diagram theory for strong interactions

'T HOOFT, G. A two-dimensional model for mesons.

TAUSCHER, L., SCHNEIDER, W. Optical potential calculations for the Is level in pionic atoms

TAYLOR, B G. Phase-distortion compensator for high-density digital magnetic-tape recording

TURNILL, M. C. TABMAN — a dynamic core and file management system.

TYMORS, B J., TUYN, J. W N., BAARLI, J. System for personnel dosimetry in mixed radiation fields

ULLRICH, H., BOSCHITZ, E. T., ENGELHARDT, H D., LEWIS, C W. Multinucleon removal in the absorption of PI at rest and at 60 MeV.

VAN HOVE, L. Coherent particle production and the propagation of hadronic systems through nuclear matter.
VAN HOVE, L Diffraction dissociation as cluster production.
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1973 Proceedings, ed by DUMIO, F., GIOVANNINI, A and RATTI, S., Pavia, INFN, 1974, p 580-581

VAN HOVE, L High energy hadron collisions on complex nuclei and the propagation of hadronic systems through nuclear matter

VAN HOVE, L Multi-dimensional analysis and parametric fitting in few-body hadron collisions
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1973 Proceedings, ed by DUMIO, F., GIOVANNINI, A and RATTI, S., Pavia, INFN, 1974, p 439-444

VAN HOVE, L Particle production in complex nuclei
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1973 Proceedings, ed by DUMIO, F., GIOVANNINI, A and RATTI, S., Pavia, INFN, 1974, p 619-624

VELTMAN, M Gauge field theories

VENEZIANO, G Duality and multiparticle production
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1973. Proceedings, ed by DUMIO, F., GIOVANNINI, A and RATTI, S., Pavia, INFN, 1974, p. 325-335

VENEZIANO, G Large N expansion in dual models

VENEZIANO, G Unitarity sum rules and the two-Reggeon cut.

VERELST, H A multi-user data network for communication between computers
Camac Bull No 10, 7-8, 1974

VERKERK, C. Special purpose processors

VINCELLI, M L. (CERN-Serpukhov Collaboration) The reactions πp → ηn and πp → X°p at 15 and 40 GeV/c.

VON EGIDY, T., POVEL, H P. Muonic and pionic L- and M-series in carbon and oxygen and the pionic 2p level shift and width of oxygen
Nucl Phys A232, 511-518, 1974

WALTER, H K Nuclear excitation and isomer shifts in muonic atoms, 2; model-independent parametrization and discussion.
Nucl Phys. A234, 504-532, 1974

WEIS, J H Factorization of discontinuities of multi-Regge amplitudes
WESS, J., ZUMINO, B. A Lagrangian model invariant under supergauge transformations
Phys. Lett. 49B, 52-54, 1974

WESS, J., ZUMINO, B. Supergauge invariant extension of quantum electrodynamics

WESS, J., ZUMINO, B. Supergauge transformations in four dimensions

WETHERELL, A.M. High-energy hadronic collisions.

WEYERS, J. Concluding remarks.

WEYERS, J. Constituent quarks and current quarks

WILKIN, C. Can pion scattering yield useful nuclear structure information?

WILKIN, C. Medium energy pion-nucleon scattering

WILLERS, I.M A new integration algorithm for ordinary differential equations based on continued fraction approximations.

YAFFE, D., ABRAMOVICH, M., CHALOUPKA, V., FERRANDO, A., KORKEA-AHO, M., LOSTY, M.J., MONTANET, L., PAUL, E., ZATZ, J., ZIEMINSKI, Z. A study of the reactions \(\kappa^+p \rightarrow K^+X, K^+\Sigma \) and \(K^+\Sigma^0(1385) \) at 3.93 GeV/c.

YAMDAGNI, N. Prism plot analysis of the reaction \(K^+p \rightarrow K^0\pi^+ \).

ZACEK, J. (CERN-Prague Collaboration). The four-pion final state in \(\bar{p}p \) annihilations at 5.7 GeV/c

ZAHN, C.T. An algorithm for noisy template matching.

APPENDIX B

LECTURES AND SEMINARS

COLLOQUIÁ AND CERN SEMINARS

REINES, F. (University of California) (22.1). The status of reactor studies of $\nu + e^-$ scattering
THOM, R (Institut des hautes Etudes scientifiques Bures-sur-Yvette) (23.1) Mathématiques modernes et mathématiques de toujours
COLETTI, R. C. (University of Birmingham) (29.1). Particle production in the Argonne-NAL p-p experiment at 205 GeV.
COCCONI, G. (CERN) (5.2). Hadron fireball demensions from Hanbury-Brown and Twiss measurements
PLESS, L (MIT) (14.2): Test results from the NAL proportional wire chamber hybrid bubble chamber system.
TRILLING, G (CERN/University of California) (19.2): Studies of 200 GeV $\pi^+\pi^-$ interactions
SMETS, G. (Université de Louvain) (26.2): Some reactions of macromolecules in the solid state.
GOLDSCHNEIDER, G. (LBL Berkeley) (28.2): Results on electron-positron annihilation from the LBL-SLAC SPEAR magnetic detector experiment
SALAM, A. (ICTP, Trieste) (12.3): Lepton number as the fourth colour A unified gauge theory of hadrons and leptons
DIETL, H (CERN) (19.3): New results on π^0 production
ROGERS, A. (SLAC) (11.6) A search for mesons using the SLAC rapid-cycling bubble chamber.

"Published."

*Not published.
WEBB, R.C. (University of California) (6 8): ISR measurements of pp \(\rightarrow (p\pi^+\pi^-) + \gamma \); scaling and evidence for double excitation

MCMLLAN, E M (Lawrence Berkeley Laboratory/CERN) (27 8): The Banks engine

FUBINI, S (CERN) (3 9): Recent trends in particle physics.

BANNER, M. (CERN-Saclay) (10 9): Observation of high transverse momentum electrons at the CERN ISR.

BUSZA, W. (MIT) (17 9): Multiplicity in \(\pi \)-nucleus interactions at 100 and 175 GeV and models of the spacetime development of particle production.

BARISH, B. (Caltech) (24 9): Recent results from the Caltech-Fermilab neutrino experiment.

HEUSCH, C (University of California, Santa Cruz/CERN) (1.10): Charm search at SLAC — a progress report

YOYANOVITCH, D. D (FNAL-Batavia) (3 10): Hadron elastic scattering at 100 and 200 GeV at Fermilab

LEDERMAN, L. (Columbia University, New York) (10 10): Direct leptons at NAL

STEINBERGER, J. (CERN) (15 10): Results of the CERN-Heidelberg \(K^0 \) experiment and present status of CP violation

ELLIS, J (CERN) (22 10): Models for \(e^-e^+ \) annihilation

McCusker, C B A (University of Sydney) (3 10): The extension of particle physics into the 1 000 000 GeV region

BOHR, A. (Niels Bohr Institute) (6 11): What angular momentum can do to the nucleus

WILSON, R (Harvard University) (18 11): Our energy options for this century and their environmental problems

HOLDER, M (CERN) (19 11): A streamer chamber detector at the ISR: results on angular correlations.

BRAAT, R A. (Niels Bohr Institute) (26 11): Heavy ion nuclear reactions

JACOB, M. (CERN) (28 11): The particle nobody wanted as such

MURIEHEAD, H (Oliver Lodge Laboratory) (3 12): Do \(e^-e^+ \) annihilations to hadrons really look like \(pp \) annihilations?

SCHENK, A (Eidgenössische Technische Hochschule, Zürich) (17 12): The muon — a new tool in solid state physics

FELICETTI, F. (Laboratori Nazionali di Frascati) (19 12): Results from ADONE on the 3 1 GeV resonance

CERN APPLIED PHYSICS SEMINAR

RAICICM, J A (RCA Laboratory Princeton) (13 9): Holographic computer memories

CERN COMPUTER SEMINARS

WILKES, M V. (University of Cambridge) (7 1): Past, present and future in the computer world.

BOLLIET, L (Université scientifique et médicale de Grenoble) (31.1): An interactive system for program validation

HILLS, M T (Dept. of Electrical Engineering Science, University of Essex) (21 2): Software for computer-controlled telecommunications switching systems

SCHICKER, P. (ETH, Zürich) (16.5): European informatics network

ABBOTT, R P. (Computer Research Projects Group, Lawrence Livermore Laboratory, Livermore) (12 9): Investigating the security of operating systems in large time-shared computers.

COLLATZ, L. (Institute of Applied Mathematics, University of Hamburg) (24.10): Applications of approximation theory in several variables

JILLETTE, J (ICL Research and Development Centre, Stevenage) (5 12): The ICL distributed array processor.
APPENDIX C

* TRAINING PROGRAMMES

ACADEMIC TRAINING

Information meeting on CERN activities (23 lectures)

Speakers J Allaby, G Bellettini, A Berthon, F. Bradamante, L. Caneschi, P. Carlson, D. C. Cundy,
A. Diamant-Berger, L. Di Lella, J. Dowell, F. Eisele, T. Ericson, G. Kalmus, E. Kittel, R. Klapusch,
C. H. Llewellyn-Smith, E Lorenz, Ch Michael, E Michaelis, R Morand, W Schmidt-Parefall
A. M. Wetherell, J Wevers

Lecture series (15 lecture series: 58 lectures)

Dual theories, by D. Amati (4 lectures)
Quarks, by J. Wevers (4 lectures).
Introduction to basic astronomy, by A. Behr (ESO) (6 lectures).
Non-destructive material testing, by P. de Meester (Université de Louvain) (3 lectures)
Neutrino physics, by D. C. Cundy (4 lectures)
What can optical models tell us about hadrons?, by N. Byers (Oxford University) (2 lectures)
Beams of molecules, atoms and nucleons, by N. F. Ramsey (Harvard University and Eastman Professor, Oxford University) (4 lectures).
Fact and fancy in neutrino physics, by A. de Rujula (Harvard University) (2 lectures)
Introduction to reliability theory, by B. Schorr (5 lectures)
Deep inelastic processes, by C. H. Llewellyn-Smith (5 lectures)
Particle beams and plasmas, by J. D. Lawson (Rutherford Laboratory) (6 lectures)
Hadron physics at ISR energies, by M. Jacob (4 lectures)
CAMAC systems revisited, by B. Zacharov (Daresbury Laboratory) (4 lectures)
Cluster analysis using graphs, by C. Zahn (2 lectures)
Physical problems about the arrow of time (or: How do physical phenomena depend on the direction of time flow?) by L. Van Hove (3 lectures)

(Audience at each lecture maximum 172 – minimum 24)

TECHNICAL TRAINING

Courses

(317 students enrolled for the courses below)

Mathématiques générales

Mathématiques (1st year), by F. Louis/PE (28 lectures - 49 hours).
Mathématiques (2nd year), by F. Louis/PE (29 lectures - 50% hours)
Mathématiques (3rd year), by F. Louis/PE (28 lectures - 49 hours)
Mathématiques (4th year), by F. Louis/PE (28 lectures - 49 hours)
Mathématiques (5th year), by F. Louis/PE (21 lectures - 36% hours)
Mathématiques (6th year), by F. Louis/PE (28 lectures - 49 hours)

Informatique

Initiation à l'informatique appliquée, by T. Lingjærde/DD and H. Slettenhaar/DD (20 lectures - 60 hours).
FORTRAN IV, by F. Louis/PE (32 lectures - 64 hours).
Technologie des ordinateurs, by G. Cavallari/TC and J. Nuttall/Société lannonnaise d'électronique, Lannion (France) (21 lectures - 84 hours).
Systèmes d'exploitation de mini-ordinateurs, by H. Davies/DD and S. Lauper/DD (20 lectures - 80 hours).

* The titles of the courses and lectures are given in the language used.
Électronique

Initiation à l'électronique (1er année), par P. Rochat/ISR (22 leçons - 88 heures)
Constructions électroniques, par A. Gandi/SB, M. Mary/MPS, R. Weber/TC et H. Schröter/DD (23 leçons - 92 heures)
Saisie des données analogiques, par P. Strubin/ISR (10 leçons - 40 heures)

Mécanique

Initiation aux techniques d'atelier (1er année), par A. Menetrey/PE (19 leçons - 76 heures)
Techniques spéciales, par J. Birabeau/SB et R. Samuel/SB (17 leçons - 68 heures)
Mécanique appliquée, par M. Feldmann/SB (20 leçons - 80 heures)

Physique

Physique fondamentale (1er année), par J.-P. Lagnaux/NP (21 leçons - 84 heures)
Physique générale - Électrique, par C. Gallice, Cycle d'orientation de l'enseignement secondaire, Geneva (20 leçons - 80 heures)

Séminaire

(About 150 participants attended this 1½ day seminar)

Séminaire d'électronique analogique

Part 1

Les paramètres d'amplification, par M. Olesen/EPFL
Préamplificateurs a très faible bruit – exemples d'applications, par M. Bord/National Semiconductor
New generation of complex linear integrated circuits, par M. Jones/Harris
Instrumentation amplifiers – Non-linear functions and RMS amplifiers, par M. Pouliot/Analog Devices Inc

Part 2.

Représentation digitale de signaux analogiques, par Prof. F. de Coulon/EPFL
Conversion digitale/analogue, par Prof. R. Dessoeur/EPFL

LANGUAGE COURSES

<table>
<thead>
<tr>
<th>Levels</th>
<th>Number of courses</th>
<th>Number of hours per year (for each course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Audio-visual/audio-oral type courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>1-2-3-4</td>
<td>9</td>
</tr>
<tr>
<td>French</td>
<td>1-2-3</td>
<td>7</td>
</tr>
<tr>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2. Conversation courses/grammar practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>French</td>
<td>3-4-5</td>
<td>4</td>
</tr>
<tr>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3. Special courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English, intensive audio-visual course (SB Division)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French, audio-visual</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ordinary</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

(These 28 courses represent about 2500 hours of teaching. 360 students took part in them)
GENERAL EDUCATION

Under the title "Science pour tous", 25 talks and 25 seminars were organized for non-scientific members of the personnel. Each talk was prefaced by a review of new developments in science (about 200 people attended each talk).

Talks by R. Carreras
1. Spécial comètes
2. Les lymphocytes
3. Le deutérium
4. La tectonique des plaques et l'Islande
5. Stimulateurs cardiaques à plutonium 238
6. Avoir chaud quand il fait froid
7. Variations sur le thème de l'ellipse
8. Les marcs
9. Un cerveau, deux individualités
10. Accumulateurs d'énergie
11. Un voyage imaginaire du centre de la Terre au centre du soleil
12. Le système nerveux de la sangsue
14. L'évolution de la bicyclette
15. Les virus de l'hépatite
16. L'âge de l'univers
17. Aspects de la physique atomique vus à travers quelques dessins de Georges Gamow
18. L'hydrogène: un combustible d'avenir
19. Les algues bleues
20. Serpents, infrarouge et laser
21. Le centre de notre galaxie
22. Les câbles optiques
23. La planète Mercure vue de près
24. Problèmes de l'utilisation pratique de l'énergie solaire
25. Le rêve

"Connaissance du CERN", course by R. Carreras

This course of six lessons was designed for non-scientific members of the personnel with the aim of familiarizing them with the various aspects of the Organization. It was given three times during the academic year 1973-1974.

APPRENTICESHIPS

Number of apprentices from September 1973 to August 1974

<table>
<thead>
<tr>
<th>Category</th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>4th year</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employés de laboratoire C (physique)</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>Mécaniciens-électroniciens</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

The four apprentices (two C laboratory employees and two electronics technicians) who completed their apprenticeship in 1974 obtained the "Certificat Fédéral de Capacité".
During 1974 the Scientific Conference Secretariat was responsible for the organization of two CERN Schools. The 1974 CERN School of Physics, held at Cartmel Fell, Windermere, England, 16-29 June 1974, was attended by 55 physicists from 32 laboratories. The lecture programme was as follows:

- Unified theories, by J. S. Bell (CERN).
- The use of quantum field theory in problems in chemical and solid-state physics, by S. F. Edwards (Science Research Council, United Kingdom).
- \(e^+ e^- \), by R. Gatto (University of Rome).
- Phenomenology of weak interactions, by C. Jarlskog (CERN).
- The CERN research programme, by W. Jentschke (CERN).
- Deep inelastic processes, by F. V. Landshoff (University of Cambridge).
- Neutrino interactions, by D. H. Perkins (University of Oxford).

The 1974 CERN School of Computing took place at Godoyund, near Bergen, Norway, 11-24 August 1974, and was attended by 62 students from 41 laboratories. The lecture programme was as follows:

- Initiation to Hydra, by R. K. Böck (CERN).
- Software engineering, by J. N. Buxton (University of Warwick).
- Programming discipline, by O. J. Dahl (University of Oslo).
- Data analysis techniques for high-energy particle physics, by J. H. Friedman (SLAC).
- Introduction to computer systems architecture — software, by S. H. Guiboud-Ribaud (CII, Grenoble).
- Time-sharing use of the ARPA network, by C. Hewitt (MIT).
- Erasme — automatic processing of bubble chamber photographs, by W. Jank (CERN).
- Multiprocessor systems, by G. Mazuré (CII, Grenoble).
- Future developments in computer architecture as a result of impact of the microcomputer technology, by L. Monrad-Krohn (Norsk Data Industn, Oslo).
- Introduction to computer systems architecture — hardware, by F. H. Sumner (University of Manchester).
- Special purpose processors, by C. Verkerk (CERN).

The Scientific Conference Secretariat also assisted in the organization of the following events:

- Meeting on Medium-Energy Physics connected with the CERN SC, held at Villars, Switzerland, 4-5 March 1974 (19 participants).
- Meeting on Technology Arising from High-Energy Physics, held at CERN, Geneva, Switzerland, 24-26 April 1974 (237 participants from outside CERN).
- Safety Conference, held at CERN, Geneva, Switzerland, 24-26 September 1974 (12 participants).
- Performance Study on Proton-Proton Storage Rings at Several Hundred GeV/c, held at CERN, Geneva, Switzerland, 30 September-11 October 1974 (18 participants from outside CERN).
ORGANISATION EUROPÉENNE
POUR LA
RECHERCHE NUCLÉAIRE

RAPPORT ANNUEL

1974

CERN
Préface

Ceux d'entre nous qui ont eu le plaisir et la bonne fortune d'être associés étroitement et pendant longtemps aux travaux du CERN — ainsi que j'en ai eu le privilège — n'ont pu manquer d'être impressionnés, non seulement par les résultats scientifiques que nos chercheurs ont obtenus en Europe grâce aux installations du CERN, mais aussi par la coopération très fructueuse que le CERN a su établir avec l'industrie européenne, grâce à laquelle ces installations ont pu être réalisées.

Il n'est que juste de reconnaître aux savants tout le mérite de leurs brillantes découvertes, mais il ne nous faut pas oublier qu'elles n'ont été possibles qu'à l'aide des machines et de l'équipement mis à leur disposition. C'est donc pour nous un sujet de satisfaction particulière de savoir qu'en 1974, alors que les découvertes scientifiques accaparaient nos pensées, le CERN, au cours de la Réunion sur la technologie du mois d'avril, a pu montrer comment certains progrès techniques, aussi intéressants que féconds, sont le fruit de nombreuses années d'échanges entre la physique des hautes énergies et les industries des États membres du CERN. L'intérêt que l'exposition a suscité et les exposés inscrits au programme de la Réunion sont la preuve, si besoin est, que la recherche expérimentale entraîne dans son sillage un épanouissement des techniques et de l'industrie.

Je suis convaincu que le CERN continuera, au cours des prochaines années, à jouer un rôle déterminant dans le développement de la science et de la technologie. Dans les circonstances économiques que nous traversons, il est hors de doute que l'avenir s'annonce difficile. Le Conseil cependant, en désignant Paul Levaux pour prendre ma succession, a choisi un Président parfaitement qualifié pour piloter l'Organisation au milieu des écueils. Nul mieux que lui ne connait les tâches et les difficultés qui nous attendent. Nous ne saurions être aujourd'hui en meilleures mains.

W Gentner
Président du Conseil
Table des matières

APERÇU HISTORIQUE 5
ORGANIGRAMME DU CONSEIL 7

LABORATOIRE I. PROGRAMMES DE BASE ET DES ISR 9
ORGANISATION INTERNE DU LABORATOIRE I 10
INTRODUCTION DU DIRECTEUR GÉNÉRAL DU LABORATOIRE I 11
DÉPARTEMENT PHYSIQUE I 25
 • Division Physique nucléaire (NP) 27
 • Division Machine Synchro-cyclotron (MSC) 43
DÉPARTEMENT PHYSIQUE II 49
 • Division Chambres à traces (TC) 51
DÉPARTEMENT PHYSIQUE THÉORIQUE 67
 • Division Etudes théoriques (TH) 69
DÉPARTEMENT SYNCHROTRON À PROTONS 71
 • Division Machine Synchrotron à protons (MPS) 73
DÉPARTEMENT PHYSIQUE APPLIQUÉE 87
 • Division Données et documents (DD) 89
DÉPARTEMENT ISR 95
 • Division Anneaux de stockage à intersections (ISR) 97
DÉPARTEMENT ADMINISTRATION 113
 • Division Finances (FIN) 115
 • Division Personnel (PE) 127
 • Division Services techniques et bâtiments (SB) 133
 • Groupe Physique de santé (HP) 141
 • Groupe Sécurité du travail (SY) 143
 • Services centraux (CS) 145

LABORATOIRE II PROGRAMME DE L'ACCÉLÉRATEUR DE 300 GeV 147
ORGANISATION INTERNE DU LABORATOIRE II 149
INTRODUCTION DU DIRECTEUR GÉNÉRAL DU LABORATOIRE II 150
LE PROGRAMME DE L'ACCÉLÉRATEUR DE 300 GeV 153
ANNEXE A Publications CERN 185
ANNEXE B Conférences et séminaires 217
ANNEXE C Programmes d'enseignement 219
ANNEXE D Ecoles et conférences scientifiques 222
Aperçu historique

L'Organisation assure la collaboration entre États européens pour les recherches nucléaires de caractère purement scientifique et fondamental, ainsi que pour d'autres recherches en rapport essentiel avec celles-ci. L'Organisation s'abstient de toute activité à fins militaires et les résultats de ses travaux expérimentaux et théoriques sont publiés.

Extrait de la Convention pour l'établissement d'une Organisation européenne pour la recherche nucléaire (Article II — Buts).

Vers la fin des années 40, les physiciens nucléaires d'Europe avaient compris que la réalisation de nouveaux progrès en recherche fondamentale, à l'égal de ceux des États-Unis, exigeait la construction d'accélérateurs de particules d'une taille et d'un coût dépassant les moyens de chacun de leurs pays pris séparément. Sous l'impulsion d'un certain nombre de savants éminents, l'UNESCO patronnaient, en décembre 1951, une réunion intergouvernementale chargée d'étudier la possibilité de créer en Europe un laboratoire nucléaire commun.

Lors d'une seconde réunion, en février 1952, onze nations signaient un Accord portant création d'un organe provisoire qui allait devenir le «Conseil européen pour la recherche nucléaire». Ainsi naissait le sigle CERN, demeuré depuis le nom sous lequel est connue l'Organisation. Au cours des douze mois suivants, on élaborait la structure et le programme de l'Organisation permanente et, de juillet à décembre 1953, douze États signaient la Convention pour l'établissement d'une «Organisation européenne pour la recherche nucléaire». Belgique, Danemark, France, Grèce, Italie, Norvège, Pays-Bas, République fédérale d'Allemagne, Royaume-Uni, Suède, Suisse et Yougoslavie. Avec l'entrée en vigueur de la Convention, le 29 septembre 1954, le nouveau CERN était officiellement né.

Ultérieurement, en juillet 1959, l'Autriche adhéra à l'Organisation, tandis qu'à la fin de 1961 la Yougoslavie devait se retirer pour des raisons financières. La Turquie recevait en juin 1961 le statut d'observateur, suivie par la Yougoslavie en 1962 et, un an plus tard, par la Pologne.

L'Espagne adhéra à l'Organisation en janvier 1961, mais des impératifs financiers la forçaient à s'en retirer à la fin de 1968.

Dès octobre 1952, le Conseil convenait de choisir Genève pour siège du Laboratoire, ce qu'entérinait la Convention. La première pierre était posée à Meyrin le 10 juin 1955 et, le jour suivant, l'accord de siège était signé avec le Conseil fédéral suisse. Le Laboratoire disposait alors, dans le Canton de Genève, de 40 hectares sur lesquels commençait la construction des deux accélérateurs prévus par la Convention (article II, paragraphe 3a), à savoir:

(i) un synchrotron à protons pour des énergies dépassant dix milliards d'électronvolts (10¹⁰ eV),

(ii) un synchro-cyclotron capable d'accélérer des protons jusqu'à environ 600 millions d'électronvolts (6 x 10⁸ eV)

Entre-temps, s'étaient poursuivies la conception et la construction du synchro-cyclotron de 600 MeV qui fournissait son premier faisceau de protons le 1er août 1957. Cette machine a permis de réaliser un très important programme de recherches sur la physique des particules et la physique nucléaire, en 1967 s'achevant une grande installation expérimentale pour l'étude des noyaux de courte vie, appelée ISOLDE (separateur...
d'isotopes en ligne) Un faisceau de protons bouclait ses premiers circuits dans le synchrotron le 16 septembre 1959 et la pleine énergie était atteinte le 24 novembre. Depuis, le synchrotron à protons, fonctionnant à des énergies atteignant 28 GeV, est demeuré le moteur principal du programme européen de physique des hautes énergies.

La décision prise par le Conseil de construire des anneaux de stockage à intersections destinés à compléter le synchrotron à protons et à permettre des recherches sur des faisceaux en collision devait nécessiter l'extension du Laboratoire. Après approbation par le Conseil en juin 1965, un Accord était signé le 13 septembre avec le Gouvernement de la République française, il s'accompagnait d'un contrat de bail mettant à la disposition de l'Organisation un terrain de près de 40 hectares situé sur le territoire des communes de Prévessin et St-Genis-Pouilly et jouxtant le domaine initial du Laboratoire. Le 27 janvier 1971, on observait les premières collisions proton-proton dans les anneaux de stockage à intersections. Un programme de recherches de physique était immédiatement lancé sur cette machine qui est unique au monde.

La collaboration avec les États non-membres s'est poursuivie parallèlement. Ainsi, un Accord a été signé le 4 juillet 1967 avec le Comité d'État de l'URSS pour l'utilisation de l'énergie atomique, en vue de l'exécution d'un programme conjoint de recherches scientifiques et techniques avec l'accélérateur de protons de 70 GeV de l'Institut de physique des hautes énergies de Serpoukhov.

Le nouveau Laboratoire est actuellement construit, sous l'égide du Laboratoire II du CERN, sur un terrain contigu au Laboratoire déjà existant appelé Laboratoire I. Une superficie totale de 412 hectares en France et de 68 hectares en Suisse est donnée à bail à l'Organisation et des restrictions à la construction ont été imposées sur une étendue supplémentaire de 509 hectares en France et de 63 hectares en Suisse.

Le programme 300 GeV, d'une durée de 8 ans, est axé sur la construction d'un grand synchrotron à protons ayant un diamètre de 2,2 km. Au début du programme, un certain nombre d'options avaient été réservées sur les modalités précises d'achèvement du projet. En juin 1973, le Conseil a approuvé la proposition que l'anneau soit équipé d'aimants à culasse d'acier et que le programme de construction soit ajusté de manière que l'accélérateur atteigne son énergie totale de 400 GeV au cours de la sixième année du programme et que les expériences puissent commencer à la fin de cette année dans la zone Ouest.
CONSEIL DE L'ORGANISATION

COMPOSITION

(au 31 décembre 1974)

BUREAU DE CONSEIL

Vice-Présidents:

Professeur Th. G. K. (Grèce)

M. G. H. (Séntoros [Royaume-Uni])

DÉLégATIONS (deux délégués par Etat membre)

<table>
<thead>
<tr>
<th>OBSERVATEURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pologne</td>
</tr>
<tr>
<td>Turquie</td>
</tr>
<tr>
<td>Yougoslavie</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS EN % DES ÉTATS MEMBRES
POUR L'ANNÉE BUDGÉTAIRE 1974

<table>
<thead>
<tr>
<th>États membres</th>
<th>Programme de base</th>
<th>Programme de base + PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allemagne, Rep. féd. d'</td>
<td>24.59</td>
<td>24.70</td>
</tr>
<tr>
<td>Autriche</td>
<td>2.06</td>
<td>2.07</td>
</tr>
<tr>
<td>Belgique</td>
<td>3.71</td>
<td>3.72</td>
</tr>
<tr>
<td>Danemark</td>
<td>2.10</td>
<td>2.17</td>
</tr>
<tr>
<td>France</td>
<td>21.55</td>
<td>21.65</td>
</tr>
<tr>
<td>Grèce</td>
<td>0.46</td>
<td>—</td>
</tr>
<tr>
<td>Italie</td>
<td>13.82</td>
<td>13.99</td>
</tr>
<tr>
<td>Norvège</td>
<td>1.54</td>
<td>1.54</td>
</tr>
<tr>
<td>Pays Bas</td>
<td>4.66</td>
<td>4.69</td>
</tr>
<tr>
<td>Royaume Uni</td>
<td>17.55</td>
<td>17.64</td>
</tr>
<tr>
<td>Suisse</td>
<td>4.78</td>
<td>4.80</td>
</tr>
<tr>
<td>Suisse</td>
<td>3.12</td>
<td>3.11</td>
</tr>
</tbody>
</table>
Introduction

Réaliser une expérience de physique, c’est en quelque sorte ouvrir une fenêtre sur le monde des phénomènes naturels. De nouveaux détails nous apparaissent et nous permettent de mieux comprendre la nature du monde dans lequel nous vivons. Au cours des toutes dernières années, le panorama que nous font découvrir nos fenêtres a rapidement changé, et il se peut qu’en 1974 notre compréhension des particules élémentaires ait atteint une étape marquante ou un tournant décisif.

Les principaux points développés dans cette analyse ont trait à nos idées actuelles sur la structure interne possible des nucléons (le proton et le neutron) et à la recherche d’une unite sous-jacente des trois forces fondamentales qui jouent un rôle important dans la physique des particules. L’interaction faible (responsable de la désintégration radioactive), l’interaction électromagnétique (responsable de la formation des atomes et des molécules) et l’interaction forte (qui lie les nucléons pour former les noyaux des atomes). Il y a peu de temps encore, ces forces semblaient très différentes les unes des autres, mais maintenant, pour la première fois, nous entrevoyons la possibilité de ne les considérer que comme des facettes différentes d’une interaction fondamentale, unique.

Il y a quelque vingt-cinq ans, l’expression « particule élémentaire » avait une signification relativement simple. On ne connaissait qu’un petit nombre de particules et, à quelques exceptions près, leurs rôles semblaient assez évidents. Il appartenait alors au physicien de comprendre la nature des forces auxquelles elles étaient soumises. Aujourd’hui, nous nous trouvons en face d’une énorme prolifération d’états hadromiques (le mot hadron est un terme générique désignant les particules subissant l’interaction forte) et nous savons qu’il doit en exister beaucoup d’autres. Au CERN, l’étude de ces états à l’aide des techniques de chambres à bulles et de compteurs a constitué une partie très importante du programme de recherches. On a réuni une quantité impressionnante d’informations détaillées, ce qui est essentiel pour une mise à l’épreuve aussi complète que possible des théories formant un cadre général pour la compréhension d’un ensemble de particules aussi complexe.

Ce travail est loin d’être achevé. Un certain nombre de questions importantes restent sans réponse, néanmoins, une théorie extrêmement fructueuse même sous sa forme la plus élémentaire, offre une synthèse remarquable de cet ensemble d’informations. Dans ce modèle, les états hadromiques observés sont considérés comme composés de trois « éléments constitutifs » fondamentaux, appelez quarks (trois antiquarks sont également nécessaires). En particulier, les nucléons contiendraient trois quarks alors que les mésons seraient
formes de paires quark-antiquark. En assemblant ces quarks selon certaines règles, il est possible de reproduire les propriétés des nombreux états hadroniques différents qui ont été observés, en accord remarquable avec les données.

Dans le cas de l'atome, l'étude de la spectroscopie atomique, c'est-à-dire l'analyse de la lumière émise par des atomes passant d'un état à un autre, a révélé leur structure électronique détaillée, de même, la spectroscopie des niveaux énergétiques nucléaires nous renseigne sur la structure complexe du noyau. Des études systématiques des états de la matière hadronique nous donnent des indications sur la structure interne possible de ces particules.

Collisions à haute énergie

L'accélérateur linéaire de 3,2 km de long exploité à Stanford (SLAC) a surtout été construit en vue de sonder la structure du noyau, en utilisant des faisceaux d'électrons de 20 GeV d'intensité élevée. Les résultats obtenus il y a quelques années (1968) sont remarquables car ils ont suggéré la présence de constituants ponctuels (appelés partons) à l'intérieur du noyau. On a postulé leur existence afin d'expliquer le caractère et la fréquence élevée des événements dans lesquels un électron était dévié sous un grand angle après avoir percuté le noyau. Ces expériences ont donc rendu la structure du noyau telle que la révèle l'interaction électromagnétique.

Au CERN, nous avons effectué des expérimentations dans la chambre à bulles à liquides lourds, Gargamelle, en utilisant un faisceau de neutrinos n'interagissant que par l'intermédiaire de l'interaction faible. Tout comme pour les expériences avec les électrons effectuées au SLAC, les résultats des expériences neutrino du CERN s'expliquent le plus simplement par la présence de partons à l'intérieur du noyau. Dans les deux cas, les résultats obtenus peuvent être interprétés en détail car les formes des interactions électromagnétique et faible sont assez bien comprises. Dans les deux cas, une explication étonnamment fructueuse est fournie par un modèle simple dans lequel les partons, constituants ponctuels du noyau, ont exactement les mêmes propriétés que les quarks considérés comme les constituants du noyau dans le modèle proposé à la suite de l'analyse de spectroscopie hadronique décrite précédemment. En particulier, les résultats des expériences de diffusion, effectuées au SLAC, avec des électrons, et au CERN, avec des neutrinos, peuvent être mis ensemble afin de «mesurer» la charge électrique des partons, les valeurs obtenues sont en accord avec l'hypothèse des trois quarks portant les charges fractionnaires prévues (soit 1/3 ou 2/3 de la charge de l'électron).
Passons maintenant aux collisions à haute énergie entre protons. Les expériences aux ISR ont mis en évidence des effets liés à l'interaction forte qui peuvent également être attribués à la présence de constituants ponctuels. Cela résulte de la découverte d'une émission de hadrons d'impulsion élevée, sous de grands angles par rapport à la trajectoire de collision de deux protons, beaucoup plus fréquente (plus de 10 000 fois) qu'il n'était prévu. L'étude de ce phénomène s'est poursuivie en 1974.

On peut citer les résultats récemment obtenus par un groupe utilisant le grand aimant à champs inversés (SFM). Il a été montré que l'émission d'un pion neutre à impulsion transverse élevée est souvent accompagnée de celle d'une particule portant une charge positive et ayant une impulsion élevée, dans une direction approximativement opposée. Cette observation peut très bien confirmer l'hypothèse selon laquelle de tels processus résultent de collisions «dures» entre constituants ponctuels du nucléon. Pour confirmer cette interprétation, il faudra poursuivre l'analyse de ces données et de celles d'autres expériences.

L'année 1974 a apporté une confirmation de l'existence des courants neutres, découverte au CERN. Cette découverte constitue un progrès majeur dans notre connaissance de l'une des forces fondamentales de la nature. De plus, elle peut nous conduire à une unification des théories des interactions faible et électromagnétique, c'est-à-dire à une synthèse aussi profonde que celle qui a été réalisée par Maxwell lorsqu'il a regroupé les phénomènes de l'électricité et du magnétisme dans un cadre théorique unique.

Ce résultat provient également d'une expérience dans laquelle la chambre à bulles à liquides lourds, Gargamelle, a été exposée à un faisceau de neutrinos. Précédemment, on pensait que l'interaction faible ne faisait intervenir que des «courants chargés», c'est-à-dire qu'un neutrino (ne portant pas de charge électrique) devait toujours se transformer...
en un muon chargé lorsqu’il interagissait avec la matière. L’expérience de Gargamelle a été la première à mettre en évidence des interactions de neutrinos sans production d’un muon, et d’où le neutrino émergerait sans avoir été modifié. Cette nouvelle forme d’interaction fait intervenir des «courants neutres».

On a observé deux processus différents, dus aux courants neutres. Dans le premier, un neutrino est diffusé par un électron. Jusqu’ici, on n’a observé que deux exemples de ce processus, mais la probabilité qu’ils résultent d’un autre mécanisme moins intéressant est d’environ 1%. La recherche d’événements supplémentaires se poursuit. De plus, une nouvelle expérience utilisant des techniques électroniques et conçue pour la recherche de la diffusion neutrino-electron a commencé à saisir des données dans le faisceau de neutrinos en aval de Gargamelle.

Dans le second processus, le neutrino produit des hadrons dans son interaction avec un nucléon de nouveau sans production d’un muon. Ces événements sont beaucoup plus fréquents que ceux du premier type. On en a trouvé environ 260 dans Gargamelle. Dans une expérience analogue utilisant un faisceau d’antineutrons, on a observé ~ 70 événements. Ils peuvent être simulés par des neutrons rapides également présents à la suite des interactions neutrino se produisant dans les matériaux entourant la chambre à bulles, mais des études complémentaires de ce bruit de fond ont entièrement confirmé la conclusion selon laquelle les événements ne produisant pas de muon sont en grande partie dus aux neutrons. Actuellement, l’existence de l’interaction due aux courants neutres entre les neutrinos et les hadrons a été confirmée par des expériences effectuées au Fermi National Laboratory, à Brookhaven et à Argonne.

Avant la découverte des courants neutres dans les interactions neutrino, on pensait que l’un des meilleurs moyens de savoir s’ils existent était fourni par le taux de désintégration des kaons neutres en deux muons. Or, celui-ci est beaucoup plus faible que ce qu’il devrait être si la forme à courant neutre de l’interaction faible jouait un rôle important. Nous nous heurtons donc à une sérieuse difficulté pourquoi le kaon neutre ne se désintègre-t-il pas plus souvent en deux muons? Il existe une différence importante entre le processus de désintégration du kaon et les interactions neutrino à courant neutre le kaon possède un attribut, ou nombre quantique, appelé «étrangeté» (son étrangeté est égale à un) et l’état final à deux muons a une étrangeté nulle. Ainsi, dans cette désintégration par interaction faible, l’étrangeté varie d’une unité. Par contre, dans le processus provoqué par un neutrino, les états initial et final ont tous les deux une étrangeté nulle. Cette différence conduit à imaginer un mécanisme permettant de surmonter cette difficulté, à condition d’introduire un nouveau nombre quantique caractérisant certaines particules.

Le nouveau nombre quantique a été baptisé «charme». Dans toutes les interactions fortes et électromagnétiques, le charme total doit se conserver, tout comme la charge électrique ou l’étrangeté, mais il n’y a pas conservation dans les interactions faibles. Dans le modèle des quarks, cela introduit un quatrième type de quark, se distinguant par ce nouveau nombre quantique, le charme. Ce quark fournit un nouvel élément constitutif et conduit ainsi à concevoir tout un ensemble possible de nouvelles particules. Il est clair que la recherche de particules charnées représente l’une des prochaines étapes cruciales. Le fait qu’elles ne semblent pas avoir été observées jusqu’à maintenant incite à penser qu’elles pourraient être lourdes. Cependant, le mécanisme de suppression de l’interaction à courant neutre modifiant l’étrangeté n’est plus efficace si leur masse est très supérieure à 2 GeV.

On pense que les particules charnées ayant les masses les plus faibles se désintègrent avec une vie moyenne assez courte (~ 10^{-12} s), mais seulement par interaction faible. Les produits de désintégration comprendront parfois un électron ou un muon, et on s’attend aussi à rencontrer souvent des particules possédant une étrangeté, par exemple des kaons et des hybrons. Un méson formé d’un quark charmé et d’un antiquark charme aurait un charme nul, mais cette propriété dissimulée pourrait se révéler par les circonstances de sa naissance ou de sa disparition.

La découverte des courants neutres soulève une deuxième question, celle de l’existence du boson vecteur intermédiaire neutre. La majeure partie de nos connaissances sur l’interaction faible résulte de l’étude de la désintégration des particules et noyaux instables. Dans ces processus, l’interaction semble être ponctuelle, contrairement à l’interaction forte qui possède une portée caractéristique d’environ 10^{-15} cm et qui, nous le pensons, se réalise par l’intermédiaire d’un échange de mesons entre les hadrons qui interagissent...
Il existe de fortes raisons de croire que l'interaction faible se réalise également par échange de particules appelées bosons vecteurs intermédiaires, possédant des masses élevées correspondant à la très courte portée de l'interaction faible. L'existence du courant neutre implique celle d'un boson vecteur intermédiaire neutre, qui vient s'ajouter aux deux bosons chargés, exigés pour l'interaction habituelle par courants chargés. Jusqu'à présent, l'existence de ces bosons n'a pas été prouvée, cependant, si leurs masses n'étaient qu'un petit nombre de fois plus grandes que celle du noyau (1 GeV), les recherches effectuées aux ISR et ailleurs auraient dû permettre de les détecter. Sous sa forme la plus simple, l'une des théories conduisant à une unification des interactions faible et électromagnétique leur assigne une masse d'environ 75 GeV, ce qui situant leur création bien au-delà de la gamme des énergies des accélérateurs actuels.

Dans cet exposé général, de nombreux problèmes n'ont pas été évoqués, afin qu'il soit possible de présenter un tableau simple, appelé sans aucun doute à être modifié par de futures découvertes, mais contenant de nombreux éléments qui trouveront sûrement une place dans les descriptions ultérieures. L'une des difficultés majeures tient au fait qu'aucune expérience n'a encore permis d'obtenir une preuve de l'existence de quarks réels, soit parce que leur masse est trop élevée pour que l'on puisse les créer aux énergies actuellement disponibles, soit parce qu'ils ne peuvent exister à l'état de particules libres, cela étant interdit par un mécanisme encore incompris.

Certaines des toutes premières expériences effectuées aux ISR étaient consacrées à la recherche de la production directe d'électrons et de muons dans les collisions de protons à haute énergie. Elles ont abouti à la découverte d'un autre phénomène : la fréquence plus élevée que prévu de l'émission de hadrons avec forte impulsion transverse. Dans la recherche de la production directe des électrons, cette émergence de particules à impulsion transverse élevée constitue une source de bruit de fond, mais en 1974, en utilisant un appareillage plus évoluté et en mettant à profit les nouvelles performances des ISR, on a pu observer la production d'électrons isolés. Parallèlement à cette découverte, des observations analogues sur les muons et les électrons ont été effectuées au Fermi National Laboratory. Cette recherche a mis en évidence deux caractéristiques remarquables : sur l'intervalle des impulsions transverses étudiées, le rendement en électrons libres suit la
mêmes lois que celui des hadrons, mais il est environ 10 000 fois plus faible, de plus, sur un intervalle assez étendu, ce rapport semble être indépendant de l'énergie des protons, alors même que le rendement total en hadrons varie d'un ordre de grandeur. L'expérience effectuée aux ISR montre également que ces électrons ne sont pas des produits de désintégration de particules déjà connues. Nous pensons donc que nous avons affaire à un nouveau phénomène, l'une des premières conjectures est qu'il pourrait être lié à la production de nouvelles formes de la matière.

Au début de novembre 1974, nous avons reçu des informations de Brookhaven et de Stanford concernant la découverte d'une nouvelle particule. A Brookhaven, celle-ci a été produite en bombardant une cible de beryllium avec des protons de 28 GeV. Elle a été détectée par observation de sa désintégration en un électron et un positon. Sa masse est de 3,1 GeV. A Stanford, le même état a été découvert à la suite du processus inverse d'annihilation d'un électron et d'un positon avec une énergie totale de 3,1 GeV, pour former des hadrons. L'expérience de Stanford a été effectuée avec la machine à collision de faisceaux d'électrons et de positons, appelée SPEAR. Quelques jours plus tard, de nouvelles informations sur cet état ont été obtenues à Frascati, à l'aide d'une machine analogue, ADONE, puis au Laboratoire de DESY, en utilisant les nouveaux anneaux de stockage DORIS. A Stanford, une deuxième particule ayant une masse de 3,7 GeV fut découverte par la suite, et ce résultat fut également confirmé à DESY.

La propriété la plus remarquable de ces particules est leur durée de vie, atteignant 10^{-20} s, qui est exceptionnellement longue pour des états ayant une telle masse. Elle est environ mille fois plus longue que celle qui serait caractéristique pour des états hadroniques ayant une masse de 3 GeV et, de ce fait, toutes les tentatives actuelles d'interprétation de ces nouvelles particules se heurtent à certaines difficultés.

Différentes explications ont été proposées. En particulier, les nouvelles particules avaient été apparentées au boson vecteur intermédiaire neutre, médiateur des interactions faibles par courants neutres. Toutefois, de récentes expériences de photoproduction ont montré que ces particules sont très probablement des états subissant l'interaction forte, ce qui exclut cette possibilité. Il est également possible que l'existence de ces particules soit liée à un nouveau nombre quantique, qui pourrait être la charge ou la couleur. Dans une telle interprétation, elles peuvent constituer des exemples de l'état mésonique avec charge dissimulée, qui est formé d'un quark chargé et d'un antiquark chargé.

Le CERN a adopté un programme d'expérimentation très important en vue de la recherche de nouvelles particules. L'une de ces expériences, spécialement conçue pour la recherche des particules chargées, a été préparée au cours de l'été 1974 et a saisi des données aux ISR. Une équipe a observé neuf événements dans lesquels une particule de masse d'environ 3,1 GeV se désintègre en une paire électron-positon. Une autre équipe, utilisant le système de détection constitué par l'aimant à champs inversés (SFM), recherche des paires de muons provenant de la désintégration de la même particule de 3,1 GeV. Au PS, une expérience susceptible de détecter des particules de masse élevée, telles que celles qui ont été découvertes à Brookhaven et à Stanford, doit démarrer au début de 1975.

La découverte de nouvelles particules a incité nos expérimentateurs et nos théoriciens à concevoir d'autres recherches et interprétations possibles. Plusieurs groupes poursuivant des expériences ont accordé la priorité à la recherche d'effets pouvant être liés à l'existence de ces particules, et de nombreuses propositions nouvelles sont en cours de préparation.

Quelle que soit l'exaltation suscitée par les nouvelles découvertes, on ne saurait négliger l'autre partie du programme d'expérimentation du CERN aux ISR et au PS, qui concerne des études plus systématiques, portant principalement sur les propriétés d'interaction forte des hadrons, mais également sur les interactions faible et électromagnétique.

(1) processus à deux corps et quasi-deux corps, mesure de la section efficace totale dans la diffusion élastique et la production d'isobares,

(2) production inclusive de particules «a» dans des réactions du type $p + p \rightarrow a + X$, aux petits angles, afin de vérifier les propriétés d'invariance d'échelle et d'étudier le mécanisme de la diffusion diffractive,

(3) étude de phénomènes à impulsion transverse très élevée, afin d'obtenir une information détaillée sur les constituants du nucléon,

(4) étude des corrélations entre plusieurs particules produites dans la même interaction.

A titre d'illustration de ce programme, nous citerons une étude de la diffusion élastique aux grands angles et de la diffusion diffractive inélastique à l'aide de l'aimant à champs inversés (SFM). Dans l'expérience de diffusion élastique, des mesures sur toute la gamme des énergies des ISR ont mis en évidence un minimum de diffusion très marqué, comme dans la diffusion de la lumière sur un disque noir. Lorsque l'énergie croît, on observe un déplacement systématique du minimum vers les plus faibles valeurs de l'impulsion transverse. Ce résultat est en accord avec les mesures des sections efficaces totales pp, pour lesquelles l'augmentation de la section efficace est expliquée par une augmentation correspondante du rayon du proton. Dans les données exclusives concernant la diffusion inélastique, dans laquelle l'un des deux protons participant à une collision est excité et se transforme en un système nn^+, on a obtenu pour la première fois une indication de l'existence d'un minimum aux envelopes de $-t = 0,3 \text{ GeV}^2$ dans la distribution de l'impulsion transverse. Ce minimum apparaît à une plus faible valeur de l'impulsion transverse, ce qui montre que l'absorption intervient sur la périphérie du proton.
Parmi les nombreuses expériences qui ont été effectuées au PS en 1974, deux seulement seront mentionnées ici.

Une expérience élégante sur les effets de la violation de la symétrie CP dans les désintégrations du kaon neutre a été achevée au milieu de l'année, après cinq années de travail. La nouvelle et puissante technique des chambres proportionnelles multifils a permis une importante amélioration de notre connaissance de ces phénomènes encore enigmatiques. En particulier, l'interférence $K_S - K_L$ dans la désintégration en deux pions fournit une connaissance plus précise de la valeur et de la phase de l'amplitude de violation CP, tandis que la mesure de l'asymétrie de charge en fonction du temps dans les désintégrations leptoniques des kaons neutres conduit à une valeur plus précise de la violation CP, telle qu'elle se reflète dans la matrice de masse, ainsi qu'à une valeur plus précise de la différence de masse $K_S - K_L$.

Au cours des derniers mois de l'exploitation, un détecteur de gammas a été ajouté à l'appareillage. Il a permis d'observer pour la première fois la conversion des hyperons.
La mesure la plus précise du moment magnétique anormal du muon a été effectuée au CERN il y a environ six ans. Du fait de sa précision, elle constitue l'un des critères les plus sévères de la validité de l'électrodynamique quantique, qui est la théorie des interactions électromagnétiques. Une nouvelle expérience vise à mesurer ce paramètre avec une précision de 2×10^{-9}. À ce niveau de précision, on pense que les phénomènes d'interaction forte doivent intervenir. Dans l'expérience, une giclée de pions ayant une intensité élevée

![Image de la production de Σ^0 sur l'uranium et le nickel](image)

Figure 9 — Section efficace différentielle pour la production du sigma neutre sur l'uranium et le nickel en fonction du carré du transfert du quadrupôle d'impulsion. Le pic vers l'avant extrêmement aigu correspond à la production du sigma par des lambdas incélents dans le champ coulombien.

Lambda en hyperons sigma dans le champ nucléaire coulombien (effet Primakoff). Les sigmas produits de cette manière sont emis dans un cône très étroit orienté vers l'avant, du fait de la longue portée de la force électromagnétique. La section efficace de la production coulombienne déduite de ces données permet de déterminer la vie moyenne du sigma, qui n'est mesurable par aucun autre procédé.

La mesure la plus précise du moment magnétique anormal du muon a été effectuée au CERN il y a environ six ans. Du fait de sa précision, elle constitue l'un des critères les plus sévères de la validité de l'électrodynamique quantique, qui est la théorie des interactions électromagnétiques. Une nouvelle expérience vise à mesurer ce paramètre avec une précision de 2×10^{-9}. À ce niveau de précision, on pense que les phénomènes d'interaction forte doivent intervenir. Dans l'expérience, une giclée de pions ayant une intensité élevée

![Image d'anneau de stockage de muons](image)

Figure 10 — L'anneau de stockage de muons, sur lequel l'effet du paramètre $\mu \times q^2$ du muon avec une précision extrêmement élevée. L'anneau à 14 m de diamètre grâce à la grande précision des champs magnétiques de courbure et des champs électriques de focalisation, la circulation des muons dans l'anneau se fait dans des conditions bien déterminées (CERN-54974).
La nouvelle expérience est remarquable. Elle a été achevée en juin. Après une brève période d'essai au cours de ce même mois, elle a permis presque immédiatement d'obtenir des données utilisables. Tous les dispositifs employés dans la nouvelle expérience ont fonctionné correctement. En sept semaines d'exploitation, plus de 107 électrons provoquant la désintégration ont été détectés et le résultat obtenu jusqu'à présent offre une précision statistique environ dix fois meilleure que celui de l'expérience précédente. La poursuite de l'expérience en 1975 devrait conduire à un résultat d'une précision d'un cent-millionième.

Collaboration avec Serpoukhov

Préparatifs en vue des expériences avec le SPS

De nombreuses décisions importantes ont été prises en 1974, dans le cadre de la préparation du programme d'expérimentation avec le SPS. Un programme presque complet a été approuvé pour la première série d'expériences dans le Hall Ouest. On y disposera d'un ensemble appelé «Installation neutrino de la zone Ouest» conçu de sorte que des protons d'une énergie atteignant 400 GeV puissent être utilisés pour produire des faisceaux...
neutrino de haute énergie Par ailleurs, un groupe de faisceaux secondaires de hadrons, produits par des protons d’une énergie maximale de 200 GeV, alimentera en particules un certain nombre d’expériences pour l’étude des interactions des hadrons et des photons aux haute énergies

Physique du neutrino

Un effort considérable a été réalisé pour rendre le programme de recherches sur les neutrinos aussi complet que possible. Un faisceau neutrino de haute qualité, pouvant être exploité soit en bande large, soit en bande étroite, est en cours de construction. Il devrait être prêt pour la fin de 1976. Il est prévu d’utiliser deux chambres à bulles pour observer les interactions neutrino, en installant Gargamelle sur la ligne de faisceau neutrino en aval de BEBC, la grande chambre à bulles européenne, qui peut être remplie d’hydrogène, de deutérium ou de néon. Les dispositions adoptées permettent d’installer deux expériences avec compteurs sur la même ligne de faisceau entre les deux chambres à bulles. L’une de ces expériences est déjà en cours de montage et il est prévu qu’elle sera prête à saisir des données au début de 1977.

Physique des hadrons et du photon

Dans le domaine des interactions fortes, BEBC servira une nouvelle fois de puissant détecteur. Un faisceau unique en son genre permettra de l’alimenter avec des particules dont on pourra choisir le type et l’énergie, ceci jusqu’à 100 GeV environ. Quatre expériences utilisant des techniques de compteurs permettront de s’attaquer à divers problèmes de la physique de l’interaction forte. Une autre expérience de compteurs approuvée étudiera les désintégrations leptoniques d’hyperons chargés. Une caractéristique majeure du programme est l’utilisation de protons de haute énergie pour fournir des faisceaux d’hadrons de haute énergie d’excellente qualité. Un groupe en profitera pour étudier les réactions provoquées par des photons, en utilisant le spectromètre Omega qui sera modifié pour servir à des énergies plus élevées. Ce groupe a l’intention d’utiliser des photons d’une énergie connue, pouvant atteindre environ 60 GeV.

Autres activités

La préparation des faisceaux secondaires est bien avancée et des plans définitifs ont été arrêtés. On poursuit la mise au point détaillée des équipements de surveillance des faisceaux, tels que des compteurs Cerenkov pour l’identification des particules et un appareillage pour la détermination des impulsions des particules et des profils de faisceau. Vers la fin de l’année, la discussion des plans des installations de la zone Nord a bénéficié d’une priorité élevée. Un certain nombre de propositions d’expériences ont été soumises.

Le faisceau de muons qui doit alimenter la zone Nord promet d’être de très haute qualité, avec une intensité élevée et une pureté élevée, et un faible bruit de fond. Deux propositions concernant des études approfondies des interactions de muons dans l’hydrogène liquide (ainsi que sur des cibles à noyaux lourds) ont été discutées en détail, et des recommandations favorables ont été formulées par le SPSC.

Tout comme au cours des années passées, nous pouvons faire état d’un certain nombre de réalisations de premier ordre dans le domaine de la technologie, qui est à la base de nos progrès en matière de recherche. Les demandes les plus sévères, liées à la nécessité de disposer d’appareils sans cesse plus perfectionnés, sont satisfaites par le personnel hautement qualifié du CERN qui se consacre à cette partie du programme de recherches. En avril, ce travail a été mis au premier plan de l’actualité lors d’une réunion sur la
«Technologie associée à la physique des hautes énergies» Plus de 220 visiteurs représentant en majeure partie l'industrie européenne, sont venus au CERN pour entendre les exposés et prendre connaissance des équipements présents dans les principaux domaines de la technologie intervenant dans nos recherches.

De nouvelles limites ont été atteintes pour les intensités des faisceaux de protons accélérés tant au PS qu'aux ISR. Le synchrotron à protons a eu un excellent comportement tout au long de l'année, avec un taux de défaillance aussi faible que 5% pendant les périodes d'expérimentation, contre 8% en 1973. Le synchrotron injecteur de 800 MeV, constituant le nouvel injecteur du PS, a fourni des protons de manière très fiable lors des périodes d'exploitation neutrino avec la chambre à bulles à liquides lourds. L'intensité du faisceau a presque triplé par rapport à sa valeur antérieure. Ce résultat est très prometteur, étant donné que le programme 1975 prévoit d'employer le synchrotron injecteur pendant la majeure partie du temps d'expérimentation. La nouvelle la plus passionnante date du 10 décembre. Ce jour-là, le PS a pour la première fois franchi le seuil magique des 10^{11} protons accélérés par impulsions correspondant à la valeur nominale avec injection à partir du synchrotron injecteur. Avec ce mode d'exploitation, les pertes de faisceau sont encore élevées, mais à la suite de ce succès, il semble certain que le PS sera en mesure de remplir son rôle d'injecteur pour le SPS.

Dans la course vers des intensités plus élevées, les ISR ne le cèdent en rien au PS. Le stockage de faisceaux d'intensités plus élevées dans chaque anneau et l'amélioration de l'installation de vide ont permis d'obtenir des luminosités plus élevées (la luminosité étant une mesure du nombre de collisions pp par seconde), ainsi que d'importantes réductions des taux de perte du faisceau et du rayonnement constituant un bruit de fond. Avec des faisceaux de 24.5 A dans chaque anneau, on a obtenu une luminosité de 1.4×10^{31} cm$^{-2}$ s$^{-1}$ à 26.5 GeV/c.

L'installation de la section à faible valeur de beta représente un développement particulièrement réussi. Il s'agit d'un système de 10 quadrupôles qui réduit la hauteur des faisceaux sur une intersection, afin d'accroître localement la luminosité. Le montage et les essais de l'équipement ont commencé au milieu de l'année, et en octobre on a procédé aux ISR aux premiers essais d'exploitation. Une luminosité record, 2.2×10^{34} cm$^{-2}$ s$^{-1}$, a été atteinte. En novembre, des faisceaux de 30 A ont été stockés dans chaque anneau des ISR, et le nombre total d'heures d'exploitation a franchi le cap des 10 000.

Le vide dans le système, qui a plus de 2 km de long, est meilleur que 10^{-11} torr. Le fait que dans les meilleures conditions avec des luminosités ne dépassant pas 6×10^{30} cm$^{-2}$ s$^{-1}$, plus de la moitié des pertes de faisceau sont dues à des collisions faisceau-faisceau constitue la meilleure illustration de cette extraordinaire réalisation technologique. Il s'ensuit que les problèmes de bruit de fond résultant de l'interaction faisceau-gaz résiduel sont virtuellement éliminés au cours des expériences.
Nous avons déjà cité deux expériences réalisées avec le grand aimant à champs inverses (SFM). Au total, six expériences ont aussi été menées en utilisant cet équipement ; les premiers résultats ont été présentés à la Conference de Londres, en juillet.

L’aimant supraconducteur de BEBC a dû être démonté par suite de l’apparition d’un court-circuit dans les enroulements auxiliaires qui avaient été initialement installés afin d’éliminer les courants persistants. La réparation a consisté à supprimer ces circuits auxiliaires (ce qui a été possible car il était apparu que les variations du champ provoquées par les courants persistants peuvent être mesurées régulièrement de manière satisfaisante) et à ajouter un complément d’isolant. En décembre, l’aimant a été refroidi et excité avec succès à la pleine valeur du champ.

C’est également en décembre qu’a été célébré le dixième anniversaire de la chambre à bulles à hydrogène de 2 m. Cette chambre avait subi ses premiers essais le 13 décembre 1964, et depuis cette date elle a pris environ 32 millions de clichés. Au cours de l’année, en dépit de quelques défaillances techniques mineures, on a pris près de 5 millions de clichés, qui seront analysés par de nombreux physiciens dans divers pays d’Europe.

La reconstruction du synchro-cyclotron de 600 MeV a commencé en juin 1973 et s’est poursuivie pendant la majeure partie de 1974. L’accélérateur, maintenant appelé SC 2,
a été complètement remonté en septembre et les essais d'accélération ont commencé le 30 septembre. Le lendemain, on a observé une accélération jusqu'à la pleine énergie, avec une intensité du faisceau d'environ 0,8 µA et un taux d'utilisation de 1/16. Pour la pleine valeur du taux de répétition des impulsions, cela correspondait à un faisceau interne ayant une intensité d'environ 10 µA, ce qui est la valeur nominale prévue pour le SC2. La reconstruction du système de faisceaux secondaires provenant des cibles internes du SC2 est achevée et les éléments destinés au premier ensemble de faisceaux de mesons issus de cibles externes sont disponibles. Des réunions régulières du Comité Physique III ont repris, et un riche programme d'expériences pour le synchro-cyclotron antihéron a été adopté. Plusieurs équipes ont commencé à installer leur équipement dans la salle des protons et dans la zone Isolde, les expériences démarrent au début de 1975.

Au cours du second semestre de l'année, le service de calcul électronique assuré par les ordinateurs CDC 7600/6500 a atteint et conserve un niveau acceptable. Ce résultat a été obtenu grâce à d'importantes améliorations de la qualité du volume de l'assistance en matière d'équipement et de logiciel assuré sur le site par CDC, au remplacement de toutes les unités de bandes magnétiques à neuf pistes par de nouveaux modèles améliorés et à la concentration des efforts sur une stabilisation du logiciel. En collaboration avec les Divisions NP et TC, la Division DD effectue maintenant d'importants travaux en vue du développement des installations de traitement des données pour les expériences avec le SPS dans les zones Ouest et Nord.

Le Laboratoire I apporte actuellement une importante contribution aux préparatifs du programme d'expérimentation avec le SPS. Il lui incombe de réaliser les faisceaux expérimentaux et les autres installations de la zone Ouest et de fournir une grande partie de l'effort global que représente la construction de l'appareillage nécessaire aux expériences dans les deux zones, Ouest et Nord. Comme nous commençons à observer aux ISR, les expériences aux hautes énergies exigent un appareillage d'expérimentation plus évolutif, impliquant souvent le lancement de projets techniques majeurs. Ces préparatifs imposent de lourdes charges en matière d'effectifs et de crédits.

La réduction du budget de 1975 nous cause de graves préoccupations. Il nous faudra revoir l'ensemble du programme du Laboratoire afin de redéterminer nos priorités tant en matière financière qu'en ce qui concerne l'équipement, et nous nous efforcerez de trouver un équilibre entre les incertitudes sur le programme d'expérimentation.

Les progrès de la connaissance sont rarement uniformes. Après une période de calme relatif, nous sommes entrés dans une ère promettant une riche moisson de résultats passionnants. De nouvelles fenêtres ont été ouvertes sur le monde physique. Des difficultés économiques et sociales sont apparues dans de nombreux États membres, et même à travers le monde entier, mais nous souhaitons que tous ceux qui cherchent de nouvelles universités européennes continuent d'apporter des contributions de premier plan à cette grande conquête de la connaissance fondamentale. Les progrès restent une apport de diverses expériences, utilisant souvent des techniques très différentes et divers types d'accélérateurs de particules. A cet égard, l'Europe doit se féliciter de posséder des machines, exploitées dans des laboratoires nationaux, qui complètent très efficacement celles dont nous disposons au CERN.

J'ai le ferme espoir que dans l'avenir nous saurons trouver le moyen de maintenir cette solide assise de la recherche européenne dans ce domaine. Avec l'appui du Conseil, je suis sûr que le CERN continuera à jouer son rôle en offrant aux physiciens les meilleures possibilités de réalisation de nouvelles découvertes.

W. Jentschke
Directeur général
du Laboratoire I
Plus de 40 expériences d'électronique étaient en cours au PS et aux ISR en 1974.

Au PS, un grand succès a été enregistré dans la nouvelle expérience $(g - 2)$, qui après quelques périodes d'exploitation a déjà fourni une valeur 10 fois plus précise que la mesure précédente. Cette expérience a mis en évidence la contribution hadronique prévue par la théorie.

Aux ISR, l'étude d'électrons isolés produits avec une impulsion transverse élevée a donné d'intéressants nouveaux résultats, décrits dans les pages suivantes, et un passionnant programme d'expériences pour la recherche de nouvelles particules charmées a été lancé.

Sur le plan technique, le fait marquant a été l'achèvement du programme d'améliorations du SC. À la fin de l'année, le SC a pu atteindre l'intensité et le taux d'extraction nominaux.

Le programme d'expérimentation avec le SPS prévu pour la zone Ouest a été établi dans ses grandes lignes. Des groupes NP participeront à cinq des neuf expériences déjà approuvées par le NPRC. Le Département s'emploie très activement à préparer l'équipement nécessaire.
Division Physique nucléaire

Hall Sud

Les faisceaux secondaires alimentant les expériences électroniques en cours dans cette zone sont produits par l'une ou l'autre des deux cibles internes (01 et 08) installées dans l'anneau du PS.

Une équipe de l'Université de Genève étudie la production de résonances étranges qui se désintègrent en un kaon neutre et un pion, dans des réactions du type \(K^\pm p \to pK^\pm \). On étudie également d'autres réactions induites par des pions, des protons et des antiprotons, lorsqu'elles conduisent à des désintégrations présentant une topologie identique. L'expérience explorera la région de masse comprise entre 1,5 et 2,2 GeV, sur laquelle on dispose jusqu'à maintenant de peu de renseignements.

Un groupe CERN-EPFZ-Helsinki-Imperial College (Londres)-Southampton étudie les amplitudes d'hélicité dans la réaction d'échange baryonique \(\pi^- p \to K^0 A \) à 6 GeV/c, avec une cible polarisée à spins gelés. On a mesuré les valeurs de \(\frac{d\sigma}{d\Omega} \) et des paramètres de rotation du spin P, A, R, dans le référentiel d'hélicité de la voie s. On a obtenu les valeurs \(R = 0 \) et \(P = -A \), qui sont en accord avec le modèle de trajectoires \((\Sigma_m, \Sigma_n)\) et \((\Sigma_m, \Sigma_m)\), fortement dégénérées par échange, pour lequel la phase relative entre les amplitudes vaut \(\pi/2 \).
Une collaboration Strasbourg-Turnt étudie l'annihilation $\bar{p}p$ au repos, et plus précisément les réactions $\bar{p}p \rightarrow e^+e^-$, $\bar{p}p \rightarrow \pi^0\pi^0$ et celles qui conduisent à d'autres états finals avec des rayons γ. Pour pouvoir obtenir le facteur de forme du proton dans la région du genre temps, il faut que l'antiproton soit au repos lorsqu'il s'annihile avec un proton. Pour cela, on place un modérateur en avant de la cible à hydrogène de 50 cm, afin d'assurer l'arrêt des antiprotons dans la cible.

Un groupe de Heidelberg étudie les états excités d'hypernoyaux en utilisant une spectroscopie à haute résolution. La réaction $K^- A \rightarrow \pi^+ A$ est étudiée à l'aide d'un double spectromètre magnétique, pour une impulsion du K valant 900 MeV/c. La première partie du spectromètre analyse l'impulsion du K, alors que l'autre analyse l'impulsion du pion. On peut mesurer le temps de vol ainsi que l'angle et les coordonnées des kaons et des pions. La focalisation obtenue avec le spectromètre est seulement du premier ordre. Certaines corrections d'ordre supérieur sont appliquées au cours de l'évaluation, en utilisant les positions et angles des particules mesurés dans les plans focaux.

Figure 2 — Préparatifs en vue de l'utilisation d'un spectromètre par l' 아니라tion du DRPQ-MC, en vue de l'étude de la réaction $\pi^+ p \rightarrow K^+ A$ (CLRN 316 6 74).
Lorsqu'on n'applique pas de corrections d'ordre supérieur, la résolution globale du spectromètre est de 1,5 MeV/c pour des particules incidentes avec intervalle d'impulsions de 15 MeV/c. En appliquant les «corrections par logiciel», la résolution du spectromètre atteint 0,5 MeV/c Des cibles de 9Be, 12C, 16O, 32S et 29Bi, avec des K^- et K^+ ont été irradiées au cours des deux premières périodes d'exploitation du PS, en 1974.

Une équipe Bâle-Karlsruhe-Stockholm poursuit une expérience sur des atomes exotiques possédant des kaons négatifs, des antiprotons ou des sigmas négatifs. Des renseignements peuvent être obtenus sur la distribution des particules à la surface du noyau, sur les corrélations entre particules dans le noyau, sur l'interaction forte entre la particule et un nucléon, etc.

La collaboration CERN-Trieste a achevé une série de mesures de la diffusion de π^\pm par des protons polarisés, avec émission du méson vers l'arrière. Les mesures ont été effectuées en deux étapes. On a d'abord mesuré la diffusion élastique $\pi^+ p^\uparrow \rightarrow p K^+$ à 2,0; 3,5 et 4,0 GeV/c, ainsi que la diffusion inélastique $\pi^+ p^\uparrow \rightarrow \Sigma^+ K^+$ à 3,5 GeV/c, à l'aide d'un ensemble de chambres à étincelles à électricité des aimants classiques avec cible polarisée. Cet appareillage a également été utilisé comme analyseur magnétique pour les particules lentes, émises vers l'arrière. On a ensuite employé un aimant avec cible polarisée ayant une puissance d'analyse plus importante pour mesurer les réactions $\pi^+ p^\uparrow \rightarrow p K^+$ et $\pi^+ p^\uparrow \rightarrow \Sigma^+ K^+$ à 3,5 GeV/c. Dans la seconde réaction, un nouveau compteur Cerenkov à eau, utilisé pour la détection des K^+, explorait un plus grand angle solide que le montage correspondant, employé pour l'étude de la réaction provoquée par les π^+. Toutes les mesures à 3,5 GeV/c ont été effectuées dans un faisceau de pions séparés.

Hall Sud-Est

La nouvelle expérience $g-2$ a été installée en avril-mai et sa mise en route a commencé en juin-juillet. La saisie des données durant sept semaines a permis de détecter plus de 10^7 électrons provenant de la désintégration. Cette expérience vise à mesurer la partie anormale du moment magnétique du muon avec une précision de 2×10^{-8} afin de contrôler la validité de l'électrodynamique quantique. La détermination de la durée de vie du muon en vol, pour $\gamma = 30$ et une orbite fermée, est effectuée à l'occasion de cette expérience.
Le premier résultat, obtenu à la fin de 1974, est le suivant $a = (g - 2)/2 = (1165895 \pm 26) \times 10^{-9}$. Cette valeur se situe à $(-13 \pm 26) \times 10^{-9}$ au-dessous de la valeur théorique qui inclut les termes du sixième ordre de l'EDQ et une contribution hadronique valant $(73 \pm 9) \times 10^{-9}$.

Hall Est

Le groupe CERN-Dortmund-Heidelberg a obtenu plusieurs résultats avec un faisceau de K_π et de K_L mélanges, d'hypérons neutres et, inévitablement, de neutrons et de gammas.
en utilisant un détecteur à chambre proportionnelle multifils assurant une vitesse de saisie des données très élevée (jusqu'à 2×10^3 événements par impulsion). L'appareillage a été démonté en été, après trois ans et demi d'exploitation. Au cours de cette période ~ 5×10^9 désintégrations ont été enregistrées et analysées. L'analyse des trois expériences portant sur la différence de masse a été achevée et les résultats ont été publiés, tout comme ceux qui concernent la phase ϕ_{ω} avec leurs implications pour la phénoménologie CP ainsi que celles des résultats antérieurement publiés pour $|\eta_{-\omega}|$ et l'asymétrie de charge dans la désintégration leptonique. On a achevé la saisie des données pour l'expérience mesurant la transition $\Lambda \rightarrow \Sigma^0$ dans le champ coulombien et pour celles qui étudient plusieurs désintégrations radiatives des K^0 et Ξ^0. On a observé les désintégrations $\Xi^0 \rightarrow \Lambda \gamma$ et $\Xi^0 \rightarrow \Sigma^0 \gamma$ qui n'avaient pas été détectées jusqu'à maintenant. L'analyse de la diffusion $K \rightarrow \ell^+$ (facteur de forme du K^0) est presque achevée.

La collaboration CERN-Munich étudie la production de résonances qui se désintègrent en deux pions dans l'interaction $\pi^- p \rightarrow \pi^- \pi^- n$. Dans cette expérience, on utilise une cible polarisée de butanol entourée d'un ensemble de compteurs qui élimine les événements autres que ceux conduisant à la production d'un neutron. Le spectromètre employé par ce groupe a été construit pour étudier le mécanisme de la production des mesons p, f, g et A_2, ainsi que les états dans lesquels sont produits ces résonances, d'après les distributions angulaires des paires de pions.

La collaboration Clermont-Ferrand-Lyon-Strasbourg mesure la diffusion cohérente dans les réactions suivantes:

$$p + ^4\text{He} \rightarrow ^4\text{He} + \text{n'importe quoi},$$

$$p + ^4\text{He} \rightarrow ^3\text{He} + \text{n'importe quoi},$$

$$p + ^4\text{He} \rightarrow p + ^4\text{He}$$

L'expérience permet de contrôler la validité du modèle de Glauber utilisé pour interpréter les interactions hadron-noyau aux hautes énergies et aux petits angles de diffusion.

La collaboration Lyon-Varsovie se propose de mesurer les états excités des hypernoyaux ^4H et ^4He. L'observation des transitions γ sur ces hypernoyaux permettra d'étudier les propriétés des interactions $\Lambda-N$ de faible énergie pour différents potentiels phénoménologiques. Dans une expérience précédente, une équipe Heidelberg-Varsovie a observé deux raies de désexcitation d'hypernoyaux à 1,09 MeV et 1,42 MeV, mais le noyau parent (^4H ou ^4He) n'a pas été identifié. L'expérience actuelle vise à identifier le parent en observant en coïncidence le rayon γ émis et le pion provenant de la désintégration de Λ. On pense que pour la désintégration du ^4H, il y aura dans 50% des cas émission d'un pion négatif de 53 MeV.

Une liste complète des expériences en cours dans le Hall Est est présentée à la fin de ce rapport sur les activités de la Division NP.

Hall Ouest

Neuf expériences ont été approuvées pour le spectromètre Oméga. Pendant qu'une équipe saisit des données à l'aide de l'ordinateur en ligne EMR 6130, d'autres peuvent essayer des systèmes de déclenchement en utilisant des mini-ordinateurs (PDP-11).

Une collaboration Birmingham-Rutherford-Tel Aviv-Westfield College étudie la production de mesons neutres dans la réaction $\pi^- p \rightarrow X^0 n$ à 12 GeV/c, en utilisant des déclenchements par neutrons lents. Le temps de vol et la direction du neutron définissent la masse du X^0. La région de masse explorée va de 0,8 à 2,3 GeV/c² et environ 3×10^6 déclenchements ont été enregistrés.

Une collaboration Barr-Bonn-CERN-Daresbury-Liverpool-Milan étudie la réaction $\pi^- p \rightarrow X^- \pi^- p$ à 12 GeV/c, en utilisant des déclenchements par protons lents. La région de masse explorée va de 1,0 à 2,3 GeV/c². On a enregistré environ $3,3 \times 10^6$ déclenchements.
Une collaboration CERN-EPFZ-Fribourg en Brisgau-Karlsruhe-Saclay étudie l'échange baryonique avec production d'un Λ émis vers l'arrière dans la réaction $\pi^+ p \rightarrow \Lambda^0 X$. Le déclenchement se réalise par détection du proton provenant de la désintégration du Λ dans le compteur Čerenkov. La polarisation du Λ sera mesurée.

Une équipe Glasgow-Saclay étudie la réaction $K^+ p \rightarrow (\Lambda, K^-, p^-) X$ à 12 GeV/c avec déclenchements soit par les antiprotons provenant de la désintégration du Λ, soit par les K^-. Cette expérience vise essentiellement à observer les mésons se désintégrant en ΛN, on a enregistré environ 2×10^6 déclenchements pour $K^+ p$ et environ 1×10^6 dans le cas des π^+ incidents.

L'expérience CERN-Collège de France-Ecole polytechnique-Orsay étudie les processus d'échange baryonique dans l'interaction $\pi^\pm p \rightarrow pX^\pm$. Cette expérience détecte des kaons rapides, émis vers l'avant. Un proton rapide peut être produit dans la désintégration d'un hyperon ou provenir d'un N^*, il s'ensuit que l'expérience peut étudier une large gamme d'interactions.

Une collaboration CERN-Saclay se propose de mesurer les longueurs de diffusion et les déphasages des systèmes $\pi^\pm \pi^\mp$ et $\pi^0 \pi^\pm$. Les réactions $\pi^\pm p \rightarrow \pi^\pm \pi^\pm n$ sont étudiées à 3,2 GeV/c avec un système de déclenchement conçu pour n'accepter que deux pions, sous un faible angle d'ouverture.

Une collaboration Birmingham-Glasgow utilisera une logique de déclenchement par interaction basée sur l'emploi de deux chambres proportionnelles multifils installées en avant de la cible, et d'une autre placée en arrière de cette même cible, afin d'éliminer tout déclenchement par des particules du faisceau qui n'interagissent pas. Dans cette expérience, on s'intéresse surtout à la réaction $K^+ p \rightarrow K^+ \pi^+ \pi^- p$.

Figure 7 — Le spectromètre Omega Ci tres gros aumen suprconducteur (chambres intérieures de la bobine au mètre de champ 18 K) contient un grand nombre de chambres à tubes optiques tournant partiellement une cible à hydrogène bombardée par le faisceau venant de l'avant. La cage du spectromètre en aluminium abrité haut carbone de fabrication absorbant les cohortes à cinémas déposés le haut. Le grand compteur Čerenkov a une taille $(6 \times 4 \times 3 m)$ visible au premier plan avec les particules rapides émises vers l'avant. Il a été construit à Saclay et représente la contribution de 1/1 des équipes d'utilisateurs d'Omega (CERN 175 74).
Une collaboration regroupant plusieurs instituts (Bari-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milan-Purdue-Vienne) étudie les désintégrations rares des mesons en utilisant un faisceau de pions négatifs. Il s'agit surtout d'étudier la désintégration des mésons en \(\Delta K\pi \) et \(pp\pi \); de ce fait, le déclenchement est réalisé sur les kaons et antiprotons.

Enfin, une équipe CERN-EPFZ effectue une expérience étudiant le K* d'origine non diffractive dans la réaction K\(^+\)p \(\rightarrow K^0\pi^+\pi^-\pi^-\), à 10 GeV. Le système de déclenchement par plusieurs particules exige la présence de deux branches dans une chambre proportionnelle multifils et de quatre branches dans une seconde chambre du même type.

Les expériences aux ISR continuent de révéler de nouveaux aspects du caractère de l'interaction forte aux hautes énergies, et elles recherchent de nouvelles particules exotiques. Dans le domaine des interactions fortes, les nombreuses expériences en cours peuvent être classées en quatre groupes:

1) Processus à deux corps ou à quasi-deux corps qui mesurent \(\sigma_{in} \) dans la diffusion élastique et la production d'isobares. En particulier, une expérience qui sera effectuée par la collaboration CERN-Rome mesurera la diffusion élastique des protons aux très petits angles, en utilisant le contrôle exceptionnellement fin des faisceaux qui peut être actuellement réalisé afin de permettre la mise en place de petits détecteurs à quelques millimètres des faisceaux en circulation.

2) Production inclusive \(pp \rightarrow X \) aux petits angles pour vérifier les propriétés d'indépendance d'échelle et pour étudier le mécanisme de la dissociation diffractive. De nombreux résultats ont été obtenus à partir de la production d'iso-

3) Étude d'une très forte impulsion transverse (expériences aux grands angles). Il a été découvert que l'émission de particules avec impulsion transverse élevée, bien que très rare, est plus fréquente qu'il n'était prévu, ce qui a conduit à penser que leur production était due à une diffusion par des constituants ponctuels à l'intérieur du noyau. De nombreux aspects de ce processus d'importance fondamentale restent à élucider par les expériences actuellement en cours.

4) Correlations entre plusieurs particules produites. L'étude des corrélations entre plusieurs particules émises porte sur un nouveau type de mécanisme. Si une particule est détectée dans une certaine région de l'espace de phase, quelles sont les chances de découvrir une autre particule dans la même direction ou dans une autre direction donnée? En répondant à cette question ou à d'autres questions analogues, on espère pouvoir établir une distinction entre différents modèles.

Dans le domaine de la recherche de nouveaux processus, l'observation d'électrons isolés produits plus fréquemment qu'il n'était prévu avec des impulsions transverses élevées constitue une autre découverte surprenante faite aux ISR. Ce résultat, également observé au Fermi National Accelerator Laboratory, peut constituer la première indication de l'existence d'un nouveau processus. Parmi les explications proposées on n'exclut pas l'hypothèse séduisante selon laquelle ces électrons à impulsion transverse élevée pourraient finalement être reconnus comme étant des produits de désintégration de particules charnées produites dans les collisions proton-proton. Des expériences actuellement en cours, ainsi que d'autres expériences de la seconde génération qui seront réalisées en 1975 et 1976, comme celle qui utilisera un solénoïde supraconducteur pour détecter les électrons sur une vaste dispersion angulaire, sont tout à fait à même de permettre de nouvelles découvertes dans ce domaine.

A la suite de cette introduction au programme des ISR, on analysera les activités en cours sur les diverses intersections de ces anneaux. Une liste complète des expériences aux ISR est présentée à la fin de ce rapport de la Division NP.
Intersection 1

Le groupe CERN-Columbia-Rockefeller, en collaboration avec le groupe Saclay, a récemment achevé la saisie des données aux ISR. Des compteurs Cerenkov au verre au plomb ont été utilisés avec un spectromètre magnétique pour étudier la production inclusive de pions (charges et neutres) avec valeurs élevées de p_T, et pour rechercher avec une bonne sensibilité les électrons directement produits. Des résultats préliminaires ont montré que de tels électrons ont été observés avec un spectre parallèle à celui des pions, mais avec un taux de production réduit d'un facteur 10^2, et dans un intervalle des impulsions transverses allant de 1,5 GeV/c à environ 4 GeV/c. Des études complémentaires montrent que ce signal plus élevé que prévu ne peut être expliqué par des désintégrations leptoniques des mesons vectoriels connus, en particulier $\pi^0 < 0.4 \sigma$. Dans cette expérience, on a également observé pour la première fois des mesons ρ avec valeur élevée de p_T, provenant de collisions de hadrons. Le rapport des mesons ρ aux mesons π est d'environ 0,5.

Il est prévu de poursuivre cette recherche à l'aide d'un appareillage plus sensible (expérience R 108), qui sera réalisé en collaboration par le groupe CERN-Columbia-Rockefeller et un groupe de l'Université d'Oxford. La technique expérimentale envisagée prévoit l'utilisation d'aimants supraconducteurs et de chambres à dérive.

Un groupe Bologne-CERN-Saclay-Rome a recherché des monopoles magnétiques dans un détecteur plastique. Aucun de ces monopoles n'a été découvert, et on a établi les limites suivantes:

$$\sigma(2\text{ électrons}) < 3 \times 10^{-36}$ cm2,
$$m_{\text{monopole}} < 24 \text{ GeV},
$$0.5 \text{ GeV} < g < 3 \text{ GeV}$$

Intersection 2

Parmi les expériences en cours sur l, celle de la collaboration CERN-Pays-Bas-Lancaster-Manchester étudie la production de particules aux petits angles, entre 30 et 200 mrad, à l'aide d'un spectromètre de 30 m de long. Au cours de l'année, la collaboration a obtenu les résultats suivants:

1) La section efficace invariante de la réaction $pp \rightarrow pX$ ne dépend de la masse manquante M, et du carré de l'énergie totale s, que par l'intermédiaire du paramètre M^2/s, c'est-à-dire que les données respectent l'invariance d'échelle et que la région de masse excitée croît linéairement en fonction de \sqrt{s}.
Il a été constaté que la distribution de rapidités d'une particule C produite dans la réaction $pp \rightarrow p_D^0 + C + X'$ (où p_D^0 est un proton d'impulsion élevée, émis sous un petit angle) est en excellent accord avec la distribution attendue pour la désintégration $X \rightarrow C + X'$ d'un état X, excité dans la collision $pp \rightarrow pX$

En se basant sur ces résultats on peut maintenant conclure de manière sûre qu'aux énergies des ISR une importante fraction des collisions met en jeu une excitation diffractive de l'un des protons incidents par l'autre

Intersection 4

Dans l'aimant à champs inversés (SFM), le volume utile pour la détection est d'environ 40 m^3. Il est rempli par des chambres proportionnelles multiplis disposées de manière à former deux détecteurs frontal autour du bras aval de chaque faisceau, et un détecteur central qui enregistre les produits secondaires émergents sous un angle. Ce spectromètre convient pour l'étude des corrélations entre particules, des multiplicités de la dissociation diffractive, ainsi que pour la recherche de nouvelles particules.

Une collaboration CERN-Hambourg-Orsay-Vienne saisit des données sur la diffusion inélastique diffractive $pp \rightarrow p \pi^+\pi^-$ et sur la diffusion élastique aux grands angles. On a enregistré près de 4×10^7 déclenchements. Pour la diffusion aux grands angles, les données couvrent toute la gamme des énergies des ISR. Il a été découvert que la position du minimum de diffusion se déplace vers les petites valeurs de $-t$ à mesure que l'énergie augmente. Le creux est le plus profond pour la plus basse énergie des ISR, et il diminue à mesure que l'énergie augmente. La section efficace au second maximum croit avec l'énergie, et pour les valeurs élevées de $-t$ elle tend vers des valeurs indépendantes de l'énergie. Deux composantes de la diffusion inélastique sont observées : production de N^* et production non-résonante du pion. Dans le référentiel de Jackson, la production par résonance de N^* présente une symétrie avant-arrière, alors que la production non-résonante est fortement asymétrique.

Une collaboration Pavie-Princeton étudie la double dissociation et la double excitation du N^* dans la voie $pp \rightarrow (p\pi^+\pi^-)(p\pi^+\pi^-)$, à différentes énergies des ISR.

![Image 9 — Vue du déteetor de riees a chambres proportionnelles instal dans l'aimant a champs invers (SFM) (CERN-293674)](image_url)
Un groupe CERN-Bologne recherche des nouvelles particules, et en particulier des quarks à l'aide d'un détecteur capable de distinguer des particules portant des charges fractionnaires.

Une collaboration CERN-Collège de France-Heidelberg-Karlsruhe étudie les correlations à deux particules.

Intersection 6

Un spectromètre magnétique à un seul bras ayant une acceptance azimutale de près de 2π a été construit au cours des quelques dernières années par une collaboration CERN-Harvard-Munich-Aix-la-Chapelle-Gênes. Récemment, ce spectromètre, avec une nouvelle configuration, a été utilisé d'abord par une collaboration Aix-la-Chapelle-CERN-UCLA, puis par un groupe Saclay-UCLA pour étudier la production du Δ⁺⁺ et celle de particules instables N°, Λ°, K°. Une collaboration CERN-Harvard-Munich-Northwestern-Riverside a proposé une nouvelle expérience pour la recherche d'électrons et de muons directement produits et émis vers l'avant. Cette expérience vise à détecter des particules charnées.

Intersection 7

La collaboration Aix-la-Chapelle-CERN-Heidelberg-Munich travaillant dans la région 1-7 observe des événements complets à l'aide d'un grand détecteur avec chambres à dards. Le déclenchement est assuré soit par un groupe d'hodoscopes à grande acceptance qui couvrent la quasi-totalité de la section efficace inélastique, soit par un ensemble de compteurs Cerenkov au verre au plomb qui sélectionnent des événements dans lesquels un π° à impulsion transverse élevée a été produit. Plus de 3 x 10⁵ clichés ont été pris et l'analyse est bien avancée. Parmi les questions étudiées dans cette expérience, on peut citer

i) les corrélations de rapidité et d'azimut entre particules chargées, pour √s = 23 et √s = 53 GeV,

ii) les corrélations entre particules chargées produites en association avec un π° à impulsion transverse élevée,

iii) la mesure de la section efficace totale pp,

iv) la production inclusive du π° et du η,

v) l'étude de la production du π°

Intersection 8

Parmi les expériences en cours ou en préparation sur 1-8, on mentionnera celle de la collaboration CERN-Rome. Des spectres inclusifs de π°, K et p ont été mesurés sur l'intervalle 0,4 < x < 0,9 des valeurs de x, aux énergies des ISR comprises entre 2 x 11,8 et 2 x 31,5 GeV, en utilisant un spectromètre magnétique qui accepte des particules émises autour de 0°. De plus, on a obtenu des données sur la production de neutrons en employant le calorimètre de neutrons de Karlsruhe.

Dans la région de fragmentation, on a étudié les corrélations entre les particules chargées détectées dans le spectromètre magnétique et dans l'ensemble des hodoscopes à compteurs du groupe Pise-Stony Brook. Les données mettent en évidence une structure de la fonction de corrélation qui peut être expliquée par la formation d'agrégats conducteurs de masse 2-3 GeV.

Dans les mesures simultanées du taux d'interaction total à l'aide des hodoscopes de Pise-Stony Brook, et de la diffusion élastique vers l'avant à l'aide des télescopes de compteurs à petit angle du groupe CERN-Rome, ont fourni des valeurs de la section efficace totale sur toute la gamme des énergies des ISR (de 2 x 11,8 GeV à 2 x 31,5 GeV). Les nouvelles données, indépendantes de la normalisation externe, sont en accord avec les mesures précédentes des groupes CERN-Rome et Pise-Stony Brook qui ont mis en évidence une forte augmentation de la section efficace totale sur la gamme des énergies des ISR.
Le programme d'améliorations du SC est maintenant presque achevé et les expériences commenceront bientôt.

Parmi les expériences réalisées avant l'arrêt du SC et actuellement analysées, on peut citer l'étude expérimentale du système metastable \((\mu^4\text{He})^{2s} \) dans l'hélium gazeux, qui a été effectuée par un groupe CERN-Piso-Bologne-Saclay. Le système muonique metastable a été obtenu en arrêtant des muons négatifs dans une cible d'hélium pur sous des pressions allant de 10 à 50 atm, et en observant la production totale ainsi que la distribution temporelle différentielle des rayons X émis en coïncidence retardée avec l'arrivée des muons. Pour chaque valeur de la pression \(P \), on a obtenu des résultats sur la vitesse de disparition totale \(\lambda_{2s}(P) \), sur les vitesses de disparition \(\lambda_{\alpha}(P) \) et \(\lambda_{\delta}(P) \) pour l'effet Auger externe et les collisions avec effet Sturk de mélange, ainsi que sur la fraction \(\epsilon_{2s}(P) \) des muons arrêtés dans l'hélium, qui forment le système \((\mu^4\text{He})^{2s} \).

On a obtenu le résultat final pour la différence d'énergie des niveaux \(2P_{3/2} \) et \(2S_{1/2} \) de l'atome muonique \((\mu^4\text{He})^+ \). La valeur expérimentale est de \(8117 \pm 5 \) \(\text{Å} \), alors que la valeur théorique est de \(8136 \pm 47 \) \(\text{Å} \). La contribution du terme de polarisation du vide intervenant dans \(\alpha^2 \) est de \(61 \) \(\text{Å} \). L'erreur sur la valeur théorique provient surtout de l'incertitude de notre connaissance du rayon électrique du noyau de l'hélium.

La construction de l'installation ISOLDE-2 est maintenant presque achevée et les premiers essais avec le faisceau sont prévus pour un proche avenir. Les nouvelles techniques adoptées pour la cible et la source d'ions, un système considérablement amélioré de manipulation du faisceau et, bien entendu, les faisceaux intenses prévus pour le SC 2 offriront un certain nombre de nouvelles possibilités expérimentales. Le programme scientifique d'ISOLDE en est à sa phase finale de préparation et les groupes d'expérimentateurs mettent au point plusieurs nouvelles expériences importantes qui élargiront le domaine de recherche d'ISOLDE. Parmi les nouvelles expériences, on peut citer l'emploi de faisceaux atomiques pour des études de spins et moments nucléaires, de pompage optique d'éléments alcalins et de spectroscopie optique avec des lasers accordables, les mesures directes de masses de nuclides d'atomes radioactifs (une première expérience)

![Figure 10](image.png)

Programme du SC
importante de ce type a été réalisée au PS en 1973), des études à haute résolution des rayons X emis par les électrons de la couche ls, la préparation de cibles radioactives pour la spectroscopie des réactions nucléaires, et l'étude des trajectoires des atomes lourds dans les gaz.

L'analyse des données enregistrées avant l'arrêt s'est poursuivie. Deux résultats obtenus par le groupe CERN-ISOLDE meritent d'être mis en relief:

1) Dans le spectre des particules alpha provenant de la désintégration de 181Hg, avec période de 3.6 s, un petit nombre d'événements alpha de haute énergie ont été observés. On pense qu'ils sont produits avec une intensité de $(9 \pm 3) \times 10^{-8}$ dans l'émission alpha retardée par l'émission bêta. Le rapport de branchement fournit une première valeur de la fonction densité correspondant à l'agregat «particule alpha plus noyau A-4». La valeur expérimentale est en accord avec une estimation théorique simple.

2) Une autre expérience a étudié les valeurs de Q des isotopes du rubidium, pour la capture de l'électron. L'analyse préliminaire des masses nucléaires résultantes dans la région Kr-Rb met clairement en évidence le terme dit de Wigner intervenant dans l'énergie de liaison nucléaire, et elle peut permettre d'obtenir la première estimation précise de cette quantité, en dehors de la région des noyaux légers. (L'énergie de Wigner est un terme de symétrie-énergie, proportionnel à la valeur absolue $|T_2|$ de la projection de l'isospin, l'énergie de symétrie normale dépend de T_2^2.)

Expérience commune avec Serpoukhov

En 1974, la quatrième expérience commune CERN-Serpoukhov (collaboration Karlsruhe-Pise-Vienne-IPEH Serpoukhov) a continué d'accumuler des données sur la réaction $\pi^+ p \rightarrow$ particules neutres, avec des particules incidentes de 15 à 40 GeV, dans une variété de conditions expérimentales. En même temps, les résultats ont été analysés et la stabilité
générale, les performances et la procédure d'étalonnage des détecteurs ont été nettement améliorées. En particulier, comme il a été indiqué à la Conférence de Londres, l'étude de la réaction \(\pi^- p \rightarrow X^0 n \) a permis une meilleure détermination de la trajectoire de Regge du méson \(A_2 \) sur un intervalle de \(t \) étendu, et les paramètres de la réaction \(\pi^- p \rightarrow X^0 n \) ont été mesurés d'après une statistique accrue de plus d'un ordre de grandeur. Des résultats préliminaires ont également été obtenus pour les états finals \(\pi^0 \pi^0 \), en utilisant des événements avec ou sans détection du neutron en coïncidence. En octobre, on a enregistré au cours de la période d'exploitation plus de \(6 \times 10^6 \) déclenchements à 40 GeV/c pour l'étude des états \(\pi^0 \pi^0 \); cela complète les données statistiques qu'il était prévu de saisir.

Au cours d'une nouvelle période d'acquisition des données, l'expérience doit pouvoir se dérouler dans les meilleures conditions possibles pour la normalisation et la correction adéquate de tous les effets systématiques concernant le processus le plus abondant, c'est-à-dire l'échange de charge du pion. Les chambres prévues pour la détection des particules dans la réaction \(K^- p \rightarrow \Lambda n \) seront également essayées. La saisie des données doit se poursuivre jusqu'à la fin de 1975.

La cinquième expérience CERN-Serpoukhov (collaboration Milan-Douhna) a été mise en place. Cette expérience vise à mesurer la dissociation diffractive des mesons à l'aide du spectromètre magnétique de 1 m de Doubna, de systèmes de chambres à fils et de détecteurs à silicone. Les mesures devraient commencer dès 1975.

Le progrès essentiel concerne la première exploitation réussie d'une cible à spins gelés, utilisant un puissant réfrigérateur à dilution, construit en collaboration avec le Laboratoire des basses températures de l'Université technique d'Helsinki.

Comme de coutume, la cible est polarisée dynamiquement dans un champ magnétique homogène de 25 kG. Elle est ensuite refroidie jusqu'à quelque 50 millidegrés puis transportée dans le grand entrefer de l'aimant spectrométrique de l'EPFZ, dans lequel le champ est de 10 kG, mais présente une moins bonne homogénéité. La cible est placée sur le trajet du faisceau, au centre du système de détection, pour l'étude de tous les paramètres de spin dans la réaction \(\pi^- p \rightarrow K^0 \Lambda^0 \) à 5 GeV/c, avec un angle solide disponible proche de 4π.

Au cours de périodes d'exploitation, en septembre, on a observé une décroissance de la polarisation inférieure à 1% dans une cible qui avait été polarisée à quelque 90%, transportée dans l'aimant spectrométrique, maintenue dans l'entrefer pendant 30 heures, puis à nouveau extraite.

![Figure 12 — Cible à spins gelés (CERN-235 10 74)](image)
On a étudié des chambres proportionnelles avec espaces de dérive sphériques. Une expérience de diffraction de rayons X dans un cristal montre que pour une inclinaison de 20° par rapport à l'axe de la chambre on peut obtenir une précision de 0.5 mm avec une longueur de dérive de 4 cm. De telles chambres ont de nombreuses applications, telles que la diffusion de rayons X, la formation d'images par sténopé, les distributions angulaires de cascades de rayons X, etc.

On a poursuivi le développement de l'installation utilisant des bandes vidéo, avec pour objectif à long terme la création d'un système d'usage général. Le système pilote a été relie à l'installation standard de saisie de données de la Division NP qui utilise des modules CAMAC et des ordinateurs HP 2100A. La capacité du système est de 10 gigaoctets par cartouche de bande vidéo (soit l'équivalent de plusieurs centaines de bobines de bande magnétique classiques), la vitesse maximale de saisie des données est de 1 megaocet/seconde.

On est parvenu à résoudre les problèmes d'équipement liés à l'enregistrement fiable avec une densité de 10⁶ bits/pouces carrés, ainsi que les problèmes de logiciel concernant l'organisation d'un grand volume de données interfolie. Il est prévu d'utiliser ce système en liaison avec une expérience de tours de 1-6 à partir de mars 1975.

En septembre 1973 a été formé un groupe CERN-Brookhaven-Rochester qui doit rechercher aux ISR des particules à impulsion transverse élevée, plus particulièrement des particules neutres et des électrons. En 1974, on a construit et essayé deux nouveaux types de détecteurs qui seront utilisés dans cette expérience.

Une chambre à ionisation de 10 t., avec plaques d'acier immergées dans l'argon liquide, a été achevée à la fin de mars. On a mesuré les fluctuations d'échantillonnage pour des gerbes cascade de pions de 10 GeV dans des plaques d'acier de 2 mm, et on a mis en évidence une distribution non gaussienne avec une largeur moyenne quadratique à proximité du pic d'environ 3,5%. On a découvert que les effets non linéaires dus à la densité élevée des particules ionisantes présentes dans la gerbe diminuent lorsque la haute tension croît: ils atteignent des valeurs de quelques pour cent pour des tensions d'ordre de 1 kV/mm. Le volume a été divisé en environ 90 sections, ce qui a permis de déterminer que la longueur de la série de plaques qui est nécessaire pour obtenir un confinement adéquat de l'énergie était d'environ 100 cm d'équivalent acier. Le pion d'énergie moyenne 10 GeV a fourni environ 0,7 fois la charge produite par un électron de 10 GeV, du fait de l'énergie de liaison nucléaire; les fluctuations de cet effet limitent la résolution à environ 15% (valeur quadratique moyenne). Des essais sont maintenant en cours pour voir si ce dernier effet peut être supprimé par emploi de plaques d'uranium réalisant une amplification par fission. Le groupe a vérifié les résultats concernant la résolution pour les électrons qui ont été obtenus il y a 18 mois, cette résolution est d'environ 2,5%; elle est limitée par des fluctuations d'échantillonnage.

Le même groupe a construit et mesure un certain nombre d'émetteurs de rayonnement de transition. Un des nouveaux effets observés est le creux d'interférence dans le spectre, provoqué par la cohérence du rayonnement émis par les faces avant et arrière de la feuille rayonnante. On dispose maintenant d'un laboratoire sec avec une humidité relative d'environ 1%, dans lequel on fabrique des feuilles de lithium métalliques pour les émetteurs de rayonnement de transition. Pour détecter le rayonnement on a utilisé des détecteurs à semi-conducteurs, afin d'obtenir la plus fine résolution en énergie en vue d'études fondamentales, et des chambres proportionnelles à fils, constituant des prototypes du montage qui sera installé aux ISR en février 1975.
<table>
<thead>
<tr>
<th>N°</th>
<th>Experience</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zone Sud</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etude de la désintégration du K*+</td>
<td>Genève-Saclay</td>
</tr>
<tr>
<td></td>
<td>Etude des réactions π⁺π⁻→Σ⁺K⁺, K⁻π⁺→π⁻Σ⁺ et d'autres processus à deux corps à 10 GeV/c</td>
<td>CERN Birmingham-Genève-Stockholm-RHEL</td>
</tr>
<tr>
<td></td>
<td>Mesure du paramètre de polarisation dans la réaction p̅p→π⁺π⁻, dans l'intervalle d'impulsions 1.2-2.4 GeV/c</td>
<td>DNPL-QMC-RHEL</td>
</tr>
<tr>
<td></td>
<td>π⁺p→Σ⁺K⁺ et π⁺p→π⁻π⁻ à 3.5 GeV/c et</td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>Mesure de la production de bosons étranges dans les réactions K⁺π⁻→K⁺π⁺π⁻ et K⁺p→K⁺π⁺π⁻π⁻</td>
<td>Geneve-Indiana</td>
</tr>
<tr>
<td></td>
<td>Mesure des amplitudes d'hélêtons pour la production associée π⁺p→K⁺Λ⁰</td>
<td>CERN-Geneve-Indiana</td>
</tr>
<tr>
<td></td>
<td>Etude systématique de la production de paires d'électrons dans l'annihilation p̅p au repos</td>
<td>Genève-Londres-Stockholm-Strasbourg</td>
</tr>
<tr>
<td></td>
<td>Etudes d'atomes contenant des K⁺, K⁻ et Π⁻, dans un nouveau faisceau de K⁻ et Π⁻ a l'arrêt</td>
<td>Karslourhe-Stockholm-Marseille-Heidelberg</td>
</tr>
<tr>
<td></td>
<td>Spectroscopie hyper-nucléaire à haute résolution</td>
<td>CERN-Heidelberg</td>
</tr>
<tr>
<td>10</td>
<td>Zone Sud Est</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mesure précise du moment magnétique anormal du muon</td>
<td>CERN-Daresbury-Mayence</td>
</tr>
<tr>
<td></td>
<td>Recherche de la diffusion neutrino-muon-électrons dans des chambres à étincelles</td>
<td>Aux-la Chapelle-Padoue</td>
</tr>
<tr>
<td>12</td>
<td>Zone Est</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production coherente d'états I = ½ sur l'hélium</td>
<td>CERN-RHEL-UCL-Uppsala</td>
</tr>
<tr>
<td></td>
<td>Désintégrations de K₁⁺⁺⁺⁺</td>
<td>CERN-Heidelberg</td>
</tr>
<tr>
<td></td>
<td>Mesure de la durée de vie du Σ⁰, utilisant l'effet Primakoff</td>
<td>CERN-Heidelberg</td>
</tr>
<tr>
<td></td>
<td>Etude de la diffusion élastique d'hyperons négatifs</td>
<td>Orsay-Ecole polytechnique-Strasbourg</td>
</tr>
<tr>
<td></td>
<td>Etude de la réaction K⁺p→K⁺p dans l'intervalle d'impulsions 2 ≤ Pₚ ≤ 16 GeV/c</td>
<td>Collège de France-Paris Padoue</td>
</tr>
<tr>
<td></td>
<td>Bispéctromètre symétrique pour la recherche systématique de masses lourdes (essai)</td>
<td>IISN Bruxelles-IPN Orsay</td>
</tr>
<tr>
<td></td>
<td>Expérience propose pour l'étude de la réaction π⁺p→π⁺π⁻ avec une cible polarisée</td>
<td>CERN-MPI Munich</td>
</tr>
<tr>
<td></td>
<td>Production et étude d'isotopes alcalins très riches en neutrons</td>
<td>Clermont-Ferrand-Lyon-Strasbourg-Varsovio</td>
</tr>
<tr>
<td></td>
<td>Etude d'états excités d'hypernoyaux ¹He et ²H</td>
<td>Paris-Heidelberg</td>
</tr>
<tr>
<td>21</td>
<td>Zone Ouest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etude du boson d'étrangeté zero, avec déclenchement par neutrons (stromètre Omega)</td>
<td>Birmingham-RHEL-Tel Aviv-Westfield College</td>
</tr>
<tr>
<td></td>
<td>Echange baryonique avec production d'un Λ vers l'avant</td>
<td>CERN-EPFZ-Karlsruhe-Fribourg-Saclay</td>
</tr>
<tr>
<td></td>
<td>Production de paires baryon-antibaryon (Oméga)</td>
<td>Glasgow-Saclay</td>
</tr>
<tr>
<td></td>
<td>Etude de résonances K⁺ produites de manière non diffractive, avec le spectromètre Oméga</td>
<td>CERN-EPFZ</td>
</tr>
<tr>
<td></td>
<td>Etude de réactions à quasi-deux corps se réalisant selon le mécanisme de l'échange baryonique (Oméga)</td>
<td>CERN Collège de France-Ecole polytechnique-Orsay</td>
</tr>
<tr>
<td></td>
<td>Expérience proposée pour étudier la longueur de diffusion π⁺ (Oméga)</td>
<td>CERN-Haifa-Saclay</td>
</tr>
<tr>
<td></td>
<td>Etude de désintégrations rares de mésons (Oméga)</td>
<td>Barr-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milan-Purdue-Vienne</td>
</tr>
</tbody>
</table>
EXPÉRIENCES EN COURS AUX ISR EN 1974

<table>
<thead>
<tr>
<th>No.</th>
<th>Expérience</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interaction 1</td>
<td>CERN, Columbia, Rockefeller-Victor, Bologna, CERN, Saclay, Rome</td>
</tr>
<tr>
<td>2</td>
<td>Recherche de monopoles magnétiques</td>
<td>CERN, Siena, Bologna, CERN, Saclay, Rome</td>
</tr>
<tr>
<td>3</td>
<td>Corrélations associées à des particules à impulsion transverse élevée</td>
<td>CERN, Paris, Boston, Manchester, Manchester, Manchester, Manchester, Manchester</td>
</tr>
<tr>
<td>4</td>
<td>Distributions de multiplicité et de rapides de collisions diffuses</td>
<td>CERN, Hambourg, Orsay, Vitas, Paris, Princeton</td>
</tr>
</tbody>
</table>
La reconstruction du synchro-cyclotron, qui a débuté en juin 1973, a occupé la majeure partie de 1974. Sa durée prévue, qui était d’un an, a été légèrement dépassée mais l’accélérateur, maintenant appelé SC2, a été entièrement assemblé au cours de septembre 1974 et les premiers protons ont été accélérés le 30 septembre à trois heures du matin. L’accélération à la pleine énergie de 604 MeV a été essayée et observée le 1er octobre. Bien que fonctionnant à un taux de répétition réduit, SC2 a presque atteint l’intensité nominale par impulsion après quelques travaux d’optimisation. Les essais du faisceau interne ont été repris en novembre et le premier faisceau de protons extraits a été produit le 21 novembre. Avant la fin de l’année, le rendement d’extraction a été porté à 50% et un faisceau de protons a été envoyé dans la ligne alimentant ISOLDE, permettant ainsi d’effectuer un premier essai du séparateur d’isotopes reconstruit.

Les objectifs du programme d’améliorations, tant en ce qui concerne l’intensité de faisceau par impulsion de machine que le taux d’extraction de faisceau, ont été par conséquent atteints dans les premières semaines de la mise en service de SC2. S’il est vrai que la dernière phase des travaux s’est révélée moins longue que prévu, le projet n’en a pas moins connu de nombreuses périodes difficiles au cours de l’année et des retards importants n’ont pu être évités que grâce aux efforts résolus du personnel du MSC. Les résultats satisfaits des premiers essais ont été pour les constructeurs un nouvel encouragement à parfaire leur travail en assurant la fiabilité requise pour les recherches de physique.

Division Machine Synchro-cyclotron

Introduction
La reconstruction du SC

Les mesures du champ magnétique du SC ont commencé en janvier 1974. Pour assurer la décroissance optimale du champ en fonction du rayon, le programme de modulation de fréquence du système d’accélération devait être connu avec précision et il a été déterminé avec chacun des deux condensateurs rotatifs dans des conditions de fonctionnement réelles. Malgré de grandes difficultés rencontrées avec les condensateurs et l’équipement de commande, ces mesures ont été achevées en février 1974, bien que l’un des condensateurs n’ait été livré que deux mois auparavant. Les résultats ont permis de calculer une forme de champ optimisée, qui a été obtenue en quatre cycles successifs de mesures et de corrections. Afin de pouvoir disposer du temps nécessaire pour l’analyse des données de champ et pour l’étude et la fabrication des cales magnétiques, d’autres travaux d’installation ont été exécutés entre les mesures d’aimant. Celles-ci ont été terminées à la fin d’août après une correction finale de la région d’extraction.

Le «D», qui faisait partie du système résonateur utilisé pour les mesures de tension et de fréquence sur le banc d’essais HF, a été installé dans le SC en juillet. Les essais de vide ont révélé l’existence de fuites occasionnées par corrosion des raccords brasses des circuits de refroidissement obtenus par laminage des panneaux du «D».

Bien que le danger de corrosion ait été connu et le matériau nécessaire au remplacement des panneaux commandé, les fuites menaçaient de provoquer un retard important. Une réparation d’urgence effectuée par le personnel de l’Atelier central a sauvé la situation et permis au programme de se poursuivre. Cependant, il faudra équiper le «D» de nouveaux panneaux avant que le SC2 puisse être utilisé pendant des périodes prolongées avec un faisceau à pleine intensité.
Un premier essai du condensateur et de son installation de vide sur la machine, effectué en juillet, a fait apparaître de nombreux petits défauts d'ordre mécanique, des erreurs d'alignement et un contact HF insuffisant entre divers éléments. Néanmoins, le condensateur a fonctionné de façon satisfaisante sous son blindage magnétique et en présence d'un champ magnétique. On a constaté que les pertes par courants de Foucault concordaient étroitement avec les calculs fondés sur des essais sur modèle.

La source d'ions et son support, qui est équipé d'un système de positionnement à quatre tubes excentriques et de deux sas, avaient subi des essais complets sur un bâti de 12 m de hauteur dans le Hall 181 des ISR. Leur installation au SC en septembre s’est effectuée sans surprise et a été achevée dans les délais. Le condensateur rotatif et l'oscillateur ont été ensuite installés et, après un certain conditionnement, une tension de crête sur le « D » de 20 kV a été atteinte, en faisant tourner le condensateur rotatif à pleine vitesse, mais en ne l'excitant que sur l'un des 16 cycles de modulation de fréquence.

Les essais d'accélération ont commencé le 30 septembre. Une cible, placée sur un rayon de 30 cm afin de limiter le plus possible la radioactivité induite de la machine, indiquait la présence d'un faisceau dès que l'impulsion de la source d'ions était correctement synchronisée avec la haute fréquence. L'accélération à pleine énergie a été observée le 1er octobre. Après quelques essais effectués pour déterminer la meilleure position de la source d'ions par rapport aux électrodes centrales de focalisation, une intensité de faisceau d'environ 0,6 μA a été mesurée à un taux de remplissage de 1/16. Au taux maximal de répétition d'impulsions, cette intensité correspondait à un faisceau interne d'environ 10 μA, valeur nominale du SC2.

Les essais de faisceau ont été repris à la mi-novembre après que des modifications aient été apportées à l'installation de vide du condensateur rotatif. Ils ont montré que les amplitudes bétatroniques radiales et axiales du faisceau interne se situent dans les limites prévues. Un essai d'extraction de faisceau a été tenté et immédiatement réussi le 21 novembre. Le comportement du faisceau dans la région d'extraction du SC a été étudié avec un système de sondes à émission secondaire qui a permis une certaine optimisation et alors que le cyclotron fonctionnait toujours à seulement 1/16 de son taux de répétition normal, il a produit un faisceau de protons externes d'une intensité supérieure au double de l'intensité la plus élevée atteinte par le SC1. Les mesures des intensités de faisceaux...
internes et externes effectuées en décembre ont fait apparaître que le rendement d'extraction était de 50%, chiffre dix fois plus élevé qu'avant la reconstruction et jamais atteint par aucun autre synchro-cyclotron.

Le faisceau externe a ensuite été aligné sur la ligne de faisceau ISOLDE et les premiers protons fournis par le SC2 ont atteint la cible d'ISOLDE le 17 décembre 1974.

Travaux liés au programme d'améliorations du SC

Installation haute fréquence

Au cours de l'année, l'installation haute fréquence, qui n'était que partiellement achevée lors de sa livraison par l'industrie, a été mise en service. Le condensateur rotatif, qui assure la modulation de fréquence, et son réchauffe ont fonctionné sur toute la gamme de fréquences de 30,5 à 16,7 MHz à plus de 20 kV et la variation de la fréquence en fonction du temps a été mesurée dans différentes conditions de réglage.

Pour atteindre ce résultat, l'équipe du CFRN, composée du Groupe Reches et développement et de personnel fourni par l'Atelier central, a dû effectuer de nombreuses réparations et améliorations sur les éléments électriques et mécaniques. Beaucoup d'autres restent à faire avant que l'installation puisse fonctionner de façon fiable, ce qui sera particulièrement important lorsqu'il sera difficile d'intervenir fréquemment par suite de la radioactivité du matériau. De nombreux composants font donc actuellement l'objet d'une nouvelle étude technique.

Le système d'enregistrement d'alarmes du SC fonctionnant avec un ordinateur a été largement utilisé pendant les essais HF et a facilité la localisation des pannes.

![Image de l'installation haute fréquence](image1.jpg)
![Image du système d'enregistrement d'alarmes du SC](image2.jpg)
Mesure et correction des champs magnétiques

Le dispositif de mesure de champ magnétique commandé par ordinateur a été achevé et installé dans l'aimant du SC en janvier 1974. Au cours d'un total de 103 jours environ 700 000 valeurs de champ ont été mesurées avec 320 plaques à effet Hall montées sur huit ensembles différents de supports mécaniques. Toutes les données de champ calculées par l'ordinateur ont été imprimées sur papier, enregistrées sur cartes perforées et stockées sur bande magnétique. Quatre cycles de mesure et de correction du champ magnétique au centre de l'aimant et dans la région d'extraction ont été effectués. Les centres magnétique et géométrique de la machine coïncident maintenant à une fraction de millimètre près. La dernière série de mesures, terminée en septembre 1974, a donné une intensité théorique de faisceau accéléré d'environ 20 μA pour une tension de crête de 30 kV sur le «D» et un rendement d'extraction théorique d'environ 70% pour les protons présentant les amplitudes radiales prévues.

Installations de cibles internes et systèmes d'extraction

L'installation de cibles internes comprenant quatre cibles pouvant être déplacées de façon indépendante, a été mise en place dans le SC et son fonctionnement sous vide a été essayé, ainsi que le fonctionnement du canal d'extraction électromagnétique et de la bobine à champ pulsé qui fournit un faisceau de protons extrait d'un taux de remplissage élevé.

Faisceaux secondaires et zones d'expérimentation

La reconstruction du système de faisceaux secondaires issus des cibles internes du SC2 est achevée et les éléments pour la première série de faisceaux de mésons qui seront fournis par les cibles externes sont disponibles. Une cible cryogénique pour la production de neutrons et de mésons est en construction. Toutes les alimentations pour le transport de faisceaux ont été revisées et sont prêtes à fonctionner.

La Division a repris ses discussions d'étude de programmes avec les utilisateurs pour les expériences immédiates et futures, et plusieurs équipes d'expérimentateurs ont installé leurs équipements dans le hall de protons et dans la zone ISOLDE. La Division MSC a participé à des discussions concernant la construction éventuelle et l'utilisation d'un ensemble aimant à grande ouverture — chambres à fils — au SC2.

Services généraux

Le réseau de câbles nouvellement posé a été raccordé et soumis à des essais. Les nouvelles installations de refroidissement ont été achevées. Les systèmes de sécurité et de communication ont été réinstallés.

Tout en supportant la charge de l'ensemble des travaux mécaniques exigés par le programme d'améliorations du SC, le Groupe Bureau technique et atelier du MSC a procédé à l'étude technique des implantations de faisceaux et de l'équipement pour des expériences au PS et aux ISR. Il a participé également à la conception de spectromètres destinés à être utilisés au SPS. Il a construit de nombreux équipements d'expérimentation, notamment une pompe à hélium liquide et des supraconducteurs pour un solenoïde.

La Division a eu des discussions avec le «Groupe pour l'accélérateur national à ions lourds» (GANIL), de France, en vue d'une éventuelle collaboration pour l'étude des problèmes posés par l'accélération d'ions lourds. Elle a également participé à la préparation de l'Exposition sur la technologie du CERN où sa contribution a suscité un grand intérêt.
Figure 6 — Disposition des rails d'exposition du SCK

Salle des protons

Les faisceaux de protons de cette salle sont ceux des tubes installés dans le hall du SCK et utilisés pour la tâche de protons extrêmes.
La zone 1 est celle des faisceaux produits dans l'anneau de 2 à 2 p.m. Elle est utilisée actuellement en tant que laboratoire pour l'étude des faisceaux de neutrons.
La zone 2 est celle des faisceaux de 1 à 100 à 400 MeV produits sur les tubes H D ou B. Ils peuvent également être utilisés pour les faisceaux expérimentaux de protons provenant de la diffusion sur des carbures.

Zone neutrons

La tâche complète de protons extrêmes est utilisée pour la spectroscopie et la chaine anaérobic dans ISO ID.
Le rapport se divise en deux parties: les résultats de physique, et les activités techniques.
Dans la première partie, on notera la consolidation des résultats fondamentaux sur les courants faibles neutres aussi bien semi-leptoniques que leptoniques.
On remarquera aussi l'ampleur prise par les analyses en déphasage des systèmes multicorps.
Dans la partie technique, on a donné une large place à la réparation de l'aimant de BEBC, et à l'explication fort peu banale de l'accident.
Division Chambres à traces

RÉSULTATS DE PHYSIQUE

Expérience neutrino

Courants neutres

a) Semi-leptoniques

L'analyse complète des événements sans muons a été publiée en janvier 1974. Cette analyse montre que les rapports NC/CC sont respectivement pour le neutrino et l'anti-neutrino de $0,23 \pm 0,04$ et de $0,43 \pm 0,12$, après toutes corrections. Le comportement en énergie, en multiplicité et en distribution de charge des événements est très similaire pour les courants neutres (NC) et les parties hadroniques de courants chargés (CC). Les vérifications faites jusqu'à présent, sur des effets qui pourraient conduire à une sous-estimation du bruit de fond, ont donné des résultats négatifs en ce qui concerne la perte d'événements neutrons associés (AS) fournissant la normalisation du bruit de fond, ainsi que dans le rapport des efficacités de détection et d'identification des différents canaux CC, NC, AS. En particulier, l'analyse des photos de protons a permis de vérifier que les estimations des effets de cascade des neutrons faites par Monte-Carlo étaient bien correctes. Cette analyse a également fourni des renseignements précis concernant le comportement dans la chambre du bruit de fond, grâce à l'étude des étoiles de neutrons produites dans ce «run».
La statistique des courants neutres neutrino a été accrue d'un facteur de l'ordre de 2, et les nouveaux résultats sont bien compatibles avec les précédents.

La distribution de charge des événements NC a été trouvée incompatible avec celle des étoiles de neutrons à un niveau de probabilité de 10^{-4}, fournissant une indication nouvelle sur la nature des événements NC. De plus, l'étude de la distribution spatiale des événements NC a montré qu'ils se comporteient en plus grande partie comme des neutrons, et que la proportion de neutrons ne peut qu'y être faible et compatible avec celle obtenue par le Monte-Carlo.

L'application du modèle théorique donne la première mesure du paramètre de mélange dans la théorie de Weinberg-Salam

$$\sin^2 \theta = 0.39 \pm 0.05$$

b) Leptoniques

Dans la nouvelle exposition effectuée grâce au fonctionnement du synchrotron injecteur (PSB), un deuxième candidat à la réaction

$$\bar{\nu}_\mu + e^- \rightarrow \bar{\nu}_\mu + e^-$$

a été trouvé avec les caractéristiques suivantes

$$P = (500 \pm 120) \text{ MeV/c}$$
$$\theta = (2 \pm 2) \text{ degrés}$$

Ce candidat est situé dans la deuxième partie de la chambre.
On attend 0,14 événement de bruit de fond dû surtout aux réactions $\nu_e + n \rightarrow e^- + (p)$, où le proton est trop peu énergique pour être détecté. Ce bruit de fond est calculé d'après les réactions analogues $\nu_x + n \rightarrow \mu^- + (p)$. Il est peu probable ($p < 1\%$) que ces deux événements soient attribuables à ce bruit de fond.

La recherche des électrons positifs e^+ satisfaisant aux mêmes critères que les e^- et créés par les antineutrinos électrons ($\bar{\nu}_e$), a permis de vérifier que le bruit de fond dans les électrons négatifs n'a pas été sous-estimé.

Il en résulte que dans la voie leptotonique aussi de bonnes indications existent en faveur de l'existence des courants neutres.

Courants chargés

On extrait la section efficace différentielle des neutrinos et antineutrinos d'énergie comprise entre 1 et 11 GeV avec les événements à grand transfert ($> 1 \text{ GeV}^2$) et à grande masse hadronique ($> 2 \text{ GeV}$) on a vérifiée la loi d'invariance d'échelle. Cette loi est d'ailleurs valable jusque dans les régions de plus basses valeurs pour ces quantités, à condition de choisir la variable de Bloom-Gilman.

Les fonctions de structure extraites des données sont en très bon accord avec celles tirées de l'électroproduction et avec le très simple modèle des quarks dans lequel ceux-ci portent une charge fractionnaire. La règle d'Adler et la distribution de charge des pions donnent aussi des vérifications compatibles avec ce modèle. (Collaboration Aix-la-Chapelle-Bruxelles-Ecole polytechnique (Paris)-Milan-Orsay-University College (Londres))

Figure 3 — L'expérience de chambres à scintilles (Aix-la-Chapelle-Padua) sur les courants neutres placée derrière Gargamelle (CTRX-315 6 74)
Une analyse en ondes partielles a été faite avec le système \((K^- \pi^+) \) observé dans la réaction d'échange de charge

\[
K^- p \rightarrow n(K^- \pi^+)
\]
produite par les \(K^- \) de 10 et 16 GeV/c.

L'objet principal de l'analyse était d'étudier le comportement de l'état \(J^p = 0^+ \), c'est-à-dire l'onde \(S \), du système \((K\pi) \) dans la région de masse \((K\pi) \) comprise entre 0,64 et 1,68 GeV, cet état prédomine et sa distribution en masse ainsi que la variation en phase correspondent bien à une ressonance décrite par une fonction de Breit-Wigner ayant une masse \(M^* = (1245 \pm 30) \) MeV et une largeur \(\Gamma^* = (455 \pm 80) \) MeV. Cet état correspondrait au meson kappa signalé fréquemment dans d'autres expériences mais avec des conclusions discordantes quant à sa nature - ressonance ou pas - masse et largeur (Collaboration Aix-la-Chapelle-Berlin-CERN-Londres-Vienne).

Une mesure récente à Brookhaven de la section efficace totale \(\bar{K}N \) a établi l'existence d'une bosse étroite aux alentours de 1580 MeV dans l'état de spin isotopique \(l = 1 \).

Des anciennes données d'une expérience de formation \(K^- p \) entre 500-600 MeV/c (énergie totale dans le centre de masse comprise entre 1560 et 1600 MeV) ont été réexaminées en combinant les événements dans des intervalles d'énergie plus petits qu'auparavant (5 MeV au lieu de 10 MeV). Une étude en ondes partielles des différents états finals a permis d'établir un effet significatif dans le canal \(\Delta \pi \) et dans l'onde correspondant à un état avec \(J^* = \frac{3}{2}^- \). Les paramètres de cette ressonance seraient masse = \(1582 \pm 4 \) MeV, largeur = \(11 \pm 4 \), amplitude \((\Delta \pi) \) à la ressonance = 0,10 \pm 0,02.

Section efficace totale \(K^+ \pi^- \)

La méthode d'extrapolation de Chew et Low, utilisée précédemment pour l'étude de la diffusion élastique \(K^+ \pi^- \rightarrow K^+ \pi^- \), peut être généralisée à la réaction \(K^+ \pi^- \rightarrow X \), où \(X \) représente l'ensemble des états finals, on obtient ainsi la section efficace totale \(\sigma(K^+ \pi^-) \). Par ce moyen la section efficace totale a été mesurée, entre le seuil et \(E = 1,8 \) GeV (énergie totale du système \(K^+ \pi^- \)), en utilisant les événements de la réaction \(K^+ p \rightarrow X \Delta \pi^0 \) à 8,2 GeV/c. Pour les événements périphériques (peu de valeurs de \(|t| \)), l'alignement du spin du \(\Delta \pi^0 \), mesuré par les éléments de la matrice densité de spin, indique que la réaction est dominée par l'échange de \(\pi \). Les résultats montrent qu'en dessous de \(E = 1,4 \) GeV, la section efficace métaguste est négligeable. Elle croît ensuite lentement, et la section efficace totale semble se stabiliser vers \(\sigma(K^+ \pi^-) = 20 \) mb (Collaboration Anvers-CERN-Mons-Serpoukhov).

Analyses en ondes partielles

Depuis quelques années, les analyses en ondes partielles, employées habituellement pour l'étude des réactions à deux corps dans les expériences de formation du type \(\pi N \rightarrow \pi N, K^- N \rightarrow \Lambda n \), ont été développées à l'aide de quelques approximations.
raisonnables, pour étudier les systèmes à trois corps produits dans des états finals à quatre particules observées à énergie totale fixe.

Nous donnons par la suite quelques-uns des résultats les plus intéressants obtenus avec cette méthode.

Système \((K\pi\pi)\)

L'analyse en ondes partielles du système \((K\pi\pi)\), dont les résultats furent déjà présentés en 1973, a été étendue au système \((K\pi\pi)\pi\). L'objectif était de comparer le comportement de la réaction diffusive \(K^- p \rightarrow p (K\pi\pi)\) à la réaction d'échange de charge \(K^- p \rightarrow n (K\pi\pi)\pi\).

L'analyse a été faite sur le système neutre \((K\pi\pi)\pi\) dans la bande de masse comprise entre 1.04 et 1.56 GeV, région intéressante puisque dans le système \((K\pi\pi)\) elle est dominée par le « meson Q », objet de nombreuses controverses. Des interactions produites par des \(K\) incidents à 8, 10 et 16 GeV/c ont été employées, et les résultats suivants ont été obtenus :

1) pour \(2/3\), le système \((K\pi\pi)\pi\) est produit dans les états de spin-parité non naturels \(J^p = 0\) et ne correspond presque entièrement à la résonance \(K^*\) (1420),
2) les états de spin-parité non naturels sont produits en grande majorité (80% des cas) par un échange de parité naturelle.

Les deux résultats précédents observés dans la réaction (2) sont très similaires à ce qui a été trouvé pour la réaction diffusive (1). Cependant, la dépendance en énergie des sections efficaces \(\sigma\) est très différente dans les deux cas. Exprimée sous la forme \(\sigma \propto p^n\), où \(p\) est l'impulsion dans le système du laboratoire du \(K^-\) incident, on trouve \(n = 1.5 \pm 2\) pour celles de la réaction (2), tandis que pour la réaction diffusive (1) les valeurs de \(n\) oscillent entre 0 et 0.5 (Collaboration Aix-la-Chapelle-Berlin-CERN-Londres-Vienne).

Système \((\pi^- \pi^- \pi^+)\)

Ce système a été étudié dans la réaction

\[\pi^- p \rightarrow (\pi^- \pi^- \pi^+) \]

à 8, 16 et 23 GeV/c.

Dans 93% des cas, le système \((3\pi)\) est produit dans des états de spin-parité non naturels \((0^-, 1^-, 2^+ \text{ et } 3^-)\), toujours par échange de parité naturelle. La section efficace différentielle du \(t\) s'accumule vers les faibles valeurs de \(t\), à l'exception de l'état \(2^- D\) qui décroît à \(t \sim 0\). La dépendance en énergie des sections efficaces des états avec \(J^p = 1^+, 2^+ \text{ et } 3^-\) dans les régions du \(A_1, A_2 \text{ et } A_3\), respectivement, est à peu près la même \((p_{lab})^n\) avec \(n = 0.3 \pm 0.2\). Ceci implique une production diffusive de ces états.

La phase de l'état \(1^+ S\) varie tres peu dans la région de masse du \(A_1\), montrant une fois de plus que celui-ci n'a pas les caractéristiques d'une résonance simple. Au contraire, la phase de l'état \(2^+ D\) dans la région de masse du \(A_2\) a un bon comportement résonant (Collaboration Aix-la-Chapelle-Berlin-Bonn-CERN-Heidelberg-Londres-Vienne).

Etude comparée des systèmes \((\pi^- \omega)\) et \((K^- \omega)\) à des énergies différentes

Les propriétés et les mécanismes de production des systèmes \((\pi^- \omega)\) et \((K^- \omega)\) produits dans les réactions

\[\pi^- p \rightarrow (\pi^- \omega)p \]

à 4, 5, 8 et 16 GeV/c et

\[K^- p \rightarrow (K^- \omega)p \]

à 10 et 16 GeV/c ont été étudiés.
Dans le système $(\pi^+ \pi^0)$ le meson B est observé dans l'état $J^p = 1^+$, comme attendu. Sa production est due essentiellement à un échange de parité naturelle. La distribution de masse du système $(K\pi\pi)$ montre une forte concentration pour des valeurs inférieures à 2 GeV. Ce système se trouve presque entièrement dans l'état $J^p = 1^+$ produit par échange de parité naturelle. Cependant, et contrairement au système $(\eta \pi \pi)$, on n'observe pas de contribution de l'état $J^p = 1^-$. Sa production serait due à un mécanisme diffractif puisque la section efficace reste constante lorsque l'énergie augmente tandis que le système $(\eta \pi \pi)$ décroît comme p^{-2}.

Système (KKK)

Deux études indépendantes du système de trois mesons K ont été faites. L'une étudie la réaction

$$K^+ p \rightarrow (K^+ K^+ K^-) p$$

à 8, 12 et 16 GeV/c, l'autre la réaction

$$K^- p \rightarrow (K^- K^- K^+) p$$

à 10 et 16 GeV/c.

Des résultats très similaires sont obtenus dans les deux cas et, qui plus est, le comportement des trois mesons K ressemble de manière frappante à celui des systèmes $(K\pi\pi)$ et $(\eta \pi \pi)$ produits en association avec un protone dans des états finals par des K^\pm ou π incidents. Ainsi, les masses effectives des trois kaons s'accumulent aux valeurs faibles et l'état $J^p = 1^+$, produit par échange de parité naturelle, prédomine. Cet état se désintègre essentiellement en $K^\pm \phi$ [à comparer aux systèmes $J^p = 1^+$ en $K^*\pi$ et $A_1 \rightarrow \pi\pi\pi$]. Pour les masses supérieures à 2 GeV on voit apparaître $J^p = 2^-$ donnant $K^\pm \pi$. (K*p Collaboration Birmingham-Bruxelles-CERN-Mons-Paris-Saclay, K*p Collaboration Aix-la-Chapelle-Berlin-CERN-Londres-Vienne)

Réaction $\pi^+ p \rightarrow A_2 p$

Cette réaction a été analysée à 3.9 GeV/c en utilisant les désintégrations $A_2 \rightarrow \rho^0 \pi^+ \eta \pi$ et $K^0 K^\pm K^\mp$. Une étude en ondes partielles du mode $\rho^0 \pi$ a montré que la seule contribution importante est due à l'état $J^p = 2^-$ avec un moment orbital $\rho\pi$ égal à 2. À cette énergie, la production du A_2 par échange de parité non naturelle — $(36 \pm 4) \mu b$ — est presque aussi grande que la production par échange de parité naturelle — $(50 \pm 4) \mu b$ —, la seule observée à haute énergie.

Les structures observées dans la section efficace différentielle sont interprétées en termes de diagrammes d'échange. En particulier, le comportement aux petits angles est compatible avec un couplage nBA assez important déjà indiqué par l'observation, dans la même expérience, du mode de désintégration $A_2 \rightarrow \omega \pi \pi$ (Collaboration CERN-Saclay).

Réactions inclusives

Multiplicités

Une étude a été entreprise sur la multiplicité de particules chargées produites par des π de 100 GeV interagissant dans la chambre à bulles de 30° de NAL. Combinant les nouveaux résultats avec ceux obtenus à des énergies plus basses, on observe que, lorsque l'impulsion incidente augmente, les sections efficaces pour des événements avec multiplicité donnée $\sigma_0 (n > 4)$ montent, passent par un maximum et puis commencent à décroître. Pour $n = 2$ la section efficace inélastique devient à peu près constante entre 20 et 30 GeV/c et celle pour $n = 0$ décroît régulièrement suivant une loi en p_{lab}^1.

56
Pour toutes les valeurs de n ≥ 2 les observations sont bien représentées par la même fonction des deux variables définies par

\[y = \frac{n \times \sigma_n}{\sigma_{inel}} \]

(où \(\sigma_n \) est la section efficace pour la multiplicité \(n \) et \(\sigma_{inel} \) la section inélastique totale) et

\[x = \frac{< n >}{n} \]

(où \(< n > \) est la multiplicité moyenne)

Ces résultats peuvent être interprétés par un modèle d'interaction à deux composantes : une composante diffuse donnant lieu à des faibles multiplicités et une autre plus centrale avec des multiplicités plus grandes.

Production inclusive du \(\Delta^+ \) dans les interactions \(K^- p \) et \(\pi^- p \)

Dans la réaction

\(K^- p \rightarrow \Delta^+ + \text{n'importe quoi} \)

la section efficace différentielle exprimée en fonction de \(M^2/s \) — où \(M \) est la masse du système accompagnant le \(\Delta^+ \) — et \(s \) le carré de l'énergie totale dans le centre de masse — est la même à 10 et 16 GeV/c. Cette invariance d'échelle se manifeste déjà pour des faibles valeurs de \(M \) dans cette réaction et est à contraster avec sa non-observation dans la réaction

\(\pi^- p \rightarrow \Delta^+ + \text{n'importe quoi} \)

étudiée à 8, 16 et 23 GeV/c.

Un modèle d'échange à triple reggeon explique ces résultats si \(R^- \) est le reggeon échangé au vertex \(p-\Delta^- \), le système \(R^- K^- \) est exotique dans la réaction \(K^- p \) et ainsi, en acceptant le principe de dualité, dans la diffusion \(K^- R^- \) l'échange de pomeron doit dominer à des energies plus basses que dans la réaction \(\pi^- p \), ou \(\pi^- R^- \) n'est pas exotique et, par conséquent, d'autres échanges que celui du pomeron peuvent intervenir (Collaboration Aix-la-Chapelle - Berlin - Bonn - CERN - Cracovie - Heidelberg - Londres - Vienne - Varsovie).

Invariance d'échelle dans les réactions \(K^+ p \rightarrow \pi^+ + M \) et \(K^- p \rightarrow \pi^- + M \)

Les sections efficaces invariantes des mesons \(\pi^\pm \) produits dans la région de fragmentation du proton dans les réactions

\(K^+ p \rightarrow \pi^+ + M \)

à 8,2 et 16 GeV/c et

\(K^- p \rightarrow \pi^- + M \)

à 10 et 16 GeV/c ont été comparées. \(M \) représente n'importe quel système accompagnant le \(\pi^\pm \).

Une invariance d'échelle est observée dans la production de \(\pi^- \) mais pas dans celle de \(\pi^+ \).

Pour la réaction générale

\(a + b \rightarrow c + \text{n'importe quoi} \),

plusieurs modèles théoriques existent qui, se basant sur l'exotérité des systèmes \(a b, a b, a c \) ou \(b c \), prévoient l'établissement de l'invariance d'échelle à des énergies relativement faibles. Les résultats expérimentaux s'accordent mal à ces prévisions théoriques à moins d'introduire des hypothèses additionnelles (\(K^- p \), Collaboration Aix-la-Chapelle-Berlin-CERN-Londres (Imperial College et Westfield College)-Vienne; \(K^+ p \) Collaboration Birmingham-Bruxelles-CERN-Mons-Paris-Saclay).
Exploitation des Chambres à Bulles en 1974

<table>
<thead>
<tr>
<th>Faisceau</th>
<th>Vitesse de l'expérience</th>
<th>Chambre</th>
<th>Nombre de photos (en millions)</th>
<th>Laboratoire(s)</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(uK^0)</td>
<td>14 GeV/c</td>
<td>T216</td>
<td>HBC200</td>
<td>407</td>
<td>Cambrige, Imperial College (Londres), Westfield College (Londres)</td>
</tr>
<tr>
<td>(uK)</td>
<td>16 GeV/c</td>
<td>T220</td>
<td>HBC200</td>
<td>585</td>
<td>An La Chapelle, Berlin, CRN, Imperial College (Londres), Vienne, Westfield College (Londres)</td>
</tr>
<tr>
<td>(u\pi^-)</td>
<td>4 GeV/c</td>
<td>T227</td>
<td>HBC200</td>
<td>788</td>
<td>Bergen College de France, Ecole polytechnique, Madrid, Stockholm</td>
</tr>
<tr>
<td>(u\pi^-)</td>
<td>16 GeV/c</td>
<td>T201</td>
<td>HBC200</td>
<td>764</td>
<td>An La Chapelle, Berlin, CERN, Hambourg</td>
</tr>
<tr>
<td>(u\pi^-)</td>
<td>24 GeV/c</td>
<td>T155</td>
<td>HBC200</td>
<td>245</td>
<td>Bonn, Hambourg, Munich</td>
</tr>
<tr>
<td>(u\pi^-)</td>
<td>12 GeV/c</td>
<td>T225</td>
<td>HBC200</td>
<td>389</td>
<td>Amsterdam, Liverpool, Stockholm</td>
</tr>
<tr>
<td>(u\pi^-)</td>
<td>82 GeV/c</td>
<td>T209</td>
<td>HBC200</td>
<td>202</td>
<td>Birmingham, CERN, Glasgow, L.P.N.H.E. (Paris)</td>
</tr>
<tr>
<td>(k\pi^-)/K_S</td>
<td><1 GeV/c</td>
<td>T312</td>
<td>HBC200</td>
<td>611</td>
<td>Bologne, Edimbourg, Glasgow, Pse, RHEL</td>
</tr>
<tr>
<td>(k\pi^-)/K_S</td>
<td>1.2-1.5 GeV/c</td>
<td>T233</td>
<td>HBC200</td>
<td>483</td>
<td>Birmingham, L.P.N.H.E. (Paris)</td>
</tr>
<tr>
<td>(m_eK^-)/K_S</td>
<td>4.2 GeV/c</td>
<td>T112</td>
<td>HBC200</td>
<td>900</td>
<td>Amsterdam, CERN, Nimigue, Oxford</td>
</tr>
<tr>
<td>(m_eK^-)/K_S</td>
<td>1-1.6 GeV/c</td>
<td>T197</td>
<td>HBC200</td>
<td>356</td>
<td>Haifa, Stalay</td>
</tr>
<tr>
<td>(m_eK^-)/K_S</td>
<td>0.6 GeV/c</td>
<td>T219</td>
<td>HBC200</td>
<td>180</td>
<td>CERN Rome</td>
</tr>
</tbody>
</table>

Total partiel HBC 200
5130

<table>
<thead>
<tr>
<th>Faisceau</th>
<th>Vitesse de l'expérience</th>
<th>Chambre</th>
<th>Nombre de photos (en millions)</th>
<th>Laboratoire(s)</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v)</td>
<td>4-19 GeV/c</td>
<td>T228</td>
<td>Gargamelle + Synchrotron injecteur (PSI1)</td>
<td>620</td>
<td>An-La Chapelle, Bruxelles, CERN, Ecole polytechnique, Milan, Orsay, University College (Londres)</td>
</tr>
<tr>
<td>(p)</td>
<td>4-19 GeV/c</td>
<td>T282</td>
<td>Gargamelle + Synchrotron injecteur (PSI1)</td>
<td>70</td>
<td>An-La-Chapelle, Bar, Bergen, Bruxelles, CERN, Ecole polytechnique, Milan Orsay, Oxford, Padoue, Strasbourg, Turn, University College (Londres)</td>
</tr>
<tr>
<td>(v)</td>
<td>4-19 GeV/c</td>
<td>T224</td>
<td>Gargamelle + Synchrotron injecteur (PSI1)</td>
<td>240</td>
<td>An-La Chapelle, Padoue</td>
</tr>
<tr>
<td>(p)</td>
<td>4-19 GeV/c</td>
<td>T230</td>
<td>Chambre à étincelles derrière Gargamelle</td>
<td>475</td>
<td>An-La Chapelle, Padoue</td>
</tr>
<tr>
<td>(v)</td>
<td>4-19 GeV/c</td>
<td>T230</td>
<td>Chambre à étincelles derrière Gargamelle</td>
<td>475</td>
<td>An-La Chapelle, Padoue</td>
</tr>
</tbody>
</table>

Total partiel Gargamelle
980

Total partiel
475

TOTAL
6585

Distribution
- 3354000 photos pour laboratoires en dehors du CERN
- 3231000 photos pour laboratoires en dehors du CERN et pour le CERN

Note HBC = chambre à bulles à hydrogène
ACTIVITÉS TECHNIQUES

Le travail sur les modules HYDRA a continué. L'expérience acquise au cours de la dernière année de production va pouvoir être incorporée dans une nouvelle version. Celle-ci sera prête au début de 1975 et HYDRA pourra être considérée comme ayant atteint le but qui lui était assigné.

On a démarré un projet expérimental utilisant les techniques interactives destinées à faciliter l'étude de données dépendant d'un grand nombre de paramètres. Le projet combine l'intervention humaine, la visualisation graphique des résultats et des procédures mathématiques.

Un succès remarquable a été obtenu par l'équipe des programmeurs du service du lecteur à spirale, en collaboration avec les électroniciens de cet instrument. On a ajouté une opération de préfiltrage au système de l'ordinateur PDP-9. Il en résulte une réduction de 70% du volume des données à traiter. Une comparaison rigoureuse d'événements mesurés avec et sans le préfiltrage démontre que celui-ci n'introduit aucune perte dans la qualité des mesures et dans la proportion des événements qui «passe» le programme de géométrie. Cette méthode a été rapidement mise en production pour le lecteur N° 2 ; on espère obtenir ainsi une réduction d'un facteur 4 du nombre de bandes magnétiques utilisées et de 50% par événement reconstruit du temps d'occupation de l'unité centrale du CDC 7600.

Au cours de l'année, les deux lecteurs à spirale ont mesuré 274 737 événements (soit 470 208 vertex) de toute topologie, d'une expérience de chambre à bulles \((K^- p \rightarrow 4.2 \text{ GeV/c}) \) pour laquelle 625 000 mesures ont déjà été accumulées. Cette production est en croissance d'environ 20% par rapport à celle de 1973. Ce gain a été obtenu...
par une optimisation complète de la chaîne de production qui a occasionné, en même temps, une diminution appréciable du coût opérationnel. Ainsi, des modifications de l'électronique du traitement de données ont permis l'implantation d'un programme de préfiltrage, qui a été décrit au paragraphe «Développement des programmes». Parallèlement, une procédure de calibration nouvelle assurait une stabilité de la qualité des mesures. Par ailleurs, un programme de décision utilisant l'ionsation a réduit sensiblement le travail d'identification des événements. L'équipe des opérateurs LSD est désormais parfaitement rodée aux différentes opérations de «scanning», mesure et identification.

Projet IRASMF

Le rapport sur ce projet commun des Divisions DD et TC est présenté cette année par la Division DD.

Aimant à champs inverses

Le rapport du groupe mixte des Divisions NP et TC est présenté cette année par la Division NP.

BEBC

La décision a été prise au cours du mois de février de démonter complètement l'aimant de BEBC. Cet aimant avait atteint à plusieurs reprises son champ nominal de 3,5 T. Son défaut était une mise à la masse de caractère intermittent, s'effaçant à champ fort, mais qui avait provoqué plusieurs fois des alertes importantes. Tout indiquait que ce défaut impliquait seulement un circuit auxiliaire (comme expliqué plus bas). Par contre, on savait que le démontage et le remontage seraient très longs.

![Figure 5 — Le stock d'eau lourds que fournira le détecteur pour BEBC (CTR-N-08 275)](image-url)
La nécessité de rapprocher l’aimant de la chambre et celle d’éviter les pertes thermiques conduisent à donner à ces appareils une structure très compacte qui rend les parties sensibles aussi inaccessibles que la momie d’un pharaon. La décision de procéder immédiatement à la réparation a été surtout déterminée par l’idée que la priorité essentielle était l’emploi de BEBC au SPS et non une expérience au PS. Pour bien comprendre la nature des circuits auxiliaires responsables du mal aussi bien que la cause primaire de ce mal, celle qu’elle a été établie par le démontage, il faut faire une digression technico-scientifique sur les courants de Foucault gelés.

Le conducteur de BEBC est du type (relativement ancien) stabilisé au cuivre et non torsadé. La stabilisation au cuivre est toujours un grand élément de sécurité dans des aimants, non pulses, qui emmagasinent une grande quantité d’énergie. Mais la combinaison du cuivre et du conducteur non torsadé entraîne l’existence d’un phénomène gênant. Quand on monte le courant de l’aimant, la composante radiale du champ essaie, surtout en bout des bobines, de pénétrer le conducteur. Ceci provoque des courants de Foucault qui empruntent presque partout les fils supraconducteurs mais se bouclent par une petite longueur de cuivre très conductrice. Il en résulte que ces courants peuvent durer des jours, des mois, voire des années. C’est pourquoi on les appelle les courants gelés. Ils se superposent au courant principal, dans certaines parties ils s’ajoutent à lui, dans d’autres ils se soustrayent. En fin de compte, ils modifient la valeur absolue et la répartition du champ nominal par des valeurs de 1 à plusieurs %. variables dans le temps. Quand l’existence de ce phénomène fut connue, l’aimant de BEBC était déjà en cours de construction. On lui apporta deux remèdes, chacun d’eux étant assez aléatoire. Une des méthodes consistait en une mesure permanente du champ et de sa répartition par 200 sondes Hall placées à des points bien choisis, qui permettaient de reconstruire la valeur absolue du champ et la carte de sa répartition à chaque instant (par un programme d’ordinateur bien entendu). Cette méthode paraissait très peu sûre à l’époque, car les
fidélités des sondes Hall dans le temps étaient loin d'être bien établies L'autre méthode consistait à incorporer à chaque galette un circuit «réchauffeur» qui, par une brève montée en température, supprimerait pendant une seconde la supraconductivité de chaque galette séparément et «éteindrait» le courant parasite. Cette méthode exige malheureusement que l'extrémité du conducteur pour chaque galette soit reliée par un fil de grande conductibilité au monde extérieur. Malgré les grandes précautions d'isolation, la présence de ces fils augmente les chances de court-circuit à la masse ou entre galettes. C'est effectivement entre ces fils (circuits auxiliaires) que se sont produits des faux contacts et le conducteur principal n'a pas souffert. Néanmoins, c'est ce conducteur principal et non un défaut de fabrication qui a provoqué l'accident. En effet, contrairement aux calculs assez peu sûrs faits sur les courants gelés, ceux-ci ont été assez intenses pour surcompenser le courant principal, c'est-à-dire l'inverser sur certaines parties du conducteur. Au lieu donc d'être poussées vers l'extérieur par les forces magnétiques, ces parties ont été attirées vers l'intérieur, et c'est ce phénomène très attendu qui a détériore l'isolement des fils auxiliaires réchauffeurs et provoqué les mises à la masse. A très haut champ, les courants gelés perdent en intensité relative, les forces magnétiques classiques reprennent leur droit et les mises à la masse disparaissent. La réparation a donc consisté 1) à supprimer les fils réchauffeurs puisque le système de mesure continue du champ donne satisfaction, 2) à mettre des bagues isolantes internes aux différentes galettes qui empêcheront les mouvements centripètes intempestifs du conducteur. Il faut noter que la vraie réparation n'a duré que deux mois sur huit, tout le reste du temps a été pris par le démontage des différents couvercles du cercueil du pharaon, suivi de l'opération inverse.

La réparation était terminée en novembre et le refroidissement de l'aimant commençait le 29 novembre. Après un premier essai satisfaisant à 3,0 T le 12 décembre, le champ était porté à sa valeur maximum le vendredi 13 décembre. Les opérations de charge et de décharge se sont passées sans aucun incident.

On a également profité de ce long arrêt pour apporter certaines modifications jugées utiles à la chambre elle-même et à son système de détente.

La zone de stockage a reçu de nouveaux dewars pour le deutérium et le néon.
Dans la deuxième partie de l’année, le retour à l’utilisation de membranes Adiprène et l’étude des paramètres de la chambre ont permis de retrouver des conditions de fonctionnement plus régulières en ce qui concerne la qualité des traces. Le développement technique principal a été le remplacement du système primitif de déclenchement de la détente par un système plus fiable et plus précis, conçu dans le laboratoire d’électronique. La qualité des traces a également été améliorée par ce développement.

Les deux semaines de travail, l’une en juillet au propane et l’autre au freon en août, ont fourni chacune 180 000 photos. Une courte exposition à des protons primaires de 24 GeV dans le propane destiné à l’étude du bruit de fond des courants neutres a fourni 50 000 photos. Le «run» de décembre a fourni 60 000 photographies en propane et 300 000 photographies en freon, terminant ainsi l’expérience.

Les études techniques en vue d’obtenir des traces de bonne qualité dans une chambre à dards à H2 ont repris en 1974, avec la collaboration du laboratoire de l’accélérateur linéaire d’Orsay. Un générateur de Marx de grande dimension (prévu pour 2 MV) a été construit pour alimenter la chambre à dards à H2 de petite dimension (21 x 21 x 9,5 cm) utilisée lors des essais préalables [Nuclear Instruments and Methods 3, 485-495 (1973)]. Une nouvelle ligne de Blumlein, de géométrie conique, à isolation d’huile, a été construite pour former une impulsion haute tension à front très raide (~ 1,5 ns) et de faible résolution.
largeur à la base (6 ns) Des traces de β (^{89}Sr) et de cosmiques ont été obtenues à 40 kV/cm dans un mélange à 500 torr de $\text{H}_2 + \sim 0,5\% \text{CH}_4 + \sim 0,1\ ppm$ de SF$_6$. La qualité des traces a été nettement améliorée en utilisant un amplificateur de lumière (gain ~ 30000) construit au CERN (Rapport CERN 74-4) Les dards obtenus ont un très bon contraste, ne présentent aucune queue et apparaissent sous la forme de bâtonnets de 7 ± 2 mm de long et de $0,5$ mm de diamètre moyen avec une faible dispersion, donnant une erreur de pointe de l'ordre de $500 \mu m$.

Chambre de 2 m
La chambre à bulles de 2 m a été soumise à un programme normal d'entretien s'étendant principalement aux systèmes de détente et de vide, ainsi qu'à l'installation de réfrigération pendant l'arrêt du PS, allant de la fin décembre 1973 au 15 février 1974.
La chambre a été refroidie dès le 9 février afin d'entamer son programme de physique en hydrogène.
Une contamination du réfrigérant dont la source n'a pas encore pu être localisée a provoqué des pannes du réfrigérateur qui ont imposé plusieurs réchauffages de la chambre au cours de l'année.

Néanmoins, quand la chambre s'est arrêtée le 19 décembre, elle avait plus de 5 millions de photographies en un peu plus de 10 mois. Le programme prévu par le TCC était terminé et une expérience concernant la formation de résonances bosoniques par les antiprotons lents, motivée par les découvertes récentes de Brookhaven et SLAC, a même pu être ajoutée au tout dernier moment et terminée avec succès.

Pour sa part, l'unité de développement des films a traité 4400 km de pellicule, dont 3300 km exposés à la chambre de 2 m, 900 km à Gargamelle et 200 km dans diverses autres chambres, en quelque 5000 heures de fonctionnement des machines, ce qui représente $877 \ m$ de film développés par heure de machine.
Le prix des produits photochimiques utilisés au cours de l'année a été compensé par la vente de l'argent récupéré dans les bains après le traitement des films.
Le 13 décembre était le dixième anniversaire du premier essai de la chambre. Le bilan de 10 années d'exploitation peut se résumer approximativement ainsi. 32 millions de photos, 100 millions de détentes, 16000 km de film et de nombreuses nuits sans sommeil pour une équipe extrêmement efficace et compétente.

Zone Sud-Est
La zone Sud-Est contient maintenant le faisceau neutrino pour Gargamelle et un faisceau de π pour l'expérience $g-2$ qui fonctionnent alternativement. Donc, un appareillage a été construit et mis en place pour le transport, l'alignement et le retrait rapide des éléments, minimisant la durée du travail du personnel dans cette zone assez chaude. Le contrôle par ordinateur des faisceaux externes de protons fonctionne maintenant.

2 m HBC
Les trois faisceaux de la chambre de 2 m ont été utilisés en 1974. Le faisceau séparé HF a permis de réaliser une expérience avec des K$^-$ comme particules incidentes des π^- de la plus haute énergie possible (16 à 19 GeV/c) ont été envoyés sur une cible de
cuivre, puis un ensemble d'aimants, de collimateurs et de blindage ont permis d'éliminer toutes les particules chargées

Le faisceau IIIF est en cours de démontage en prévision du prochain déplacement de la chambre de 2 m de 13 m vers le nord.

Pendant deux périodes du PS, une nouvelle version du faisceau k_8 a été mise en place et utilisée. Il s'agit d'une version sans séparateur, qui donne un flux de π^- aussi grand que possible entre 1 et 1.5 GeV/c. Ces π^- interagissent dans une cible à hydrogène. Celle-ci est la source de K^+ de basse énergie. Le bruit de fond des particules chargées est éliminé par des aimants, collimateurs et blindage.

Enfin, le faisceau m_6 a été remis en service pour les trois derniers mois de l'année.

SPS

Faisceau k_8

Les deux premiers mètres prototypes du déflecteur en bande C ont été brasés dans les ateliers du CERN. Ils ont subi avec succès les essais à grande puissance (5 MW, 6 μs). Le séparateur prévu comprendra trois déflecteurs de 6 m de long chacun. Des systèmes de mesures automatisés ont été développés pour mesurer les 2400 pièces constituant les trois déflecteurs et pour mesurer le déphasage de chaque cellule des structures brasées.

Le système de vide, le système de refroidissement et les supports mécaniques sont définis et sont livrés, soit en cours de construction.

Les quatre klystrons pilotes de 500 W et un klystron de 5 MW ont donné entière satisfaction. Le prototype du modulateur haute tension a été essayé pendant 4×10^8 impulsions. La commande des pièces nécessaires à la fabrication des modulateurs définis a été passée.

Le développement des divers équipements hyperfréquence, de l'électronique de commande et de contrôle à distance est achevé. La production a commencé et se poursuit normalement.

Faisceaux neutrino

Un circuit d'essai a été monté, grâce auquel il a été démontré qu'il était possible d'obtenir des impulsions de courant dans une corne neutrino de 150000 A pendant 10 ms. Donc, l'équipement du faisceau neutrino à bande large sera construit pour travailler avec de telles impulsions de courant.

Les aimants et quadripôles du faisceau neutrino à bande étroite ont été définis. La spécification a été écrite et envoyée à diverses firmes et les aimants et quadripôles ont été commandés.

Les alimentations sont en cours de montage. Les bancs de condensateurs ont été commandés. L'électronique de commande et de contrôle, dont l'organe central sera un ordinateur NORD 10, est en cours de montage.

EMI (Identification de muons)

Les calculs permettant la définition du détecteur ont été menés à bien, la quantité de blindage nécessaire à l'élimination des π a été également calculée. L'étude de ce blindage et de sa mise en place est faite.

En ce qui concerne le détecteur lui-même, qui sera constitué de 150 m2 de chambres à fils proportionnelles, des études ont été faites qui ont montré qu'il était possible de travailler dans ce cas avec un mélange d'argon et de gaz carbonique, ce qui simplifie les problèmes de sécurité auprès de BEBC.

La construction d'un module prototype de 3×1 m2 a débuté.
Un module de 32 canaux a été monté, réglé et essayé dans le faisceau \(\mathcal{L} \), ou il a fonctionné de façon tout à fait satisfaisante. Les résultats sont publiés. La fabrication de l'appareil définitif a commencé.

Les études sur la possibilité de construire des «aimants permanents» supraconducteurs se sont poursuivies. On entend par là des structures tubulaires de matériaux supraconducteurs qui, en passant de l'état normal à l'état supraconducteur, gèlent un champ magnétique préétabli par des bobines conventionnelles ou supraconductrices dans lesquelles on peut ensuite annuler le courant. Du point de vue théorique, on a développé un programme de calcul qui permet de déterminer la pénétration d'un courant persistant dans des structures supraconductrices dipolaires. Du point de vue expérimental, on a étudié des «structures» composées de plusieurs couches triples : feuille de NbTl, feuille d'aluminium, canaux de refroidissement d'hélium liquide. On est arrivé ainsi jusqu'à 2,2 T. Des empilements semblables avec des rubans de NbSn ont permis d'atteindre plus que 4 T. Ceci pourrait peut-être encore être amélioré par l'emploi de tubes frittés de NbSn dont on ne sait pas encore s'ils peuvent être fabriqués avec une longueur suffisante. En attendant, on procède à des essais sur des échantillons courts. De tels aimants, si on les rendant vraiment pratiques pour l'emploi dans les faisceaux, permettraient de considérables économies de coût de construction ainsi que de consommation d'énergie électrique.

Les quantités suivantes de fluides cryogéniques ont été utilisées au CERN pour des essais et des expériences :
- 2200000 litres d'azote liquide,
- 19500 litres d'hydrogène liquide,
- 105000 litres d'hélium liquide.
Physique théorique

"Le charme va traverser un compteur Čerenkov. (CERN-153769)"
Dans une organisation telle que le CERN, dont le premier but est l'étude des lois fondamentales de la nature, le rôle de la Division Etudes théoriques est très important.

Le principal objectif de cette Division est l'étude théorique des différents aspects et propriétés des particules élémentaires. À cet égard, la Division s'est signalée, comme auparavant, par des travaux d'une très haute qualité, qui ont largement retenu l'attention de la communauté scientifique. Mais elle doit aussi tenir compte de la double mission du CERN, qui est à la fois un centre où s'élaborent des réalisations expérimentales et techniques exceptionnelles, et une organisation internationale. La Division a donc à la fois une activité de services et une activité de recherche pure.
Division Etudes théoriques

En ce qui concerne les services, de nombreux échanges ont eu lieu avec les États membres. Plusieurs scientifiques expérimentés ont rendu de nombreuses visites au CERN où ils ont participé à toutes les activités de la Division. En outre, quelque 30 jeunes physiciens des États membres, venus pour des séjours de deux ans en moyenne, collaborent avec le personnel de la Division. Les membres de celle-ci jouent également un rôle important comme conseillers des groupes européens d’expérimentateurs, comme organisateurs de réunions communes sur des questions d’expérimentation et en participant aux réunions des comités des expériences. Enfin, la Division participe activement au programme d’enseignement académique du CERN.

En ce qui concerne la recherche proprement dite, les activités scientifiques récentes de la Division se sont étendues à tous les domaines de la physique théorique des particules. Les principes fondamentaux à la base de cette discipline sont ceux de la mécanique quantique et de la théorie de la relativité restreinte. Ces principes peuvent être traduits soit en termes de champs locaux fondamentaux, soit dans le cadre d’une théorie «self-consistent» de la matrice S («bootstrap»).

La complexité du monde des hadrons n’a pas encore permis d’élaborer une théorie unifiée satisfaisante, qui englobe la totalité des principes requis. Face à cette situation, de nombreuses attitudes sont possibles, que l’on retrouve dans les différentes orientations prises par les activités de la Division.
Une vue d'approche considère que le problème majeur se situe dans le cadre de la formulation des principes de base. Les travaux qui s'en inspirent sont de l'étude axiomatique de la théorie des champs à la déduction, à partir de principes établis tels que l'analyse et l'unité, de conséquences rigoureuses pour les amplitudes de diffusion.

On peut également choisir de s'appuyer sur les principes actuels de la théorie quantique des champs, en dehors de leurs imperfections, pour étudier les interactions entre particules. Cette approche a été caractérisée par une très forte tendance à l'unification. Les particules sont considérées comme construites à partir d'un petit nombre de champs élémentaires simples (quarks). Les diverses interactions, telles qu'on les observe dans la nature, sont considérées comme différents aspects d'un lagrangien fondamental unique manifestant un grand degré de symétrie.

Dans ce domaine on a accordé beaucoup d'attention au problème déroutant des motifs pour lesquels on n'a jamais observé de quarks. Parallèlement, la manifestation des quarks aussi bien dans la structure des particules que dans les courants a été étudiée en détail.

Dans le cadre des théories de jauge unifiées, on s'est beaucoup intéressé à l'utilisation du groupe de renormalisation pour l'étude du comportement de l'amplitude physique aux faibles distances.

Enfin une étape importante a été franchie avec l'introduction de la notion de super-symétrie, qui suppose de grands supermultiplets comprenant des bosons et des fermions et qui donne lieu à des schémas particulièrement harmonieux.

Au cours des dernières années, les recherches sur les interactions à haute énergie faible et électromagnétique se sont révélées très instructives et ont permis d'améliorer remarquablement la description des collisions de hadrons à haute énergie. L'application du « calcul de reggeon » des techniques du groupe de renormalisation a suscité beaucoup d'intérêt.

Il semble, sur la base de notre conception théorique, que l'existence d'un grand nombre de nouvelles particules (mesons W, particules charmées, leptons lourds) soit requise. Cette question a donné lieu à une collaboration très fructueuse avec des groupes d'expérimentateurs.

De nombreux efforts ont été consacrés à l'étude des interactions de particules en se fondant sur différents modèles conçus dans le cadre du « bootstrap ». Les notions de reggeisation et de dualité continuent de jouer un rôle prédominant dans cette domaine. Les applications des analyses multipériphériques et de Regge des interactions à haute énergie, en particulier, ont permis d'améliorer la description des collisions de hadrons à haute énergie. L'application du « calcul de reggeon » des techniques du groupe de renormalisation a suscité beaucoup d'intérêt.

Bon nombre de travaux théoriques sont plus proches des données expérimentales et visent à établir et à vérifier des modèles phénoménologiques, qui constituent la première étape de l'élaboration des théories fondamentales futures. En particulier, le modèle thermodynamique a été encore développé et les propriétés statistiques de la production multiple ont été étudiées.

Les résultats passionnants obtenus aux ISR sur les événements à grandes impulsions transverses et sur l'augmentation des sections efficaces ont fait l'objet d'une étude théorique fructueuse. L'analyse, tant inclusive qu'exclusive, des collisions de particules a donné des résultats intéressants.

Enfin, l'acquis théorique de la Division a été mis à profit pour aider les physiciens expérimentateurs à extraire des données recueillies les informations les plus intéressantes.

Les interactions de particules élémentaires avec des noyaux sont « un voie très prometteuse à la fois pour l'exploration des propriétés nucléaires et par le fait qu'elles offrent de nouvelles cibles susceptibles de révéler certaines propriétés spéciales des particules. Des résultats intéressants ont été obtenus dans l'étude de la polarisabilité électrique et magnétique des hadrons et des noyaux, et les effets du champ photonique nucléaire ont été étudiés de manière approfondie.
Synchrotron à protons
De très importants travaux de développement ont été entrepris en vue d'adapter le PS à son futur rôle d'injecteur du SPS, qu'il devra assumer tout en continuant à alimenter les ISR et les expériences à 25 GeV. Les exigences des trois utilisateurs diffèrent notablement, et elles peuvent très bien être modifiées dans l'avenir, de sorte que la souplesse d'exploitation reste une condition essentielle. De plus, l'accélérateur qui se compose en fait de trois machines séparées, couplées en série l'accélérateur linéaire, le synchrotron injecteur (PSB) et le synchrotron lui-même, devra présenter un degré de fiabilité élevé.

En 1974, l'« intensité intermédiaire » correspondant à environ 5×10^{12} protons par impulsion (en abrégé 5 Tp/i) a été utilisée pour toutes les périodes d'exploitation consacrées à l'expérience neutrino. En 1975, ce mode d'exploitation sera étendu aux faisceaux du Hall Est qui sont en cours de complète reconstruction afin de satisfaire aux nouvelles exigences. Vers la fin de l'année, au cours d'une période de développement de la machine, 10^{13} protons par impulsion ont été pour la première fois accélérés à 10 GeV. Cela constituait l'objectif nominal du programme d'améliorations initial, dont l'exécution avait été délibérément retardée pour des raisons d'économie.

La Division MPS a apporté une importante contribution à la réunion sur la « Technologie associée à la physique des hautes énergies » qui s'est tenue en avril, elle a présenté 48 réalisations techniques et rédigé 50 « Notes technologiques » explicatives. En plus de son travail normal, une importante fraction du personnel a participé aux préparatifs et a assuré l'accueil des visiteurs.

Le Groupe Zones expérimentales consacre maintenant d'importants efforts à l'étude technique détaillée de l'équipement destiné aux zones d'expérimentation du SPS et à la passation des commandes. Un compte rendu des progrès réalisés dans ce domaine est présenté dans la partie de ce Rapport qui traite des activités du Laboratoire II.
La longue période d'arrêt du PS a duré de Noël 1973 au 13 février 1974. On s'est davantage préoccupé des préparatifs de remise en service bien plus rapide de la machine. Le faisceau a été accéléré dans un délai de six heures et les réglages en vue de l'expérimentation ont commencé huit heures plus tard. La configuration du champ magnétique a été très proche de ses caractéristiques idéales, et en conséquence l'orbite fermée à l'injection a été beaucoup plus plate que précédemment.

L'introduction dans le programme d'exploitation normal d'un fonctionnement à intensité intermédiaire, utilisant l'injection à 800 MeV à partir du synchrotron injecteur (PSB) pour obtenir des intensités du faisceau accéléré voisines de 5 Tp/impulsion, constitue une innovation majeure. Cette intensité a été utilisée pendant toute l'année pour l'expérience neutrino, en ne desservant d'abord qu'un seul utilisateur, mais, avec une expérience accrue, on est passé à une exploitation plus complexe, pour desservir deux autres utilisateurs au cours du même cycle. Un paquet a d'abord été extrait, à destination de la chambre à
bulles à hydrogène de 2 m, puis 18 autres ont été éjectées dans la ligne de faisceau primaire aboutissant à la cible neutrine, et finalement le paquet restant a été extrait par éjection lente pendant quelques centaines de millisecondes, afin d'alimenter un faisceau du Hall Ouest en vue d'essais pour les expériences avec le spectromètre magnétique Oméga. Le faisceau destiné aux ISR a pu être alimenté en utilisant un cycle sur deux, chaque fois que cela était requis, avec une réduction d'intensité programmée de manière à éviter toute irradiation inutile des éléments de la ligne de transfert et du système d'injection. La méthode utilisée à cette fin consiste à faire varier le nombre de tours pour l'injection à 50 MeV dans le synchrotron injecteur (PSB).

Toutes les autres installations expérimentales ont été intégralement exploitées avec les intensités normales, c'est-à-dire avec injection à 50 MeV. Le taux de défaillance a été faible, il ne représente que 5% du temps d'expérimentation. Les pannes majeures ont affecté le système de compensation de la charge des cavités de l'accélérateur linéaire par le faisceau, l'installation de refroidissement de l'aimant principal, les plaques de correction de l'aimant 16 et l'aimant d'extraction à septum de la section droite 62. Les statistiques concernant l'exploitation de 1974 sont présentées sur la Figure 2.

![Diagram](image)

Figure 2 - Contribution du temps machine du PS (24 heures par jour) et tableau synoptique des statistiques d'exploitation en 1974

<table>
<thead>
<tr>
<th>Expériences de Physique :</th>
<th>Pourcentage de l'exploitation prévue</th>
<th>Pannes : pourcentage du temps de fonctionnement perdu</th>
<th>Intensité moyenne du faisceau * Tp/ampulson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avec injection à 50 MeV</td>
<td>87%</td>
<td>5%</td>
<td>(2,41)</td>
</tr>
<tr>
<td>Avec injection à 800 MeV</td>
<td>10%</td>
<td>4,7%</td>
<td>1,75**</td>
</tr>
<tr>
<td>Études sur la machine</td>
<td>17%</td>
<td>6,2%</td>
<td>4,74***</td>
</tr>
</tbody>
</table>

* Tp = Tétrapton = 10^{12} protons
** "Intensité normale"
*** "Intensité intermédiaire" (le chiffre indiqué comprend l'opération avec intensité réduite intentionnellement).
SCHEMA DES FAISCEAUX EXTERNES ET ENSEMBLES D'EXPÉRIMENTATION DU PS EN 1974

HALL SUD

Cible 01 est utilisée comme source de six faisceaux.

- 1_t pour essais ~ 1 GeV
- m_3 partiellement supérieur principalement des p jusqu'à 0.9 GeV
- q_1 faisceau pour essais ~ 4 GeV
- m_7 partiellement neutres produites 0^- protons pour essais

Cible 02 est utilisée comme source de deux faisceaux.

- k_{32} p et K^+ jusqu'à 0.9 GeV, partiellement neutres par émission partiellement neutres 0^- protons pour essais
- q_{11} K^+ 3 GeV

HALL PSI

L'interaction lente issue de la section droite 62, le faisceau primaire e_0 est divisé en trois branches avec une cible par branche.

- Cinq faisceaux secondaires sont issus
 - y_2 faisceau court avec un aimant d’analyse destiné à l’observation d’hypérons chargés
 - k_{31} faisceau court en K^- p par absorption différentielle jusqu'à 0.7 GeV
 - m_9 partiellement neutres produits à 52 mrad pour essais avec K^0
 - p_{12} π^- jusqu'à 19 GeV
 - p_{10} K^0

L'interaction rapide issue de la section droite 58, trois positions différentes de la cible permettent de choisir entre trois faisceaux qui alimentent la chambre à huile de 2 m.

- Faisceau séparé par trois cavités K^+ jusqu'à 16 GeV/c, et d'autres possibilités
- m_0 separation électrostatique de K^+ proche de 4.5 GeV/c
- k_{30} separation électrostatique de K^- de 1.2 à 2 GeV/c

ZONG SUD-EST

L'expérience neutrino alimente en faisceau primaire (e_0) par l'interaction rapide issue de la section droite 74 utilise la chambre à bulles à liquides lourds «Gargamelle» et un ensemble de chambres auxiliaires.

En alternance, l'expérience $g-2$, qui utilise un faisceau secondaire de π^- à ~3 GeV/c issu d'une cible placée dans le faisceau primaire e.

Note:

- e_0: Faisceau primaire
- y_2: Cible pour les essais
- k_{31}: Faisceau court en K^-
- m_9: Partiellement neutres produits
- p_{12}: π^- jusqu'à 19 GeV
- p_{10}: K^0
- m_0: Separation électrostatique de K^+
- k_{30}: Separation électrostatique de K^-
- $g-2$: Experience neutrino
Au cours de l'arrêt, deux nouveaux faisceaux destinés aux expériences avec compteurs ont été installés dans le Hall Est. L'un d'eux, b20, est un faisceau de particules neutres pour l'étude de la réaction $K^0 + p \rightarrow K^0 + p$. Le second constitue pour l'essentiel une duplication du faisceau de π à impulsion élevée, avec un plus petit angle de production (5 mrad) permettant d'augmenter son intensité. La chambre à bulles à hydrogène de 2 m a reçu de nouveaux équipements pour les expériences avec le K^0. Au cours de la dernière période d'exploitation précédant la reconstruction de l'ensemble de l'installation, une modification importante a été réalisée afin d'essayer les éléments essentiels de l'expérience avec le « bispéctromètre » qui doit commencer en 1975.

Dans le Hall Sud, trois faisceaux secondaires ont été reconstruits pour permettre la mesure des amplitudes d'hélium dans la réaction $\pi^- p \rightarrow \Lambda^0 K^0$, de la production de paires d'électrons dans l'annihilation $p \bar{p}$ au repos et de la production du boson étrange dans les réactions $K^- p$ (il s'agit respectivement des faisceaux q_{11}, m_{12} et d_{13}). Il a été construit une installation d'essais supplémentaire (faisceau q_{12}) pour les énergies moyennes et basses.

Pour la nouvelle expérience $g-2$, on a installé un faisceau secondaire provenant d'une cible placée dans le canal d'extraction e_p (installation « neutrino »). Étant donné que cette expérience est réalisée en alternance avec les observations neutrino dans Gargamelle, plusieurs modifications du dispositif ont été mises en place.

Les faisceaux de la zone Ouest sont restés pour l'essentiel inchangés, si l'on excepte les fréquentes modifications mineures de l'implantation en vue des nombreux essais de l'appareillage expérimental, effectués dans toutes les zones tout au long de l'année.
Développement technique en cours

L'exploitation à l'intensité actuelle de 50 mA a été tout à fait stable et fiable, peu de défauts ayant affecté l'exploitation du PS. La meilleure période se situe en juillet avec 54 minutes d'arrêt dû à des avaries pour 627 heures d'exploitation (0,14%).

La meilleure période se situe en juillet avec une durée de 54 minutes d'arrêt dû à des avaries pour 627 heures d'exploitation (0,14%).

Habituellement, des défauts ont affecté l'exploitation du PS. La meilleure période se situe en juillet avec une durée de 54 minutes d'arrêt dû à des avaries pour 627 heures d'exploitation (0,14%).

Il aurait été très coûteux de réparer l'ensemble preinjecteur HT original de 500 kV du type Cockroft-Walton qui est tombé en panne au milieu de 1973. En conséquence, il a été remplacé par une paire de générateurs électrostatiques SAMES (un en exploitation et un de secours) du type couramment utilisé pour les séparateurs électrostatiques, pour lequel les rechanges supplémentaires sont immédiatement disponibles. Le compensateur de charge pour le faisceau du preinjecteur a dû être reconstruit afin d'obtenir une stabilité adéquate. Les études effectuées pour le nouvel accélérateur linéaire ont conduit à adopter une construction simplifiée de la source de protons, assurant une amélioration sensible du fonctionnement.

Un modèle modifié du groupeur, ayant une meilleure stabilité, est actuellement utilisé pour les travaux de développement de la machine. Pour des intensités de 80-90 mA, ce dispositif a permis d'obtenir une densité transversale centrale environ deux fois plus élevée que de coutume. On a achevé l'installation de nouvelles boucles de couplage sur les amplificateurs de puissance HF et de lignes d'alimentation rigides, aboutissant aux cavités. Un nouvel ensemble de circulateurs HF, destinés à diminuer le couplage entre les trois réseaux des cavités, a été commandé. Un nouveau système de mesure de la phase a permis de réduire considérablement le temps de réglage.

Au cours de l'année 1974, le synchrotron injecteur (PSB) a effectivement atteint le stade de l'exploitation courante au niveau de l'intensité intermédiaire. Du point de vue technique, cela impliquait la fourniture d'un faisceau de 3,8 quatt pour l'injection provenant de l'accélérateur linéaire, l'adaptation de la source 800 MeV à l'entrée du PS et l'obtention d'une stabilité et d'une stabilité d'ensemble appropriées. Du point de vue du personnel, il fallait créer une équipe d'exploitation efficace, pour plus de mille heures d'exploitation pour la physique expérimentale, le taux de défaillance a été d'environ 6% et l'intensité moyenne à la sortie du PS a dépassé 5 Tp/impulsion (sauf dans les cas où l'intensité était volontairement réduite).

L'accélérateur linéaire a fourni un faisceau à 50 MeV plus dense que précédemment, et la poursuite des expériences sur la machine a permis de nouvelles améliorations des performances. En septembre, un faisceau de 2,8 Tp/impulsion a été accéléré à pleine énergie dans l'un des quatre anneau, avec les valeurs E_p = 28 et E_q = 12 (en unités π x 10^6 rad m) sur 95% de l'émittance, alors que les valeurs nominales prévues étaient respectivement 33 et 12. Pour 2,5 Tp/impulsion à l'injection dans le PS. Cette densité élevée a été obtenue grâce à une capture HF efficace et à l'emploi d'un point de fonctionnement dynamique, ce mode d'exploitation étant réalisé en programmant ce paramètre de telle sorte que les variations de Q de Laslett entraînent un minimum de traversées des bandes d'arrêt. Jusqu'à présent, l'intensité maximale atteinte en utilisant l'ensemble des quatre anneau est de 14 Tp/impulsion, soit environ 40% de plus que la valeur nominale initiale.

Aux intensités élevées, la principale difficulté tient à une forte instabilité longitudinale d'un paquet à l'autre. Heureusement, elle peut être contrôlée si l'on assure une distribution plus stable des particules à l'intérieur du paquet en «secouant» les paquets, l'injection...
dans la boucle de phase HF d'un signal proche de la fréquence d'oscillation synchrotronique produit cet effet. On poursuit des études expérimentales en vue de mieux comprendre le comportement de la machine et d'arriver progressivement à augmenter encore l'intensité du faisceau. On étudie également du point de vue théorique la question importante des limites de stabilité transversale et longitudinale du faisceau.

L'évaluation des données de 1973 sur la largeur d'un grand nombre de bandes d'arrêt a permis d'établir les spécifications des lentilles multipolaires destinées à compléter le système d'éléments de correction. Ces éléments, avec leurs alimentations et leurs commandes, sont en cours de fabrication.

Le vide a été amélioré par réduction du volume de ferrite non traitée et du nombre de joints sur les circuits de refroidissement par eau à l'intérieur de l'enceinte, ainsi que par addition d'une pompe spéciale à sublimation de titane, installée en un point critique. La pression moyenne est abaissée de 7×10^{-8} à 2×10^{-8} torr. On a installé de nouveaux aménants à septum d'injection et d'éjection de conception mécanique plus élaborée. Diverses améliorations ont été effectuées, surtout en vue d'accroître la fiabilité et de simplifier l'exploitation. Des éléments de rechange supplémentaires ont été prévus, et le travail sur la documentation se poursuit.

L'équipement de commande du synchrotron injecteur (PSB) installé dans la Salle de commande principale a été réarrangé et, dans le bâtiment de cet accélérateur, on a mis en place une console mobile donnant accès à la plupart des programmes disponibles sur l'installation principale. Les exigences du PSB concernant le nouveau système général de commande par ordinateur ont été spécifiées.

Études d'accélérateur

Ces études ont visé principalement à éclaire le comportement du faisceau à l'intensité intermédiaire (5-6 Tp/impulsion), devenue standard avec l'injection à 800 MeV en provenance du synchrotron injecteur (PSB).
L'adaptation du faisceau incident à 800 MeV, avec injection de nombres de tours différents dans le synchrotron injecteur (PSB), a été considérablement améliorée, et le gonflement transversal initial de l'émitance a été réduit. On s'attache maintenant à optimiser les corrections, afin de diminuer la croissance de l'émitance provoquée par la traversée des bandes d'arrêt.

Les instabilités deviennent plus gênantes à l'intensité intermédiaire. Pour les amortir, on utilise des octopôles afin d'obtenir une large dispersion de l'accord; de ce fait, la position du point de fonctionnement dans le diagramme d'accord exige un contrôle précis sur l'ensemble du cycle d'accélération. De nouveaux quadrupôles sont utilisés à cette fin.

Le résultat de toutes ces améliorations est que l'intensité initialement prévue du faisceau (10 Tp/impulsion) a été atteinte au cours d'une période de développement, vers la fin de l'année. Un faisceau avec intensité de crête de 10,19 Tp/impulsion a été accéléré avec succès au-delà de l'énergie de transition du PS. Toutefois, il reste beaucoup à faire avant que l'on puisse comprendre et contrôler correctement le comportement des faisceaux à des intensités supérieures à la valeur «intermédiaire».

Alors que l'actuel système de saut de γ, permet de manipuler sans dilution un faisceau d'intensité intermédiaire de 5 Tp/impulsion dans les limites d'une émitance longitudinale de 10 mrad, les intensités plus élevées exigent un passage plus rapide de la transition. Une nouvelle alimentation pour les doublets de quadrupôles devrait résoudre le problème ; le passage de la transition sera quelque deux cents fois plus rapide qu'en l'absence de toute manipulation.

Le dégroupement adiabatique pour l'injection dans le SPS est activement étudié. Ce processus peut être facilité par une augmentation du paramètre de compression de la quantité de mouvement, l'excitation pulsée de quadrupôles convenablement placés en vue de réduire γ, provoque une telle augmentation. Des essais préliminaires de cette méthode ont permis de constater une amélioration. Des difficultés apparaissent pour des densités longitudinales élevées dans l'espace de phase, du fait des instabilités dues à des impédances de couplage longitudinales, et l'on s'efforce d'identifier les équipements qui les provoquent. Comme on l'a mentionné par ailleurs, certains ont déjà été localisés et leur effet atténué, mais il est apparu récemment des instabilités à des fréquences très élevées (plusieurs GHz).

Le groupe de travail créé en 1972 pour étudier les conditions de longévité de l'aimant principal a publié son rapport final : il a analysé l'état actuel des principaux éléments (blocs fonnés de tôles d'acier, bobines d'excitation et enroulements polaires) et il a prévu le futur rythme de détérioration. Les dommages sont essentiellement causés par l'effet combiné des forces magnétiques pulsées et de la dégradation des matériaux organiques (solement, adhésifs, etc.) du fait de l'irradiation. Des propositions en vue de maintenir l'aimant dans un état de fonctionnement adéquat prévoient un cerclage mécanique des blocs d'extrémité, le renouvellement de quelques bobines d'excitation et le remplacement de tous les enroulements polaires. Les nouveaux enroulements peuvent être pour l'essentiel analogues aux anciens ou de conception complètement nouvelle. Les études théoriques et expérimentales des diverses possibilités sont suffisamment avancées pour qu'une décision puisse être prise en 1975. Au cours de l'arrêt annuel, sept aimants ont été réparés sur place et deux autres ont été remplacés par des amants rénovés à l'atelier. Un autre aimant a été réparé pour servir de rechange en 1975.

Une dérivation à thyristor a été installée en parallèle sur l'un des deux ensembles de redresseurs à vapeur de mercure de l'alimentation de l'aimant principal. Pendant «paler» du cycle de l'aimant, le courant est commuté sur la dérivation et l'aimant est excité par un seul ensemble de redresseurs. En plus d'une réduction de l'ondulation, cette technique diminue également la consommation d'énergie électrique, ce qui assure une économie de 60 000 à 80 000 francs par an, et augmente la durée de service des redresseurs à vapeur de mercure ainsi court-circuités.

Perfectionnement et entretien de l'accélérateur
On poursuit le développement et l’extension du système d’aimants auxiliaires afin de faire face aux nouvelles exigences d’exploitation et de compenser les effets de la mise en service de faisceaux d’intensités plus élevées. Des dipôles supplémentaires pour la manipulation du faisceau ont été installés et d’autres aimants de plus grande ouverture ont été commandés, dont trois sont destinés au système de transfert continu pour l’alimentation du SPS. Pour supprimer les interférences entre les différents processus d’éjection intervenant au cours d’un même cycle et pour réduire le risque de détérioration par irradiation, les huit enroulements de culasse utilisés pour déformer l’orbite en vue de l’extraction rapide vers la zone Sud-Est ont été remplacés par quatre dipôles. Pour les mêmes raisons, on étudie des amants de déformation d’orbite à septum destinés à l’extraction rapide vers le Hall Est. Des quadrôpes compacts de haute énergie pour l’accord de Q et pour le système de transfert continu ont été installés, et on construit des quadrôpes d’injection de plus grande ouverture, adaptés aux enceintes à vide chargées exigées pour l’éjection vers le SPS. Un ensemble de sextupôles compacts de haute énergie (16 plus un de rechange) destinés au contrôle de la chromaticité de la machine est en cours de fabrication. Une gamme d’alimentations différentes sera nécessaire pour tous ces aimants, et la construction d’un bâtiment qui doit les abriter a commencé.

Des améliorations sont apportées à l’aimant de déflexion pour l’injection à 800 MeV, et les modifications les plus urgentes sont déjà achevées. La nouvelle alimentation à charge rectifiée est prête ; elle sera installée au cours de la période d’arrêt annuelle. Un aimant de déflexion de rechange, avec son enceinte à vide, est en cours de fabrication.

La redondance, et par conséquent la fiabilité générale, du système accélérateur HF a été augmentée en constituant une réserve en état de marche d’éléments de rechange. On a analysé les instabilités qui sont apparues au cours de l’exploitation à l’intensité intermédiaire, certaines modifications du système de contrôle du faisceau seront probablement nécessaires. Les implications du dégroupage pour le transfert vers le SPS sont étudiées.
Pour que les faisceaux dégroupés destinés au SPS présentent une dispersion d'énergie suffisamment faible, il faut que l'impédance de couplage longitudinale dans le PS soit aussi faible que possible. A cette fin, toutes les enceintes à vide en céramique ont été métallisées ou, lorsque cela n'était pas possible, elles ont été équipées d'une dérivation résistive. Des mesures ont montré que les deux cents joints à vide isolés (aux deux extrémités de chaque section droite) contribuent également de manière significative à l'impédance de couplage. En conséquence, ils ont été équipés de dérivations capacitives, associées à des résistances d'amortissement.

Dans les meilleures conditions, on a atteint pour la première fois dans l'enceinte à vide une pression de 9×10^{-8} torr. A l'intensité intermédiaire, la pression de régime habituelle est d'environ 2×10^{-7} torr, mais elle devrait baisser avec le taux de dégazage qui diminue à mesure qu'une plus forte proportion d'équipements sont rendus radiorésistants.

En 1974, s'est effectuée avec succès la mise en service du nouveau système d'aimants de déflexion à pleine ouverture (FAK), qui est maintenant en exploitation courante et dessert jusqu'à quatre opérations successives d'éjection rapide pour chaque cycle de la machine. L'éjection à partir de la section droite 16 se réalise sur le premier tour, avec renforcement de l'impulsion de déflexion par des quadrupoles, alors que pour les éjections à partir des sections droites 58 et 74, on utilise respectivement les deuxième et troisième tours. Dans ces deux derniers cas, la valeur de Q pour la machine est ajustée de manière appropriée à l'aide de quadrupoles ou des enroulements polaires. Les commandes du FAK sont assurées par ordinateur, et on a commencé à construire un système de cadencement compatible, commandé par ordinateur pour l'ensemble du processus d'éjection rapide. Trois modules de déflexion supplémentaires (ce qui portera le total à 12) ont été mis en fabrication, à la fois pour permettre l'exploitation à intensité élevée et pour assurer une redondance suffisante garantissant la fiabilité d'exploitation.

Les travaux de développement sur les aimants d'extraction à septum à grande ouverture destinés à l'éjection rapide ont été achevés, et le premier de ces aimants a été installé dans la section droite 74. Actuellement, il est desservi par une alimentation d'essais de laboratoire modifiée, tandis que les alimentations récemment livrées subissent des essais de réception.

Des moniteurs de profil permettant une rapide appréciation de la qualité du faisceau sont en cours de construction, ils équipent tous les canaux d'extraction. Le partage entre les extractions lente et rapide effectuées au cours du même cycle à partir de la section droite 16 a été amélioré en ajoutant une seconde alimentation pulsée pour les éléments de déformation d'orbite.

Les cibles internes ne peuvent être placées que dans un faisceau d'intensité limitée, car autrement elles s'échaufferaient de manière exagérée, quand elles partageront des faisceaux d'intensité plus élevée avec d'autres formes d'exploitation, il existera un sérieux risque de détérioration au cas où le coefficient de partage varierait brusquement. Un système de protection contre la surcharge est en cours de construction. La décharge rapide du faisceau pose un autre problème. A cette fin, on a construit et essayé un modèle de cible spéciale dont le déplacement rapide est assuré par un système à résonance mécanique.

Le matériel et le logiciel pour la commande par ordinateur de l'injection à 800 MeV ont fonctionné correctement et le mode dialogique (pupitre centralisé et syntaxe interprétative) est en cours d'extension progressive à d'autres commandes du PS, telles que celle de l'adaptation du transfert PSB-PS.

La série complète de corrections magnétiques de faible énergie est maintenant commandée par ordinateur et les corrections d'orbite radiales sont en cours de modernisation. Certaines modifications seront nécessaires pour s'adapter à la modulation de l'intensité, d'une impulsion à l'autre; l'équipement correspondant a été commandé. On étudie la commande par ordinateur des alimentations auxiliaires de l'aimant.
L'étude du comportement des analyseurs de profil du faisceau (IBS) a été activement poursuivie. Les effets des pertes de faisceau proches et le fait que la sensibilité dépend de la position du faisceau sont au nombre des difficultés rencontrées. Des solutions ont été trouvées et sont en cours d'application. Une analyse numérique de la collecte des électrons dans l'IBS a été publiée.

En liaison avec le constructeur, on a mis au point un nouveau détecteur destiné au système de surveillance des pertes de faisceau dans le PS. Il se base essentiellement sur l'émission d'électrons secondaires par une feuille d'aluminium. Cette feuille sert de cathode à un multiplicateur d'électrons monté dans la même enceinte sous vide. Ses principaux avantages sont un temps de réponse rapide, une résistance élevée aux rayonnements et une dynamique étendue.

Un moniteur à rideau de gaz destiné à mesurer la distribution de densité dans des faisceaux d'extraction lente est en cours de mise au point. Les protons du faisceau ionisent les molécules du gaz et les électrons libérés, qui se multiplient à mesure que l'ionisation du gaz se poursuit, sont collectés sur un ensemble d'électrodes. Un prototype a livré des résultats encourageants.

Un filtre actif a été ajouté à une alimentation c.c. de 3 MW déjà en service, afin d'atteindre les tolérances spécifiées pour l'amant de l'expérience g−2. La stabilité de l'intensité a été améliorée, passant de ±3×10⁻⁴ à ±10⁻⁵, et l'ondulation de courant a été réduite, passant d'environ 10⁻⁴ à 10⁻⁵.

On étudie les moyens de protéger les cibles de tungstène utilisées dans les faisceaux externes contre l'oxydation provoquée par les faisceaux d'intensités plus élevées, prévus à partir de 1975. Trois possibilités font l'objet d'essais, revêtement de quartz ou de silicium de tungstène, ou montage de l'ensemble de la cible dans une capsule scellée, remplie de gaz inerte.

Les cibles d'hydrogène liquide sont de plus en plus demandées. Un nouveau type a été récemment étudié et construit pour la collaboration CERN-Fribourg; sa caractéristique particulière est d'être équipée d'un miroir parabolique destiné à focaliser sur un photomultiplicateur la lumière Cerenkov produite à l'intérieur de la cible.

On a construit de nouveaux aimants de correction pour le guidage du faisceau, ayant une faible constante de temps. Le dernier des séparateurs électrostatiques de 10 m a été rénové et modernisé.

DÉVELOPPEMENTS ULTÉRIEURS ET FUTURS PLANS

Les travaux relatifs au nouvel accélérateur linéaire ont progressé de manière satisfaisante au cours de l'année et leur avancement est presque conforme au calendrier, en dépit d'une notable pénurie de personnel, surtout dans le domaine de l'étude mécanique. L'étude technique détaillée a confirmé pour l'essentiel le bien-fondé du choix de la solution recommandée dans le rapport sur l'étude technique d'octobre 1973.

Des commandes ont été passées pour les principaux éléments du prémultiplicateur, pour les amplificateurs de focbalance quadrupolaires et leurs alimentations, pour les amplificateurs HF de 400 MHz du groupeur-dégroupeur, et pour de nombreux autres éléments plus petits.

Des prototypes du modulateur de puissance HF et de l'étage 45 kW des amplificateurs de 200 MHz ont été terminés. Des modèles à échelle réduite des cavités accélétratrices sont
utilisés pour déterminer les détails de la structure définitive. On a installé un faisceau expérimental de 500 keV pour les essais concernant la conception de la source d’ions, les calculs de dynamique du faisceau et l’appareillage commandé par ordinateur. Des modules prototypes du système de commande basé sur l’emploi d’une logique CAMAC sont en cours d’essais. La mise au point de la configuration de l’ordinateur se poursuit, bien qu’elle ne puisse être définitivement arrêtée avant que l’ensemble du système du PS ait été défini.

La construction du bâtiment se déroule suivant le programme et les plans des installations de service et de distribution ont été achevés.

Le système de commande par ordinateur actuel, basé sur l’emploi d’une machine IBM 1800, offre des ressources considérables pour l’exploitation du PS. Toutefois, on n’a pas encore réalisé une commande complète par ordinateur, et l’installation est déjà saturée. De nouvelles exigences sont apparues, liées par exemple à la programmation de l’intensité, aux suites complexes de cycles, etc. Par conséquent, un nouveau système est en cours de mise au point; actuellement, il se base sur une structure hiérarchisée comprenant...
trois ordinateurs principaux (PDP-11/45), des ordinateurs d’extrémité affectés à des tâches spécifiques liées au processus à contrôler, et des pupitres centraux. Les ordinateurs seront reliés par un système d’intercommunication spécial appelé « BIDUL ».

L’étude de la nouvelle installation se trouve compliquée par le fait que le transfert des applications assurées par l’installation actuelle doit s’effectuer sans perturber l’exploitation du PS. De plus, il est souhaitable d’utiliser autant que possible l’équipement de commande déjà en service. Une analyse critique des critères du projet, basée sur une formulation plus précise des exigences des utilisateurs, est actuellement en cours. Des éléments de logiciel importants ont déjà été préparés, à savoir un langage intermédiaire de programmation aux niveaux système et application (PL 11) et un langage interprétatif.
Le système de modulation de l'intensité d'une impulsion à l'autre, qui doit permettre de répondre aux exigences variables du programme avec une perte minimale de protons, est en cours de mise au point et on examine ses implications pour divers éléments de l'accélérateur. Des essais ont montré qu'une fraction importante de la modulation requise pouvait être obtenue en modifiant le nombre de tours pour l'injection dans le synchrotron injecteur (PSB). D'autres méthodes, telles que la réduction de l'acceptance longitudinale à l'injection et l'utilisation d'une «passoire» sont essayées. Les pertes de faisceau sont automatiquement contrôlées en huit points critiques et ce système sera étendu par la suite pour assurer un contrôle plus complet. Les électrodes de détection devront être équipées d'un système de commutation de la sensibilité, qui a été étudié.

On analyse les problèmes d'irradiation liés aux cibles de décharge, y compris les avantages et inconvénients possibles d'un blindage local. Une décharge fiable, pour faisceaux d'intensité élevée, comportant un absorbeur statique vers lequel le faisceau peut être dévié, est en cours de construction pour le système d'éjection alimentant les ISR et le SPS. Tel qu'il est actuellement envisagé en 1977-78 un "super cycle" normal de l'ensemble nouveau accelerateur lineaire-synchrotron injecteur-CPS-PS-ISR laissera encore plus de la moitié des cycles disponibles pour les recherches à 25 GeV et les ISR. De plus, après achèvement du nouvel accélérateur linéaire, la machine actuelle pourrait être utilisée comme source, par exemple, de particules polarisées ou d'ions légers, qui seraient accélérés dans le PS. Une proposition dans ce sens est en cours de preparation et les études pourraient commencer au début de 1975.

SUPERCYCLE :

<table>
<thead>
<tr>
<th>Utilisateur</th>
<th>SPS</th>
<th>"25 GeV"</th>
<th>SPS</th>
<th>ISR</th>
<th>"25 GeV"</th>
<th>ISR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploitation</td>
<td>TC 100%</td>
<td>ER ~ 10%</td>
<td>TC 100%</td>
<td>ER 100%</td>
<td>EL ~ 90%</td>
<td>ER 100%</td>
</tr>
<tr>
<td>Intensité</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Tp/impulsion</td>
<td>5,2 s</td>
<td>9,1 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPS-OUEST-ER à 400 GeV

SPS-NORD-EL à 400 GeV - 2 s "palier"

Injection dans le SPS

L'implantation du système de «transfert continu» pour l'injection dans le SPS a été mise au point, et l'étude de ses éléments a considérablement progressé. On a achevé l'étude technique des aimants du système rapide de déformation d'orbite, on a passé des commandes pour ces éléments ainsi que pour les enceintes à vide, les terminaisons et les éléments des générateurs pulsés dont le délai de livraison est très long. L'étude technique
de l'aimant extracteur à septum a commence et un modèle de son alimentation a été construit en vue d'essais de possibilité de réalisation. Le septum électrostatique de 2 m est en cours d'étude.

Après le milieu de 1975, le Hall Ouest ne sera plus disponible pour les expériences à 25 GeV et les faisceaux du Hall Sud seront surtout utilisés pour les essais de l'appareillage, avec des intensités réduites sur les cibles. Par conséquent, une importante reconstruction des faisceaux du Hall Est a commencé afin d'intensifier l'exploitation de cette zone en utilisant des faisceaux primaires d'intensité plus élevée et en prévoyant une plus grande souplesse pour l'implantation des faisceaux secondaires. Des études détaillées de l'optique des faisceaux ont été nécessaires, et plusieurs éléments spéciaux de transport de faisceaux ont été étudiés et construits. L'équipement des faisceaux a été adapté aux nouvelles conditions et la nouvelle implantation disposera d'installations de surveillance beaucoup plus développées. On construit un nouveau bâtiment de redresseurs, et l'installation de refroidissement d'eau est en cours d'extension. Il est prévu que la pleine exploitation pour la physique expérimentale commencera à Pâques 1975.
Physique appliquée
Au cours du second semestre de 1974, le service de calcul électronique assure par l'installation CDC 7600/6500 a atteint et conserve un niveau acceptable. La réception finale du système installé par le constructeur a été achevée à la fin de l'année.

En raison de la médiocrité persistante des performances de l'installation CDC 7600/6500 qui a été mentionnée dans le Rapport pour 1973, le Laboratoire a fait des réclamations à l'échelon le plus élevé auprès de Control Data Corporation. Ces démarches ont abouti à la création d'un comité de révision conjoint représentant la direction du CERN et de CDC Minneapolis, et chargé d'établir et d'appliquer un programme commun en vue d'améliorer la situation. Cette mesure a permis d'assurer le service de calcul électronique acceptable mentionné ci-dessus. Le programme comprenait trois éléments principaux, à savoir: une amélioration considérable de la qualité et de l'importance de l'assistance en matière de technologie et de logiciel fournie sur le site par CDC, le remplacement de toutes les unités de bandes magnétiques à neuf pistes par de nouveaux modèles améliorés, et la concentration des efforts sur la stabilisation du logiciel actuellement installé, de préférence à la mise en service de nouvelles versions de ce logiciel CDC.

Les difficultés rencontrées au cours des deux dernières années pour la mise en pleine exploitation de l'installation CDC 7600/6500 ont considérablement retardé le programme de développement du service de calcul électronique. Ce programme a maintenant été réexaminé par plusieurs groupes de travail interdivisionnaires, et des plans sont en cours d'élaboration afin de satisfaire les futurs besoins du programme d'expérimentation du SPS en matière de transmission de données, de créer un réseau sur le site et d'offrir des ressources régionalisées, en vue de poursuivre la politique de décentralisation.

Dans le domaine du traitement des données expérimentales, la Division a poursuivi le développement des systèmes utilisés avec Oméga et le SFM, et elle fournit aussi une assistance de programmation aux groupes utilisant ces installations. Le développement du système de mesure de films ERASME s'est poursuivi en collaboration avec la Division TC, en plus du traitement des films de BEBC, on a travaillé à son adaptation à la mesure des films de la chambre de 2 m. En collaboration avec les divisions NP et TC, on a commencé des travaux de développement d'installations de traitement de données pour les expériences avec le SPS, dans les zones Ouest et Nord.

Comme au cours des années précédentes, la Division Données et documents a aidé les autres Divisions à utiliser les ordinateurs pour une vaste gamme d'opérations dans tout le Laboratoire. La Division continue également d'assurer les services de bibliothèque et de reproduction des documents pour le Laboratoire.
A la suite de son transfert dans le nouveau centre de calcul, où il était installé à la fin de 1973, le CDC 6500 a remplacé le CDC 6400 comme machine gérant les entrées-sorties vers le CDC 7600. Les systèmes CERNSCOPE, FOCUS et HPD pour la mesure des films sont desservis par le CDC 6600, alors que le 6400 assure le service des terminaux par INTERCOM et sert d’appoint pour les CDC 6500 ou 6600.

Vers la fin de 1973 et au début de 1974, les médiocres performances de l’équipement de l’installation CDC 7600/6500 sont venues s’ajouter aux difficultés créées par les insuffisances du logiciel et des systèmes de manipulation des bandes magnétiques. Des efforts considérables ont été nécessaires pour amener les caractéristiques de fonctionnement de l’installation à un niveau acceptable et, afin d’en améliorer la stabilité, on a suspendu temporairement le programme de développement du logiciel. Actuellement, pour l’installation combinée CDC 7600/6500, le temps moyen entre deux redémarrages consécutifs à une panne est de sept heures, au lieu de trois heures à la fin de 1973. On a effectué des essais approfondis du nouveau modèle 669 d’unité de bandes magnétiques, afin de s’assurer qu’il offrira l’amélioration requise des caractéristiques de lecture et d’écriture. De nouveaux sous-programmes de commande de ces unités ont été insérés dans le système d’exploitation et le remplacement de toutes les unités du modèle 659 a été achevé à la fin de novembre.

La charge de travail actuellement traitée par l’installation CDC 7600/6500 est d’environ 12 000 tâches par semaine, dont 80% sont soumises à partir de 10 postes d’entrée-sortie à distance, répartis sur le site du CERN. Le service de calcul électronique en ligne pour les expériences a été assuré par FOCUS exploité sur l’installation CDC 6600/3200.
Au cours des périodes d’exploitation programmées de l’accélérateur, un niveau élevé de disponibilité a été atteint pour ce service, assuré 24 heures sur 24.

Un système concentrateur appelé SUPERMUX a été développé afin d’assurer la liaison entre l’ordinateur central et les terminaux à haute vitesse. Actuellement, 20 consoles de visualisation périphériques sont reliées de cette manière, en utilisant le système INTERCOM exploité sur la machine CDC 6400 pour l’édition des fichiers, la soumission des tâches et le calcul dialogique.

Figure 2 : Ce n’est pas une analyse spectrale, mais les clins soutenant le toit planché du bâtiment central des ordinateurs. (CERN-36 473)

Figure 3 : Sur le dessus million de watts dégagés dans les ordinateurs centraux, certains sont évacués par l’eau et d’autres par l’air. La photographie représente les noyaux du condensateur d’air dans la toiture du bâtiment central des ordinateurs. (CERN-36 473)
Les ressources mises à la disposition des utilisateurs et les procédures d'exploitation ont été améliorées par l'adoption d'un logiciel spécial, rédigé par le CERN, ainsi que par le développement des procédures appelées par cartes de contrôle. Il a été introduit des programmes utilitaires pour l'analyse des performances des tâches individuelles et des systèmes d'exploitation centraux; ils devraient jouer un rôle important, en garantissant une utilisation efficace des ressources de l'installation centrale. Tous les travaux de développement du logiciel ont été effectués avec une importante réduction du temps exigé pour les périodes de développement spéciales, au cours desquelles le service n'est pas disponible pour les utilisateurs.

Dans le cadre d'un réexamen des besoins futurs du Laboratoire en matière de calcul électronique, et des moyens de les satisfaire, un grand nombre d'études techniques ont été consacrées aux futures extensions des équipements de calcul électronique et à la rationalisation des interconnexions des nombreuses installations de calcul et des nombreux terminaux utilisés sur le site.

Des améliorations considérables ont été apportées aux services d'assistance aux utilisateurs. Un «Guide de première urgence» et une «Introduction au Service de calcul électronique» ont été publiés à l'intention des nouveaux utilisateurs. Pour la bibliothèque de programmes, l'effort principal a porté sur l'entretien de la bibliothèque binaire, tant en ce qui concerne les nouveaux programmes-produits que ceux qui sont obtenus par conversion à partir de CERNsCOPE. Les contacts avec les bibliothèques extérieures ont été accrus et, de ce fait, les utilisateurs du CERN ont eu accès à de nouveaux programmes.

On a poursuivi les recherches et le développement des programmes dans des domaines tels que l'algèbre linéaire, l'intégration numérique, les équations différentielles et les équations aux dérivées partielles. On a lancé des études sur la résolution numérique des équations intégrales de Volterra et sur les problèmes non linéaires de momètres carrés. En statistique, des tests de validité de l'ajustement ont été établis pour des hypothèses composites et des études de classification d'aggregats (cluster analysis) ont commencé. Les travaux sur le système de manipulation de formules SCHOONSCHIP se sont poursuivis; ce système est maintenant en service dans 30 institutions différentes. Le langage BCPL (Basic Combined Programming Language) de Cambridge a été introduit dans le logiciel de plusieurs ordinateurs du CERN.

Mathématiques appliquées

Traitement des données pour les films de chambres à bulles

La construction des unités de dépouillement et de mesure ERASME s'est poursuivie, la troisième unité, qui est la première à être totalement adaptée au traitement des films de la chambre à bulles de 2 m, a été achevée en juin. La quatrième unité sera bientôt achevée et la construction de la cinquième est bien avancée.

La reconstruction géométrique en ligne a été exploitée régulièrement, avec deux unités de dépouillement et de mesure en service depuis septembre. La formation des opérateurs s'est poursuivie, ainsi que la préparation des programmes pour une expérience avec des n° de 16 GeV/c, à réaliser avec la chambre à bulles de 2 m. Cette expérience a commencé à produire des données en novembre.

Il a été mesuré quelque 1200 événements K⁻ p à 9 GeV/c, enregistrés au cours de la période d'exploitation de BEBC de l'automne 1973. Les résultats préliminaires ont été présentés à la conférence d'Oxford sur le dépouillement des clichés par ordinateur. Des mesures d'essai ont également été effectuées en vue d'étudier les possibilités de traitement des films de Mirabelle sur ERASME, et de mesurer les plaques d'étalonnage des objets équipant les caméras de BEBC.

Traitement des données
L'exploitation de l'ensemble HPD 1/CDC 6600 a entraîné quelques difficultés à la fin de 1973, dues surtout à des modifications de la configuration. Depuis janvier 1974, la disponibilité de cet ensemble a atteint 98%.

Une étude du système hybride de chambres à bulles propose pour la zone Nord du Laboratoire II est actuellement effectuée en collaboration avec la Division TC et des groupes extérieurs.

Traitement des données pour les expériences électroniques

Omega

Pendant l'année 1974, 14 groupes au total ont utilisé l'installation de traitement des données d'Omega et de l'aimant à champs inverses (SFM) pour enregistrer plusieurs dizaines de millions de déclenchements. Aucune modification importante n'a été apportée à l'installation de calcul électronique, mais on a néanmoins poursuivi des travaux en vue d'améliorer ses performances et sa fiabilité. De manière analogue, la chaîne de programmes ROMEO conçue pour le traitement des événements dans Omega a été perfectionnée afin d'accroître son efficacité. Le système ORION pour l'édition des heurs et la soumission des tâches a été étendu; actuellement, 20 terminaux sont disponibles en permanence.

On a procédé à l'étude des nouvelles exigences concernant les installations de saisie des données et les dispositifs de détecteurs desservant le spectromètre Omega, utilisé avec le SPS.

L'aimant à champs inverses (SFM)

Dans l'exploitation de l'aimant à champs inverses (SFM), l'effort principal a porté sur l'assistance fournie aux utilisateurs pour la saisie des données et la production en différé, ainsi que sur l'adaptation de programmes à des expériences spécifiques ou à des changements de détecteurs. La version CII 10070 du programme de recherche des traces est maintenant utilisée pour l'échantillonnage pendant la saisie des données. En particulier les programmes de traitement en différé ont bénéficié d'importants développements, spécialement en ce qui concerne leur efficacité, leur vitesse et leur souplesse. Ils ont été adaptés pour l'exploitation sur les machines Univac 1110, IBM 360/75, IBM 370/168 et CDC Cyber 74.

Les premiers résultats de physique obtenus par emploi de ce système de traitement des données ont été publiés (Collaboration CERN-Hambourg-Orsay-Vienne); ils se basent sur cinq millions d'événements traités à l'aide de la chaîne de programmes. Actuellement, plusieurs groupes d'expérimentateurs différents réalisent sept expériences sur le SFM, en utilisant le système de traitement des données en ligne.

Activités générales

Le développement de processeurs câblés spécialisés, rapides, se poursuit. Le processeur de recherche des points pour les chambres à fils est maintenant achevé, de même qu'un processeur de recherche des lignes droites. On a également étudié d'autres applications des processeurs câblés, ainsi que l'emploi de mémoires associatives.

Les travaux sur le projet d'enregistrement sur bande vidéo se poursuivent dans la Division NP, ils figurent dans le rapport de cette Division.

Une assistance à la programmation a été fournie pour deux expériences aux ISR, et l'on a poursuivi la collaboration avec un groupe NP sur des travaux préparatoires concernant l'expérience neutrino avec le SPS.

Autres activités

Le système de gestion de bases de données TABLOID est maintenant entré en pleine exploitation. Des programmes ont été codés dans le langage TABLOID, afin de gérer quelque 20 bases de données dans différents domaines d'application, dans les deux Laboratoires. Le programme INFOL pour le stockage et l'extraction de l'information continue d'intéresser de nouveaux utilisateurs. Certains éléments nouveaux lui ont été ajoutés afin d'accroître ses possibilités.
Le programme PERT pour l'analyse des réseaux a été complété par adjonction de ressources permettant une sortie graphique intégrale. Des programmes pour consoles de visualisation graphique dialogique ont été développés en vue de l'étude de la corne neutrine et pour la classification d'agrégats multidimensionnelle. Un logiciel pour traitements graphiques a été rédigé, afin d'aider à l'automatisation de certains travaux de dessin technique et à l'évaluation d'un nouveau traceur de courbes à table de grandes dimensions. Il a été rédigé un "Guide des utilisateurs" des sous-programmes GD3, spécialement conçu à l'usage des débutants.

Le compteur Cerenkov à disque, étudié et construit en collaboration avec la Division NP, a été installé au Fermi National Accelerator Laboratory. Une nouvelle version du refractomètre qui fait partie de cet équipement a été étudiée en tenant compte des exigences du SPS.

Un équipement et un logiciel ont été développés pour la lecture bidimensionnelle de haute précision des chambres proportionnelles multifilés en cours de mise au point pour la détection des rayons X et Y. Une chambre à dérive multifilés à haute densité a été étudiée à l'Ecole de Physique condensée de l'Université de Genève, en vue d'expériences d'annihilation du positron. En collaboration avec la Division NP, il a été développé une chambre à dérive spéciale pour la visualisation des rayons X.

En collaboration avec l'ESO, de nouveaux circuits améliorés ont été mis au point pour les batteries de photodiodes à balayage automatique.

Pour l'atelier d'électronique, on a rédigé un programme d'ordinateur qui fournira les paramètres de contrôle pour une machine semi-automatique de fabrication de connexions enroulées, en vue d'accélérer la production de dispositifs électroniques.

La Division a prêté son concours pour l'organisation de l'Ecole de calcul électronique du CERN (1974) qui s'est tenue à Godøysund, près de Bergen en Norvège, et elle a également assuré un certain nombre de conférences dans le cadre de cette école.

Vingt-six notes de technologie, dont beaucoup étaient associées à des démonstrations, ont été présentées par la Division lors de la réunion consacrée à la technologie. Les sujets traités allaient de la programmation en mode dialogique aux chambres proportionnelles multifilés, en passant par les développements en matière de transmission de données à haute vitesse.
Bibliothèque centrale

Le projet de mécanisation des procédures de catalogage de la bibliothèque sera bientôt achevé. Le système d’exploitation de l’ordinateur PDP-11 a été modifié afin de gérer un système dialogique prioritaire pour utilisateurs multiples permettant l’échange d’information avec les ordinateurs centraux par une technique de files d’attente. On procède aux modifications de l’équipement et du logiciel afin d’assurer une communication à haute vitesse avec ces ordinateurs, par l’intermédiaire du concentrateur SUPER-MUX. La liste complète des périodiques reçus par le CERN a été mise en mémoire et transférée sur l’ordinateur CDC 6500. Des listes triées, en majuscules et minuscules, ont été produites sur l’imprimante par ligne, sur microfiches et sur microfilms. Dans ce dernier cas, le support est conçu en vue de la reproduction ultérieure. Des travaux sont en cours en vue de développer des dictionnaires permettant d’améliorer la vitesse et la précision de l’entrée des informations, et afin d’aider à leur future extraction.

Echange de publications

Vingt-cinq rapports CERN ont été publiés et on a diffusé des tirs à part de 294 articles publiés par des membres du personnel du CERN dans des périodiques scientifiques. Les publications sont actuellement échangées avec 715 institutions et bibliothèques dans 60 pays.

Reproduction des documents

Quelque 41 millions de pages ont été reproduites en offset à partir d’environ 60 800 pages dactylographiées et 17 000 diapositives ont été fournies. Avec l’assistance de l’Ecole supérieure suisse des Arts graphiques, on a établi les plans pour un regroupement rationnel des services d’impression après l’installation dans le bâtiment 510. Les travaux de construction sont actuellement bien avancés.
Augmentation progressive de la luminosité des ISR
De la mi-février, lorsque s’est terminée la période d’arrêt annuelle de six semaines, à la fin de l’année, les ISR ont été exploités pendant 3480 heures, dont environ 80% ont été consacrées aux périodes d’expérimentation et à leur préparation et environ 20% aux études en vue de l’amélioration des performances de la machine. Les techniques mises au point vers la fin de 1973 et l’amélioration de la qualité du vide et de l’extraction des électrons ont permis d’atteindre des luminosités plus élevées et de réduire considérablement les taux de perte de faisceaux et les radiations dues au bruit de fond. Une luminosité de $1.4 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ a été atteinte à 26,5 GeV/c, avec 24,5 A circulant dans chacun des anneaux et dans des conditions permettant la saisie de données de physique. L’accélération de faisceaux jusqu’à 31,4 GeV/c (équivalent à 2000 GeV) a également été améliorée pour atteindre une luminosité de $2.4 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$.

Une luminosité de $2.1 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ dans une seule intersection, 1-7, a été atteinte à 26,5 GeV/c avec environ 20 A dans un anneau et 24 A dans l’autre. Ce résultat a été obtenu grâce à l’adjonction d’un système (appelé insertion à faible valeur de bêta) de quadrupôles acier-cuivre qui réduit la hauteur des faisceaux dans l’intersection. Les études effectuées avec ce système aux ISR permettront de poursuivre la conception d’une insertion qui pourrait donner des luminosités encore plus élevées. Un autre développement technologique intéressant a été l’observation d’un effet positif dû au refroidissement stochastique, mais des études supplémentaires sont nécessaires pour que le système devienne utilisable.

Dix-neuf expériences de collisions de faisceaux ont saisi des données aux ISR au cours de l’année, dix d’entre elles ont été achevées. Des préparatifs sont en cours pour plusieurs expériences acceptées qui seront mises en place au cours de 1975 et 1976. Les propositions d’expériences futures sont toujours aussi nombreuses mais, étant donné la complexité accrue de ces expériences et l’extension des domaines de recherche, il devient plus difficile de réaliser des installations compatibles dans une intersection.

L’étude des problèmes de caractère général posés par les anneaux de stockage de protons s’est poursuivie tant sur le plan de la théorie que par l’observation du comportement du faisceau dans les ISR. Les paramètres de divers modèles d’installations pour collisions de faisceaux et leur influence sur les performances ont également été étudiés. Les membres du personnel du Département ont participé à plusieurs conférences et groupes d’études dans le monde entier.
Division Anneaux de stockage à intersections

Observations concernant le comportement du faisceau

Des luminosités plus élevées à toutes les énergies, avec des taux de décroissance et des bruits de fond plus faibles, ont été atteintes au cours de l'année. Cette amélioration des performances a été obtenue grâce au positionnement exact de la ligne de fonctionnement des faisceaux dans le diagramme d'accord. Ce positionnement précis utilise la technique, adoptée en 1973, de compensation progressive, pendant l'accumulation, du désaccord dû à la charge d'espace, avec contrôle permanent grâce aux sondes Schottky.

Pour des intensités de faisceau pouvant atteindre au moins 15 A et des luminosités d'environ 6×10^{30} cm$^{-2}$ s$^{-1}$, une ligne de fonctionnement évitant toutes les résonances d'ordre inférieur à huit a été utilisée de façon courante pendant toute l'année. Dans ces conditions, les taux de décroissance les plus bas correspondent à une perte d'environ 3×10^{-5} par heure, dont plus de la moitié est due aux collisions faisceau-faisceau, les problèmes de bruit de fond étant pratiquement supprimés. Pour les luminosités plus élevées, des résonances du cinquième ordre ont été acceptées dans les ensembles stockés, ce qui a entraîné en général des taux de décroissance une cinquantaine de fois plus élevés que ceux dus uniquement aux collisions faisceau-faisceau et faisceau-gaz. Le bruit de fond dans ces conditions a été acceptable pour certaines expériences mais pas pour toutes.

Vers la fin de l'année, on a essayé avec succès une nouvelle ligne de fonctionnement située près d'une résonance entière. Avec ce mode d'exploitation, rendu possible grâce à une modification du système d'asservissement assurant la stabilisation transversale, les résonances d'ordre inférieur peuvent être évitées pour les intensités de faisceau égales et supérieures à la limite imposée actuellement par la qualité du vide. Ces nouvelles conditions de fonctionnement, qui permettent également d'exploiter les ISR avec l'insertion à faible valeur de bêta décrite plus loin, ont été adoptées pour les six dernières périodes d'expérimentation de l'année avec des luminosités se situant aux environs de 10^{31} cm$^{-2}$ s$^{-1}$.

La luminosité la plus élevée atteinte au cours de l'année dans l'ensemble des ISR est de $1,4 \times 10^{31}$ cm$^{-2}$ s$^{-1}$ à 26,5 GeV/c avec 24,5 A circulant dans chacun des deux anneaux. Des intensités de 30 A ont été atteintes dans chacun des anneaux mais avec des faisceaux instables et une qualité de vide se détériorant rapidement.
La méthode d'accélération des faisceaux par déplacement dans l'espace de phase jusqu'à 31,4 GeV/c (énergie équivalente à 2000 GeV sur une cible fixe) a été améliorée au cours de l'année. Une luminosité de 2.4×10^{30} cm$^{-2}$ s$^{-1}$ a été atteinte à cette énergie avec plus de 9 A circulant dans les deux anneaux.

Avec une pression moyenne dans l'installation de vide bien inférieure à 10^{-11} torr et de très bons champs d'extinction, la décroissance de faisceau n'est plus influencée par les effets tels que l'instabilité électron-proton qui sont provoqués par les électrons d'ionisation pénétrant dans le potentiel des faisceaux. Des études générales sur le comportement du faisceau intéressant le développement futur des ISR et la détermination des paramètres d'autres installations de collisions de faisceaux se sont poursuivies. Dans le domaine des instabilités longitudinales, le rapport entre l'impédance longitudinale et le nombre harmonique a été mesuré par comparaison des oscillations en mode dipolaire et quadripolaire. Les résultats sont en accord avec les mesures d'impédance qui ont été effectuées systématiquement sur presque tout l'équipement avant son installation dans les anneaux. La cavité expérimentale a été utilisée pour des études préliminaires sur le renforcement de l'amortissement longitudinal de Landau par une cavité passive.

En prévision de l'installation d'un grand aimant à solénoïde dans l'une des intersections, un modèle réduit a été placé dans les ISR pour étudier le couplage entre les oscillations bêtatroniques verticales et horizontales. Les résultats s'accordent avec les calculs théoriques qui prévoient une augmentation du couplage, du simple au double environ, lorsque le grand solénoïde sera en service.

L'accroissement en fonction du temps des emittances des faisceaux injectés a été mesuré. Dans de bonnes conditions, l'accroissement de l'emittance verticale semble être de 40% en 10 minutes après la diffusion à l'intérieur du faisceau. Mais l'emittance horizontale semble croître beaucoup plus rapidement que ne le laisserait prévoir cette diffusion. Les résultats sont en accord, pour l'essentiel, avec les prévisions théoriques et apparaître une plus forte décroissance des faisceaux et une réduction de leur durée de vie.

Limitations des performances, remèdes et développements envisagés

L'augmentation de pression provoquée par le faisceau dans l'installation de vide reste la limitation la plus sérieuse à l'amélioration des performances des ISR. Les efforts entrepris en vue d'éliminer cette source de difficultés sont décrits dans la suite du présent rapport.

Un deuxième facteur limitatif est l'instabilité cohérente transversale, jointe au fait que l'amortissement de Landau que l'on peut mettre en œuvre est limité à cause de l'excitation des résonances non linéaires par l'interaction faisceau-faisceau. Afin de rendre possible un doublement de luminosité, les études ont commencé en vue de porter à 50 MHz la largeur de bande du système d'asservissement qui assure la stabilisation transversale.

On espère que les ISR arriveront progressivement à bénéficier pleinement de l'augmentation de la densité des faisceaux du PS consécutive à l'emploi du synchrotron injecteur (PSB). Les instabilités longitudinales du faisceau injecté provoquent encore une dilution considérable et, pour y remédier, on procède à la mise en service d'un système d'asservissement. On construit également un système destiné à compenser la charge sur les cavités HF des ISR, charge qui sera plus élevée lorsque les ISR accepteront les faisceaux de plus haute intensité du PS. Une première cavité prototype a été installée dans l'anneau 1 pour des essais et un prototype final, utilisant une tétrode de 25 kW, a été essayé avec les faisceaux des ISR avant la fin de l'année. La construction des 14 unités requises a commencé.

On a poursuivi les études sur la réduction de la dimension verticale des faisceaux des ISR par refroidissement stochastique, décrite en 1973. Les perfectionnements apportés à l'équipement et à l'analyse ont permis de montrer que cette méthode est utilisable.
Vers la fin de l'année, au cours d'une période de fonctionnement de 13 heures, pendant laquelle le système a été alternativement mis en marche et arrêté, un certain refroidissement a été observé. Des études complémentaires doivent être effectuées avant qu'une réduction intéressante de la hauteur du faisceau dans un délai raisonnable puisse être obtenue.

Lignes de fonctionnement et suppression des résonances

Vers la fin de 1973, une ligne de fonctionnement dynamiquement corrigée (désignée par 8C) a été mise au point afin de maintenir les faisceaux dans une région exempte de résonances d'ordre inférieur à huit. A mesure que les faisceaux étaient accumulés, la ligne de fonctionnement était progressivement corrigée pour compenser le désaccord dû à la charge d'espace. Au cours de 1974, cette technique a été employée pour toutes les énergies des ISR, ce qui a eu pour effet de réduire considérablement les taux de décroissance et le bruit de fond.

Le même principe a été appliqué à une nouvelle ligne de fonctionnement appelée ELSA située près des résonances entières, Q_h et $Q_v = 9$. Avec cette ligne, on peut stocker des faisceaux d'une intensité maximale de 24 A à 26 GeV/c, exempts de résonances d'ordre inférieur à huit. À la fin de l'année, cette ligne a été utilisée pour une série de périodes d'expérimentation avec de faibles taux de décroissance et des luminosités très élevées.

La figure 2 montre les lignes de fonctionnement utilisées actuellement aux ISR représentées en traits gras dans le diagramme $Q_v - Q_h$. Les lignes en traits marqués correspondent à des résonances d'ordre inférieur.
Une ligne de fonctionnement plus longue (désignée par 5V), qui traverse les résonances de cinquième et septième ordre, a été utilisée pour atteindre des intensités de faisceau maximales de 30 A au cours d'études de perfectionnement de la machine et, avec 24,5 A dans les deux anneaux, pour obtenir une luminosité de $1,4 \times 10^{31} \text{cm}^{-2} \text{S}^{-1}$ dans des conditions permettant les expériences. Cette ligne est à la fois précontrainte et corrigée dynamiquement pour compenser les effets de charge d'espace.

D'autres lignes de fonctionnement permettant d'atteindre des intensités élevées et d'éviter les résonances ont été étudiées. On a stocké des faisceaux qui étaient fractionnés en deux parties séparées par un espace vide où se trouvaient les résonances de cinquième ordre. Au milieu de l'année, des systèmes de sextupôles et d'octopôles ont été installés dans les ISR pour compenser les résonances de troisième et quatrième ordre. Avec ces lentilles, des essais ont été effectués sur la compensation des résonances et sur l'évacuation des particules soumises à ces résonances en vue d'étudier des lignes de fonctionnement à grande dispersion des valeurs de Q qui comprendraient des résonances de troisième et quatrième ordre.

L'insertion à faible valeur de bêta

La luminosité dans une intersection des ISR peut être augmentée localement en ajoutant un système de quadrôles, appelé «insertion à faible valeur de bêta», qui focalise les faisceaux pour les ramener à de plus faibles dimensions verticales au point de croisement. Des études préliminaires effectuées en 1973 ont montré qu'un système de quadrôles acier-cuivre pouvait augmenter la luminosité du simple au double environ, tout en constituant une première étape pour d'autres réalisations. Un tel système a été assemblé et est maintenant installé dans l'intersection 1-7.

Chaque anneau est équipé de cinq quadrôles qui ont pu être réunis rapidement, certains d'entre eux étant prêts par les Laboratoires de Daresbury et de DESY, et les autres étant de l'équipement de réserve des Départements des ISR et du PS. Pour réduire le nombre d'alimentations, les quadrôles correspondants de chaque anneau sont connectés en série. Les cinq alimentations requises étaient également de l'équipement de réserve. Elles ont été adaptées pour cet emploi et des filtres passifs ont été ajoutés pour satisfaire aux exigences concernant la stabilité et l'ondulation résiduelle. Une nouvelle chambre à vide pour l'intersection a été conçue et construite. Pour étudier les dimensions et la position des faisceaux, des diaphragmes de nettoyage verticaux spéciaux...
ont été fabriquées et installées. Les commandes pour tous les nouveaux éléments ont été passées vers le début de l'année, l'assemblage et les essais de l'équipement ont commencé au milieu de l'été. En octobre, tout le système était entièrement installé dans les ISR.

Les conditions d'excitation des quadripôles ont été calculées de manière à atteindre une luminosité maximale en assurant une adaptation convenable au reste des ISR. Avec ces paramètres, les premiers essais réussis de l'insertion ont été effectués en octobre. On a constaté que l'adaptation était celle qui avait été prévue et, dans l'intersection 1-7, on a observé une réduction de hauteur de faisceau d'un facteur de 2,3 par rapport à la hauteur dans 1-5. En novembre, une luminosité de $2.1 \times 10^{23} \text{cm}^{-2} \text{s}^{-1}$ a été atteinte dans 1-7 avec des faisceaux en circulation d'intensité 19.8 A dans un anneau et 24.1 A dans l'autre. Les observations du comportement des ISR avec cette insertion à faible valeur de bêta se poursuivront au cours de 1975 et les luminosités plus élevées que cette insertion permettra d'obtenir seront utilisées pour les expériences.

Améliorations des installations de vide et d'extraction d'électrons

Depuis la mise en exploitation des ISR, une importante limitation rencontrée dans les tentatives effectuées pour atteindre des intensités de faisceau en circulation plus élevées provenait de l'installation de vide. Bien que celle-ci ait été considérablement améliorée et développée, de sorte que la pression moyenne dans l'enceinte à vide longue de 2 km est maintenant inférieure à 10^{-11} torr, cette limitation subsiste. Aux intensités de faisceau records de 27 à 30 A, il se produit de brusques augmentations de pression dues à la désorption de gaz provoquée par les ions.

En vue d'atteindre des intensités de faisceau stables de 30 ou 40 A, les tentatives pour améliorer la stabilité du vide se poursuivent. Des pompes à sublimation supplémentaires sont ajoutées actuellement aux endroits critiques, toutes les nouvelles chambres sont...
nettoyées par décharge luminescente avant installation, certaines régions sont étuvées à 350°C et des gaines en titane sont insérées dans certaines sections. On s'efforce également de réduire le risque de contamination accidentelle. Pour comprendre les phénomènes fondamentaux, des études en laboratoire sont effectuées actuellement pour étudier les états de surface, les agents de contamination et les remèdes à apporter.

Compte tenu de la grande quantité d'équipement, les fuites dans les éléments de l'installation de vide, tels que brides, vannes, traversées et soufflets, ne sont pas nombreuses. Elles entraînent cependant une diminution des performances de la machine et parfois une interruption de l'exploitation. En vue d'améliorer la fiabilité de ce matériel, des recherches se poursuivent dans le laboratoire et leurs résultats sont mis en application aussi rapidement que possible dans le programme permanent de modification de l'installation de vide. Il faut noter cependant que le remplacement d'éléments dans une installation aussi grande prend souvent de nombreux mois.

Le système d'électrodes d'extraction a été amélioré en particulier dans les intersections où il est plus difficile de maintenir, à un niveau suffisamment faible, la neutralisation résiduelle provoquée par les électrons piégés. Un nouveau système de commande pour les champs d'extraction a été construit et installé. Résultat accessoire de ces perfectionnements, la mesure des courants d'extraction permet de déterminer la pression moyenne dans un secteur ou dans un anneau entier avec une précision supérieure à celle pouvant être obtenue avec les jaugeurs.

Exploitation des ISR

Statistiques d'exploitation

Après la période d'arrêt annuelle de six semaines, l'exploitation des ISR a recommencé sans aucune difficulté au milieu de février. De cette date jusqu'à la fin de l'année, la machine a fonctionné pendant 3480 heures, dont 2348 pour la saisie des données expérimentales, 447 pour le remplissage, les réglages des faisceaux et les mesures de luminosité et 685 pour l'étude des performances de la machine et les travaux de développement et pour la remise en marche de la machine après de longues périodes d'arrêt. Au total, 449 heures ont été perdues (mais en général rimeses au programme) par suite de défauts d'ISR, d'une rupture accidentelle de la chambre à vide dans l'intersection 1-2, de perturbations du réseau 18 kV et du manque de faisceaux en provenance du PS. Les programmes d'exploitation ont été analogues à ceux de 1973.

La répartition du temps d'exploitation pour les expériences de collisions de faisceaux en fonction des quantités de mouvement standardisées des ISR, ainsi que les intensités et les luminosités à ces différentes quantités de mouvement, sont présentées dans le tableau ci-après.

<table>
<thead>
<tr>
<th>Quantité de mouvement GeV/c</th>
<th>Temps d'exploitation %</th>
<th>Plage des intensités des faisceaux A</th>
<th>Luminosité Max. x 10^-6 cm²/sec</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8</td>
<td>13.4</td>
<td>4-6</td>
<td>0.5</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>15.4</td>
<td>16.4</td>
<td>6-10</td>
<td>2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td>22.5</td>
<td>7-18</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>26.5</td>
<td>37.2</td>
<td>8-22</td>
<td>12.7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>31.4</td>
<td>5.4</td>
<td>4-9</td>
<td>2.4</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Diverses</td>
<td>Diverses valeurs</td>
<td>Diverses valeurs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dans chaque anneau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Le personnel des ISR a également exploité pendant 2960 heures la ligne de faisceau alimentant le Hall Ouest.

102
Conditions d'exploitation pour les expériences

Les conditions d'exploitation au cours de l'année ont été très variées par suite de la complexité croissante des expériences et de l'amélioration continue des performances de la machine. Les exigences spécifiques des expériences n'étant pas toujours compatibles, la programmation de périodes d'expérimentation distinctes pour satisfaire certaines expériences est devenue plus fréquente, avec le risque pour les autres expériences de ne pouvoir saisir de données utiles pendant ces périodes.

Les expériences diffèrent également par leur sensibilité au bruit de fond. Par exemple, les détecteurs installés dans l'aimant à champs inversés (SFM) ont pu fonctionner avec succès à des luminosités maximales de \(10^{31} \text{ cm}^{-2} \text{s}^{-1}\), mais les pertes de faisceau doivent être maintenues à un niveau faible avec de fréquentes nettoyages. À la fin de l'année, la situation dans l'intersection 1-4 s'est quelque peu dégradée à cause de la détérioration du vide dans cette région aux intensités élevées. À l'opposé, des expériences très sélectives étudiant des processus à faible section efficace ont pu utiliser avec profit des périodes de plusieurs heures avec des intensités de faisceau supérieures à 20 A et des luminosités de plus de \(10^{34} \text{ cm}^{-2} \text{s}^{-1}\).

La maîtrise considérablement accrue de l'accord de la machine et les nouvelles lignes de fonctionnement exemptes de résonances d'ordre inférieur ont permis d'obtenir, pour des périodes d'expérimentation, des faisceaux à faibles taux de pertes, avec des intensités atteignant 20 A. Pour des intensités maximales de 15 A, des taux de pertes inférieurs à 10^-4 par minute, observés assez fréquemment, correspondent à ceux attribués à la diffusion nucléaire sur le gaz résiduel et qui résultent des collisions se produisant dans les intersections, la part des collisions étant la plus grande.

La pression moyenne dans l'installation de vide étant plus faible et les taux de pertes plus réduits, le taux de décroissance de la luminosité est tombé à environ 1% par heure, ce qui a permis de programmer des périodes d'expérimentation plus longues. Mais certaines expériences ont exigé des périodes courtes à diverses énergies avec des pertes de faisceau. Les taux de pertes de faisceau à 10^-6 par minute, observés assez fréquemment, correspondent à ceux attribués à la diffusion nucléaire sur le gaz résiduel et qui résultent des collisions se produisant dans les intersections, la part des collisions étant la plus grande.

Améliorations du fonctionnement et comportement de l'équipement

Pour assurer une meilleure injection dans les ISR, de nouvelles techniques de détection ont été utilisées dans les lignes de transfert de faisceaux. Une nouvelle méthode statique de blindage du champ de fuite des détecteurs à diaphragmes rapide d'injection a été essayée sur un modèle et un prototype de grandeur nature a été mis en service avec succès au début de l'année. Un système d'asservissement individuel de paquets a été mis en place pour stabiliser les oscillations des faisceaux et, au cours d'essais, il a amélioré les oscillations de 20 paquets.

Plusieurs dispositifs pour l'analyse des faisceaux ont été ajoutés ou améliorés. La mesure des valeurs de Q des faisceaux s'est effectuée dans les régions de transfert de faisceaux. Une nouvelle méthode statique de blindage du champ de fuite des détecteurs à diaphragmes rapide d'injection a été essayée sur un modèle et un prototype de grandeur nature a été mis en service avec succès au début de l'année. Un système d'asservissement individuel de paquets a été mis en place pour stabiliser les oscillations des faisceaux et, au cours d'essais, il a amélioré les oscillations des 20 paquets.

Les taux de pertes observés dans les faisceaux des ISR ont été généralement faibles en 1974 et, de ce fait, le nettoyage de faisceaux a l'aide des diaphragmes racleurs, si
important en 1973, n'a été nécessaire que par intermittence, sauf pour éliminer les halos des faisceaux en circulation depuis longtemps. Cependant, pour mesurer les dimensions et la position des faisceaux, de nouveaux diaphragmes verticaux ont été installés dans l'intersection 1-5 au début de l'année. Commande par l'ordinateur, leur déplacement à travers un faisceau peut fournir automatiquement le profil vertical de l'intensité et bien que destructrice, une méthode précise de mesure de la luminosité. La mesure de l'émission secondaire d'électrons produite par les lames des diaphragmes permet de déterminer la position des bords d'un faisceau avec une précision de 10 μ. L'emploi de ces diaphragmes a permis d'obtenir un algorithme approprié vertical des sondes électrostatisques de détection et des deformations d'orbite fermée utilisées pour les mesures de luminosité. Des diaphragmes semblables ont été installés dans l'intersection 1-7 pour une utilisation avec l'inversion à faible valeur de bêta.

Bien que le bruit de fond aux intersections ait été considérablement réduit en 1974, certains signes indiquent qu'une partie du bruit de fond qui subsiste encore provient des protons qui sont diffusés mais non absorbés par les blocs absorbants. En vue de réduire de tels effets de bruit de fond, des collimateurs ont été conçus et construits pour être installés au début de 1975, en aval de la région de décharge. Il s'agit de blocs enacier de 300 mm de longueur qui peuvent être déplacés verticalement et inclinés pour obtenir un alignement exact avec les bords des faisceaux.

Au début de l'année, des modifications semblables à celles effectuées en 1973 dans l'anneau 1 ont été apportées au système de décharge de faisceau dans l'anneau 2.
L'élimination de thyratrons et leur remplacement par des éclateurs de 40 kA ont permis d'améliorer la fiabilité du système. Le nouveau système de décharge de 0,5 ohm a été assemblé au laboratoire et les essais d'endurance ont montré que les éclateurs actuels peuvent fonctionner avec des courants pulsés atteignant 60 kA. Des essais sur d'autres éléments de ce nouveau système, notamment sur les résistances terminales, sont en cours.

Tous les aimants des ISR ont été réalignés dans le plan vertical au début de l'année et plusieurs l'ont été également dans le plan horizontal. Par la suite, un nouveau contrôle complet de la position des aimants dans le plan vertical a été réalisé. Les détecteurs de position des faisceaux, tant dans les ISR que dans les lignes de transfert de faisceaux, ont été réalignés. De nombreux équipements nouveaux, entre autres les systèmes de sextupôles et d'octopôles, ont été positionnés et alignés.

Des efforts continus ont permis d'obtenir tout au long de l'année une fiabilité plus élevée et de meilleures performances pour l'ensemble des alimentations à haute stabilité utilisées dans les ISR. Il subsiste néanmoins divers points faibles que l'on s'emploie à éliminer de façon systématique.

La commande par ordinateur a été étendue à de l'équipement tel que les diaphragmes verticaux, la lentille non linéaire expérimentale et à un nouveau système de mesure des courants dans les aimants principaux. La mesure automatique de lignes de fonctionnement a été améliorée et les premières dispositions ont été prises en vue de la collecte automatique des données fournies par les sondes Schottky. Les méthodes de commande de l'accélération des faisceaux des ISR jusqu'à 31,4 GeV/c ont été perfectionnées. Un programme complexe de correction d'orbite, qui avait précédemment exigé l'emploi des ordinateurs centraux du CERN, peut maintenant être exécuté sur les ordinateurs de commande des ISR. La capacité des mémoires centrales a été augmentée pour répondre aux exigences d'une exploitation plus complexe.
Assistance pour les expériences aux ISR

Zones d'expérimentation en 1974

Au cours de l'année, 19 expériences ont saisi des données dans six intersections des ISR et 10 d'entre elles ont été achevées. Vers la fin de l'année, une autre expérience a été installée et les essais préliminaires ont commencé. Toutes ces expériences ont nécessité une assistance dans une grande diversité de domaines spécialisés (vide, construction mécanique, électronique, métrologie, modifications et mesures d'aimants, alimentations, etc.) et à divers degrés suivant la complexité de l'expérience.
Dans l'intersection 1-1, l'expérience R 105 (mesures de quantités de mouvement transversales élevées) et l'expérience R 106 (recherche de monopôles à l'aide de détecteurs en matière plastique) commencées en 1973 se sont poursuivies et ont été achevées à la fin de septembre. La zone d'intersection 1-1 a été ensuite modifiée pour l'expérience R 107 (recherche d'événements à plusieurs particules gamma) qui a été installée au cours des deux derniers mois de l'année. Pour cette expérience, le Département a conçu et construit des supports spéciaux télécommandés pour le déplacement de détecteurs à grand angle solide.

Dans l'intersection 1-2, l'expérience R 201 (production de particules aux petits angles) a été achevée à la fin de mars mais le spectromètre à petit angle a continué d'être utilisé par le même groupe dans l'expérience R 206 (multiplicités associées et distributions de rapidité). Au début de l'année, un hodoscope en forme de tonneau a été installé autour du point de croisement pour cette expérience et pour l'expérience R 205 (corrélations liées à une quantité de mouvement transversale élevée) qui utilise le spectromètre à grand angle.

Dans le complexe de l'aimant à champs inversés (SFM), dans l'intersection 1-4, six expériences ont saisi des données ou sont au stade des essais préliminaires. Elles s'ajoutent à la prise de données pour les études sur le détecteur à aimant à champs inversés (SFM) (R 403T). Les expériences R 401 (production d'isobares), R 407/R 408
(correlations aux grands angles) et R 411 (production d'isobares doubles) ont été complètement installées, environ la moitié des détecteurs supplémentaires ont été mis en place pour l'expérience R 406 (recherche de nouvelles particules) et les expériences R 410 (corrélations aux grands angles) et R 412 (éveux à grande quantité de mouvement transverse) ont été presque entièrement installées. Pour chaque de ces six expériences, de nombreux équipements supplémentaires ont été mis en place, tels que compteurs de neutrons, compteurs Cerenkov, compteurs d'E/dx et à temps de vol, hodoscopes, etc. La succession rapide des expériences, bien qu'elle n'autorise qu'une exploitation assez peu efficace de l'aimant à champs inverses (SFM), a permis aux divers groupes d'acquérir de l'expérience et de recueillir des données préliminaires. Elle a été rendue possible grâce à la mise à disposition de nombreux mécanismes spécialement conçus pour assurer la permutation de l'équipement.

Dans l'intersection 1-6, l'expérience R 602 (diffusion élastique) a été réinstallée au début de l'année, achevée à la fin de juillet et démontée pour permettre la réinstallation de l'expérience R 603 (spectroscopie Δ^+*) qui a été achevée en novembre. Aussitôt après, l'expérience R 605 (recherche de particules charmées) a été installée et a commencé à saisir des données.

Dans l'intersection 1-7, l'expérience R 701 (observation de collisions p-p à l'aide de chambres à dards) s'est poursuivie jusqu'à son achèvement en juillet, elle a bénéficié des améliorations et des adjonctions d'équipement effectuées à la fin de 1973 avec l'aide du Département. Immédiatement après l'achèvement de cette expérience, cette intersection a été équipée de l'insertion à faible valeur de béta.

Dans l'intersection 1-8, l'expérience R 801 (section efficace totale et corrélations) a continué de saisir des données dans diverses configurations, entre autres avec des détecteurs spéciaux supplémentaires, et a fourni des signaux de déclenchement et de correlation pour les deux autres expériences effectuées dans cette zone l'expérience R 802 (production de particules vers l'avant) pour laquelle l'installation des chambres à vide spéciales à grande ouverture a été achevée au début de l'année et l'expérience R 803 (production inclusive de particules à très faible p_T et x = 0) qui utilise un spectromètre à 90° pour particules à faible quantité de mouvement, nouvellement installé au printemps. Les trois expériences dans 1-8 ont été achevées à la fin de l'année.

Figure 11 — Spectromètre pour étudier des particules de charges négatives aux angles proches de 0° destiné à l'expérience R 802 dans l'intersection 1-8 (CERN-74-274)
Préparatifs en vue d'expériences futures

Au cours de l'année, plusieurs nouvelles expériences ont été activement préparées en vue de leur installation en 1975 et 1976. Pour trois expériences, un important réaménagement et des adjonctions à de grands spectromètres magnétiques sont prévus; la conception et la construction de l'équipement électromécanique nécessaire sont en cours. Pour une autre expérience utilisant des structures de vide entrantes spéciales qui seront décrites plus loin, les études ont montré que les faisceaux en circulation peuvent être rendus si "propres" que des détecteurs peuvent être approchés à moins de 5 mm de ces faisceaux. Une assistance a également été fournie pour la préparation d'une expérience utilisant des calorimètres à argon liquide, dont l'étude mécanique a été effectuée dans le Département, et des détecteurs de passage par la transition à feuille de lithium.

Dans une intersection, il est prévu d'entourer le point de croisement par un grand aimant à solénoïde supraconducteur (en cours de construction dans un autre Département du CERN) fournissant un champ longitudinal de 1,5 tesla. L'effet de tels champs sur les faisceaux en circulation a été étudié aussi bien théoriquement qu'à l'aide d'un modèle de solénoïde installé dans les ISR. Quatre aimants de compensation et leurs alimentations ont été étudiés et l'on s'attache à rendre le grand solénoïde compatible avec une insertion à haute luminosité dans la région d'intersection.

Des calculs, des travaux sur modèle, des études mécaniques et électriques sont en cours en vue d'une autre expérience sous grand angle solide qui sera effectuée avec un grand et complexe ensemble de détecteurs et pour laquelle il est prévu d'installer des anneaux de fer aimantés sur le pourtour immédiat d'une intersection.

Etant donné l'envergure, la complexité et la technicité accrues des nouvelles expériences entreprises aux ISR et de celles proposées pour l'avenir, on poursuit des études d'implantation visant à assurer une compatibilité maximale entre deux ou plusieurs expériences et l'utilisation optimale du nombre limité des zones d'intersection des ISR.

Figure 13 — Modèle d'aimant à solénoïde installé dans les ISR pour étudier les effets auxquels il faut s'attacher avec un grand solénoïde qui entourera une intersection pour une future expérience de physique aux ISR (CLRN-260 274)

Figure 12 — Assemblage d'un calorimètre à argon liquide en vue d'essays (CLRN-72 574)

109
Enceintes à vide pour les intersections

Au début de l'année, les enceintes à vide dans deux intersections (1-6 et 1-8) ont été modifiées pour de nouvelles expériences, et les enceintes pour quatre autres ont été reconstruites au cours de l'année. Deux d'entre elles ont été réinstallées (dans 1-1 et 1-6), les deux autres seront installées (dans 1-2 et 1-8) en 1975.

Tous les quatre enceintes sont équipées, aux points d'érosion, du type de bicône utilisé antérieurement mais d'accessoires différents adaptés à des exigences particulières. Parmi les nouveaux accessoires figurent des électrodes d'extraction réalisées en tôle de titane de 0,2 mm d'épaisseur (maintenant de fabrication courante), des résistances d'amortissement déposées sur des plaques d'alumine de 0,5 mm d'épaisseur, des minijuges et des cryomoteurs. Tous ces éléments ont des masses beaucoup moins élevées que les modèles précédents et sont moins susceptibles de perturber l'enregistrement des événements de collision étudiés.

La nouvelle enceinte à vide centrale destinée à l'intersection 1-2 est un cylindre de 500 mm de diamètre et d'environ 0,3 mm d'épaisseur de paroi.

Pour une expérience qui doit être installée dans 1-8 chaque bras aval sera équipé d'une enceinte rentrante rectangulaire à parois minces, spécialement conçue à cet effet (appelée Super pot romain). Il est prévu que ces enceintes se déplacent, sous la commande d'un ordinateur, dans une direction normale au tube contenant le faisceau, de manière que les détecteurs installés à l'intérieur de ces enceintes puissent être placés aussi près que possible des faisceaux en circulation dans les ISR. Pour la fabrication de ces enceintes, des techniques ont été mises au point pour la mise en forme de fenêtres à parois minces (0,17 mm) et à double courbure. Pour assurer le vide élevé exigé pour l'expérience, l'intersection sera équipée de quatre nouvelles cryomoteurs à hydrogène liquide, particulièrement efficaces pour l'élimination de l'hydrogène.

La première chambre en titane à bicône a été construite en mai et raccordée ensuite à des bras en titane ondulés et à parois minces. Cette chambre prototype pour intersection subit actuellement des essais au laboratoire. Pour sa fabrication, de nombreux problèmes technologiques ont dû être résolus, notamment celui de l'étanchéité des joints acier inoxydable-titane aux températures d'étuvage. On espère que des chambres en titane de ce type pourront bientôt être installées dans les intersections des ISR, car elles doivent
Figure 1 — Vue sur laboratoire d'un enceinte à vide, prototype pour insertion avec chambre centrale et bras latéraux en tôle (CERR-326-74)

... sans une plus grande transparence pour les particules emergentes et sont attendues avec impatience par les équipes d'expérimentateurs.

La possibilité d'une augmentation importante de la luminosité dans l'une des intersections des ISR par l'action focalisante d'aimants quadrupolaires supraconducteurs a fait l'objet de nouvelles recherches. Les études portant sur la dynamique des faisceaux et sur les solutions techniques possibles ont été menées en parallèle. Elles ont abouti à un nouveau projet d'insertion à haute luminosité adaptée aux caractéristiques linéaires du reste des ISR et avec une correction de chromaticité distribuée pour réduire au minimum l'excitation de résonances non linéaires. Le projet d'implantation tient compte de l'encombrement de tous les éléments du système et des possibilités de rendre ce dernier compatible avec les expériences de collisions de faisceaux. Les études ont permis de déterminer, d'une part, les paramètres des quadrupôles supraconducteurs et les composantes sextupolaires nécessaires et, d'autre part, les tolérances exigées pour les distributions de champ et les champs de fuite.

Les groupes d'autres laboratoires européens qui se spécialisent dans les études de supraconductivité de cette nature ont été tenus au court de ces recherches. Le Laboratoire de Rutherford s'est déclaré prêt à réaliser un quadrupôle prototype conçu d'après les caractéristiques de fonctionnement requises, et les discussions techniques et méthodologiques sont en cours.

En attendant, les études se sont poursuivies et des essais ont été effectués, avec des résultats encourageants, sur divers conducteurs et sur des modèles d'enroulements de faible longueur. Des contacts avec l'industrie ont été établis pour la fourniture du fil supraconducteur et de l'appareillage cryogénique. Par des calculs de champ, la géométrie a été définie pour un modèle de quadrupôle grandeur nature avec fer froid et avec une structure d'enroulement à trois secteurs. Des calculs ont été effectués sur les limites de stabilité dans diverses conditions d'exploitation et sur les transitoires à prévoir en cas de retour du supraconducteur à l'état normal. Les préparatifs en vue du bobinage d'un pôle d'essai sont bien avancés.

On pense que ces travaux sur les quadrupôles destinés à une insertion à haute luminosité seront très utiles pour déterminer les possibilités d'emploi des aimants supraconducteurs dans les grands anneaux de stockage futurs. Un succès dans l'application de cette technologie ne manquera pas de bénéficier à de tels projets, mais il se passera un certain temps avant que les avantages envisués puissent être clairement définis avec le degré de certitude requis pour un projet technique bien conçu de cette importance.
Un petit groupe s'est attaché à l'étude de grands anneaux de stockage (LSR). Dans un premier temps, il a analysé les limitations de performances pour des anneaux de stockage proton-proton de 400 GeV utilisant des aimants classiques (acier-cuivre), et a pu ainsi déterminer une série de paramètres permettant d'atteindre une luminosité de 10^{23} cm$^{-2}$ s$^{-1}$. La proposition prévoyant trois types distincts de région d'interaction, adaptés aux différentes conditions exigées pour l'expérience, a été examinée par un groupe de travail de physiciens des hautes énergies du CERN qui a conçu des montages pour des expériences types et proposé certaines améliorations des paramètres des régions d'interaction.

Au cours des deux premières semaines d'octobre, une Étude sur les performances des anneaux de stockage proton-proton a réuni, au sein du Département, des membres des Laboratoires I et II du CERN ainsi que des spécialistes des accélérateurs venus de la plupart des grands laboratoires de physique des hautes énergies du monde entier. Une appréciation critique a été portée sur les paramètres du projet et sur sa conception en fonction des conditions imposées par les expériences. A la suite de cette seconde réunion de deux semaines, certaines modifications souhaitables ont été proposées, mais aucun doute n'a été exprimé en ce qui concerne les conceptions de base. Ces recommandations seront prises en considération dans les études techniques ultérieures. Bien que les études concernant la conception de grands anneaux de stockage (LSR) s'orientent maintenant davantage vers l'emploi d'aimants supraconducteurs, les connaissances déjà acquises dans l'étude d'une machine équipée d'aimants classiques restent directement applicables, notamment pour la conception d'insertions destinées aux expériences et aux fonctions de service.

Au cours de l'Étude sur les performances, des options impliquant des particules autres que les protons ont également été envisagées, notamment la possibilité de faire circuler des antiprotons dans un anneau et d'ajouter un anneau pour des électrons. Il semble possible de prévoir une option antiproton qui permettrait d'obtenir une luminosité comprise entre 10^{28} et 10^{29} cm$^{-2}$ s$^{-1}$. Il semble également possible d'ajouter une installation de collision de faisceaux électrons-protéons à un ensemble LSR. L'énergie élevée des protéons est un avantage considérable, tant pour la physique e-p que pour la conception de la machine, des luminosités utiles pourraient être obtenues avec des énergies d'électrons atteignant environ 20 GeV. Il faut cependant avoir une meilleure connaissance de la stabilité et de la durée de vie des faisceaux de protéons dans les conditions requises pour obtenir des collisions e-p suffisantes. En particulier, le choix entre des faisceaux de protéons groupés ou de groupes circulant dans des installations e-p sera fortement influencé par ces questions de stabilité.

Les deux installations antiproton-proton et électron-proton exigeront du matériel supplémentaire mais elles semblent suffisamment importantes pour justifier des études complémentaires approfondies. Étant donné que l'intégration d'une installation e-p dans un système p-p pose des problèmes compliqués, il serait préférable d'envisager d'ajouter un anneau d'électrons qui ferait partie intégrante de l'installation.
Un aspect de l'exposition principale organisée à l'occasion de la Réunion sur la technologie associée à la physique des hauteurs énergies qui s'est tenue du 24 au 26 avril. Cette exposition est restée ouverte au personnel du CERN pendant les quatre semaines suivantes (CERN-73474)
L'année 1974 a vu menée à bien la phase finale de la révision, nécessaire par le programme 300 GeV, de la situation de l'Organisation vis-à-vis des États-hôtes; le nouveau Contrat de Superficie relatif aux terrains mis à la disposition de l'Organisation par la Suisse a en effet été signé le 16 décembre par les Directeurs généraux et M P Nussbaumer, Ministre plénipotentiaire au Département politique fédéral.

En automne a été prise la décision de réunir tous les services de sécurité - Physique de santé, Service médical, Sécurité du travail et Sapeurs-pompiers-secouristes - en une seule unité administrative qui sera dénommée Services de santé et de sécurité.

Durant l'année, le travail de révision de la politique des pensions s'est poursuivi et l'examen général quinquennal des traitements a été achevé. Les Conditions Générales des Contrats de l'Organisation ont également fait l'objet d'une large révision, à la suite de laquelle des propositions ont été soumises au Comité des Finances en vue du remplacement des Conditions Générales actuelles, qui sont en vigueur depuis 1955. Ces travaux font partie d'un programme suivi assurant la mise à jour des dispositions statutaires de l'Organisation.
L'exercice 1974 a été aussi mouvementé que le précédent, et même davantage, au point de vue des fluctuations monétaires des différentes devises, et en particulier du franc suisse. Ce dernier a subi un véritable assaut de la part des vendeurs de dollars, et cela malgré des mesures exceptionnelles, telles que l'imposition d'une commission lineaire de 3% par trimestre sur les fonds étrangers en francs suisses, etc., prises par les autorités suisses en novembre 1974.

Par rapport au franc suisse, les devises représentant plus de 95% de nos achats de couverture ont évolué comme suit :

<table>
<thead>
<tr>
<th>Devise (FS pour)</th>
<th>début janvier</th>
<th>fin juillet</th>
<th>début novembre</th>
<th>fin décembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF (FS pour 100 FF)</td>
<td>69/65</td>
<td>63,00</td>
<td>60,00</td>
<td>58,00</td>
</tr>
<tr>
<td>DM (FS pour 100 DM)</td>
<td>120,00</td>
<td>115,00</td>
<td>110,00</td>
<td>106,00</td>
</tr>
<tr>
<td>$ (FS pour 1 $)</td>
<td>3,40</td>
<td>3,00</td>
<td>2,83</td>
<td>2,60</td>
</tr>
<tr>
<td>£ (FS pour 1 £)</td>
<td>7,70</td>
<td>7,10</td>
<td>6,70</td>
<td>6,05</td>
</tr>
</tbody>
</table>
La hausse du franc suisse s'est donc fortement accentuée au cours des six dernières semaines de l'exercice de sorte que, par rapport aux cours pratiqués à la fin de décembre, nos avoirs en devises, valorisés à cette date, ont subi une dépréciation théorique de quelque 5%, dont la part la plus importante se rapporte au mark allemand.

En effet, la dépréciation du mark allemand par rapport au franc suisse, que rien ne justifie au point de vue économique et financier, a surpris tous les spécialistes. Cependant, cette moins-value existant à la date précise de la clôture de nos écritures, c'est-à-dire au 31 décembre 1974, est largement contrebalancée par des cours de change plus favorables au cours de l'exercice et par ceux résultant des achats à terme venant à échéance au début de l'exercice 1975.

Certains calculs ont été faits, comme en 1973, pour estimer les bénéfices que l'Organisation aurait pu réaliser grâce au plus grand pouvoir d'achat du franc suisse. Ils laissaient prevoir, pour le Laboratoire 1, un bénéfice pouvant varier entre 1,2 et 1,5 million de francs suisses, alors que le nouveau mode de calcul de l'indice de variation des coûts montrait, pour les exercices 1973 et 1974, une économie presque égale à celle obtenue par ces analyses très compliquées. L'application de cette nouvelle méthode tourna un chiffre de 1,4 million de francs suisses. Ce montant sera retrocessé aux Etats membres par la réduction de leurs contributions pour 1975.

Les taux d'intérêts sur le franc suisse, à court terme, qui étaient de 10-12% au début de l'exercice, n'ont baissé à 7-7,5% en octobre/novembre, pour remonter à 9-10% en décembre, de sorte qu'il a été possible de profiter au maximum, et en évitant tout risque, de ces taux élevés.

Comptes de l'exercice

Le ralentissement du recrutement du personnel technique a retardé la préparation de nombreuses spécifications destinées à l'acquisition de matériel complexe. De plus, les fournisseurs éprouvent des difficultés croissantes à satisfaire les besoins des équipes techniques de l'Organisation dans les délais impartis.

Pour ces raisons, principalement, certaines adjudications n'ont pu être soumises à l'approbation du Comité des Finances qu'en fin d'exercice. Il en est résulté un retard dans les paiements.

L'ensemble des comptes de l'Organisation se résume comme suit :

<table>
<thead>
<tr>
<th>Dépenses</th>
<th>Budgets (en millions de francs suisses)</th>
<th>Comptes (en millions de francs suisses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmes de base et des ISR</td>
<td>407,51</td>
<td>398,07</td>
</tr>
<tr>
<td>Credits affectés aux expériences avec le SPS</td>
<td>227,12</td>
<td>227,20</td>
</tr>
<tr>
<td>Programme 300 GeV</td>
<td>634,63</td>
<td>638,27</td>
</tr>
</tbody>
</table>
Le dépassement de 3,64 millions de francs suisses représente des dépenses non prévisibles dans les budgets (taxes, prestations à des tiers, etc.) et est couvert par des recettes compensatoires.

Recettes

<table>
<thead>
<tr>
<th>Budgets</th>
<th>Comptes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(en millions de francs suisses)</td>
<td></td>
</tr>
<tr>
<td>Contributions des États membres</td>
<td>608,64</td>
</tr>
<tr>
<td>Intérêts bancaires</td>
<td>4,31</td>
</tr>
<tr>
<td>Report de l'exercice précédent</td>
<td>5,06</td>
</tr>
<tr>
<td>Participation du programme 300 GeV aux programmes de base et des ISR</td>
<td>13,85</td>
</tr>
<tr>
<td>Participation de l'ESO</td>
<td>0,52</td>
</tr>
<tr>
<td>Recettes diverses</td>
<td>2,25</td>
</tr>
<tr>
<td>Total</td>
<td>634,63</td>
</tr>
</tbody>
</table>

L'excédent des recettes s'élève à 18,80 millions de francs suisses, dont 15,16 millions sont rétrocédés aux États membres (intérêts bancaires, 13,06 millions, provisions inutiles, 0,65 million, divers, 0,05 million, économies, 1,40 million) et le solde, soit 3,64 millions de francs sont des recettes compensatoires.
La participation de la République fédérale de Allemagne et de la France à la construction de BEBC est également représentée dans le graphique suivant.

Budget (millions de Fr)

- Recherche et Exploitation
- Equipement et développement
- Améliorations (y compris la construction des ISR ainsi que les études préparatoires, 1964-1970) pour le programme 300 GeV
- Bâtiments et équipement des services centraux
- Énergie et eau
- Services centraux (y compris la participation des programmes supplémentaires)
- Laboratoire II
- Services fournis par le Laboratoire I

Budget du Laboratoire I

En décembre 1973, le Conseil approuvait l’estimation ferme pour 1975, soit 367,60 millions de francs suisses aux prix de 1973. Par l’application de l’indice de variation des coûts de 6,4% approuvé par le Conseil à la même session, ce montant atteignait 391,14 millions de francs suisses.

En octobre 1974, le Comité des Finances demandait au Directeur général, en raison des difficultés économiques et financières actuelles, de présenter un budget dont le total, y compris l’indice de variation des coûts, ne dépasse pas 410 millions de francs suisses.

En novembre 1974, le Directeur général présentait donc un document (CERN/FC/1764) qui montrait comment, dans un budget limité à 410 millions de francs suisses, on pourrait tenir compte de la variation des coûts ainsi que des incidences financières de l’examen général des traitements et de la révision de la politique des pensions avec le moindre effet possible sur le programme scientifique.

A sa cent trente-neuvième réunion, le 6 novembre 1974, le Comité des Finances limitait l’indice de variation des coûts à environ 7,6% et fixait pour le budget un plafond de 410 millions de francs suisses.

En fait, le budget de 1975, aux prix de 1974, est ramené de 391,1 à 381,2 millions de francs suisses. A ce chiffre s’ajoute l’indice de variation des coûts de 7,56%, portant ainsi le budget de 1975 à 410 millions de francs suisses, auxquels il y a lieu d’ajouter les 19,40 millions de francs suisses faisant l’objet du décompte ci-dessous.

Les contributions à verser par les États membres en 1975 s’établissent comme suit

<table>
<thead>
<tr>
<th>(en millions de francs suisses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>429,40</td>
</tr>
</tbody>
</table>

Le budget brut de 1975 s’élève à .

<table>
<thead>
<tr>
<th></th>
<th>429,40</th>
</tr>
</thead>
<tbody>
<tr>
<td>— la participation du Laboratoire II au coût des services</td>
<td>16,30</td>
</tr>
<tr>
<td>— les frais généraux de l’ESO</td>
<td>0,60</td>
</tr>
<tr>
<td>— les recettes provenant des travaux d’ateliers facturés</td>
<td>2,50 19,40</td>
</tr>
</tbody>
</table>

Le budget net s’élève à .

<table>
<thead>
<tr>
<th></th>
<th>410,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>— la participation du Laboratoire II au coût des services</td>
<td>16,30</td>
</tr>
<tr>
<td>— les frais généraux de l’ESO</td>
<td>0,60</td>
</tr>
<tr>
<td>— les recettes provenant des travaux d’ateliers facturés</td>
<td>2,50 19,40</td>
</tr>
</tbody>
</table>

Montant des contributions à verser par les États membres 399,00

Budget du Laboratoire II

Le budget total pour le programme 300 GeV, approuvé par le Conseil à sa quarante-cinquième session (CERN/958/Rev.), s’élève à 1 150 millions de francs suisses aux coûts de 1970 et à prix constants. La courbe budgétaire annuelle a été adoptée par le Comité des Finances à sa cent seigeme réunion (CERN/FC/1408) et approuvée par le Conseil (CERN/1050).

En 1974, le forage du tunnel s’est achevé, presque la moitié du tunnel a été bétonnée et l’installation des éléments de la machine dans le tunnel a commencé. Les bâtiments auxiliaires en sont à divers stades d’achèvement, des pièces d’équipement étant déjà installées et en fonctionnement dans certains d’entre eux. La ligne électrique raccordée à Génissiat est entrée en service et alimente sous 380 kV la sous-station électrique principale du site. De grandes quantités d’éléments continuent d’arriver sur le site pour essais et installation. Les appels d’offres ont été lancés en vue de l’adjudication des principaux contrats concernant les travaux de génie civil pour la zone Nord.

Le budget pour 1975 inclut une participation de 16,30 millions de francs suisses au programme de base, destinés à couvrir le coût des services assurés au programme 300 GeV

<table>
<thead>
<tr>
<th>(en millions de francs suisses)</th>
<th>(aux prix de 1975)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le budget pour 1975 s’élève à .</td>
<td>237,90</td>
</tr>
<tr>
<td>dont il y a lieu de déduire .</td>
<td></td>
</tr>
<tr>
<td>— les intérêts bancaires probables</td>
<td>9,80*</td>
</tr>
<tr>
<td>— les autres recettes</td>
<td>0,25</td>
</tr>
<tr>
<td>Montant des contributions à verser par les Etats membres</td>
<td>227,85</td>
</tr>
</tbody>
</table>

L’évolution mouvementée de la situation monétaire au cours de l’exercice 1974 a causé bien des soucis au Service financier. Les placements à court terme ont toujours été effectués en se limitant à ceux offrant toute sécurité. Quant aux achats de devises effectués en couverture partielle de nos engagements en francs français, marks allemands, dollars US et livres sterling, ils ont été effectués dans le cadre de notre politique de couverture sélective, avec toute la prudence que la situation exigeait.

Les Services comptables ont fait face à une augmentation de la charge de travail qui peut être estimée à 15%. La mise sur ordinateur des salaires et demandes de remboursement a imposé à la Comptabilité du personnel des travaux de contrôle supplémentaires et d’opérations parallèles pendant tout l’exercice. Les services rendus aux équipes de visiteurs augmentent rapidement.

Malgré cet accroissement sensible des tâches journalières, l’effectif des Services financier et comptables n’a plus été augmenté depuis plusieurs années en dépit de nombreuses difficultés supplémentaires (longues absences pour maladie, etc.)

Une étape a été atteinte où l’ensemble des applications sur l’ordinateur actuel ainsi que l’exploitation des données fonctionnent avec des résultats satisfaisants en termes de qualité de l’information et d’efficacité. Le système bâti avec l’équipement actuel offre toutefois des possibilités limitées quant à la souplesse et la rapidité. Des études ont été entreprises en vue des développements qu’il serait utile de faire pour répondre aux besoins des utilisateurs dans ces domaines. Elles touchent aussi bien les circuits d’information et les applications elles-mêmes que la configuration du matériel et le logiciel de base. Un premier développement en cours concerne l’extension de la mémoire centrale.

D’autre part, des améliorations continuent d’être apportées aux applications existantes pour fournir des informations plus complètes de gestion aux utilisateurs, et pour accélérer la saisie des données. Enfin, les études pour une nouvelle application «stocks» sont entrées dans la phase d’analyse proprement dite du projet.

* dont 6,6 millions reportés de 1974
En cours d’exercice, il a été fait appel à des entreprises extérieures pour la perforation des données. Si l’essai avait été concluant, on aurait pu réduire l’effectif d’enregistrement des données. Le résultat a malheureusement été très décevant et a sensiblement perturbé les utilisateurs. En outre, le coût de l’opération s’est révélé trop élevé.

Achats

L’année 1974 a été dominée par le retournement brutal de la conjoncture qui a été profondément ressenti dans le domaine des achats. Les augmentations fréquentes des prix dus à l’inflation se sont percutées sur les contrats en cours, par le jeu des révisions de prix contractuellement établies, et sur une grande partie des commandes provisionnelles pour le matériel standardisé, dont les prix étaient soumis à l’évolution du marché.

La pénurie de certaines matières a en outre compliqué les problèmes d’approvisionnement et a nécessité une surveillance accrue des marchés et des relances, eu égard au respect des plannings.

L’accroissement de la demande de personnel en rège et le manque de main-d’œuvre qualifiée ont suscité des difficultés qui n’ont pu être résolues qu’au prix d’efforts constants.

Dans le domaine des appels d’offres l’activité s’est maintenue à un niveau élevé du fait de projets importants dans les zones d’expérimentation, autour du nouveau LINAC et dans la zone Nord.

A la suite du cours de droit des contrats du CERN, la formation permanente du personnel des services s’est poursuivie par une série d’exposés sur les problèmes financiers et comptables propres à l’Organisation.

Une augmentation sensible du nombre de commandes a été constatée. 38 966 commandes contre 36 856 à la fin de 1973. Parallèlement, le nombre des factures a subi une augmentation de l’ordre de 15% par rapport à l’année précédente. À ceci s’ajoute la complexité des commandes due à l’introduction de formules de révision des prix de plus en plus nombreuses et élaborées. Le Bureau des factures s’est donc trouvé confronté à une situation assez difficile.

Magasins

On constate en 1974 une augmentation considérable de l’activité générale par rapport à 1973 :

- une augmentation de 40% de la valeur du matériel standardisé sorti des magasins par les utilisateurs;
- une augmentation de 34% du nombre d’arrivages de matériel pour l’ensemble de l’Organisation;
- une augmentation de 9% des expéditions de matériel à l’extérieur.

Ce surcroît d’activité a été maîtrisé sans augmentation de l’effectif du personnel. L’accent a été mis sur l’amélioration des procédures de travail et de gestion, à savoir l’introduction d’une gestion sélective des stocks selon l’importance de chaque article (ceci a amené une augmentation de 10% du taux de rotation des stocks, ainsi qu’une diminution des ruptures de stocks pour les articles essentiels), la correction automatique de la prévision des délais de livraison, l’harmonisation de la fréquence de l’inventaire tournant à la fréquence du mouvement du matériel, l’élaboration d’un projet de simplification des procédures administratives concernant le matériel sous embargo.
Plus de 150 spécifications techniques ont été établies en vue de faciliter les appels d’offres pour le matériel standardisé. 7150 arrivages et 1695 expéditions de matériel ont été traités par le nouveau Bureau arrivages/expéditions installé au Laboratoire II.

À la suite de l’agrandissement de la zone d’expérimentation Ouest (Gargamelle), le projet d’une nouvelle aire de stockage de matériel appartenant aux Divisions a été élaboré et approuvé par le Comité des Utilisateurs des Magasins, ainsi que par le Comité de Construction.

Figure 1 L’évolution des stocks depuis 1969
En 1974
la valeur totale des sorties de matériel standardisé s’est élevée à 34,3 millions de francs suisses. Comparée à l’année 1973, elle représente une augmentation de 40%.
La valeur des sorties effectuées pour le Laboratoire II s’est élevée à 7,8 millions de francs suisses (23% de la valeur totale des sorties);
le self-service a représenté 4% du total des sorties;
le taux de rotation annuel a été de 2,8;
le niveau moyen du stock s’est revêtu être compris entre —8% et +11,2% de la limite autorisée fixée à 11,7 millions de francs suisses. À la fin de l’année, la valeur des stocks était supérieure de 21% à la limite autorisée.
52 149 arrivages et 10 457 expéditions ont été traités pour l’ensemble de l’Organisation;
12 780 demandes de livraison et commandes ont été établies pour le matériel standardisé.
Les groupes de standardisation ont formulé 1523 propositions d’action (introductions ou suppressions d’articles tenus en stock). À la suite de ces propositions, 786 nouveaux articles ont été introduits en stock et 660 articles, représentant une valeur de 238 148 francs, ont été déclasse. Le Service de récupération a vendu pour environ un million de francs suisses de matériel à l’intérieur de l’Organisation (entre autres, 250 tonnes de papier et 800 tonnes de déchets métalliques).

Les polices d’assurance incendie et dégâts d’eau ont été réexaminées.
Le règlement du sinistre de juin 1973, où l’orage a inondé les caves, se poursuit. Ces questions exigent des enquêtes longues et délicates, en vue d’aboutir au remboursement de factures de réparation et de remplacement, qui intéressent toutes les Divisions du CERN et dont le montant dépasse trois millions de francs suisses.
Deux accidents graves survenus à des membres du personnel du CERN ont également exigé un travail considérable, en collaboration avec le Service juridique, le Service de sécurité et les compagnies d’assurances.
Le Service est chargé de l’administration de la Caisse d’Assurances, y compris la tenue de la comptabilité et des dossiers relatifs aux investissements, et assure le secrétariat du Groupe de travail interne et du Groupe de travail du Comité des Finances sur la politique des pensions.

Dépenses 1974

Laboratoire I

(Programmes de base et des ISR)

(en milliers de francs suisses)

<table>
<thead>
<tr>
<th>Chapitres et rubriques</th>
<th>Budget 1974</th>
<th>Dépenses 1974</th>
<th>Differences</th>
<th>Direction générale</th>
<th>Physique 1</th>
<th>Physique II</th>
<th>Physique théorique</th>
<th>Synchrotron à protons</th>
<th>Physique appliquée</th>
<th>ISR</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL GÉNÉRAL</td>
<td>407 510,0</td>
<td>398 069,3</td>
<td>-9 440,7</td>
<td>13 583,9</td>
<td>62 247,6</td>
<td>65 879,3</td>
<td>2 988,6</td>
<td>67 888,5</td>
<td>30 449,2</td>
<td>40 449,6</td>
<td>114 582,6</td>
</tr>
<tr>
<td>Travaux des ateliers à facturer</td>
<td>- 7 700,0</td>
<td>- 7 206,1</td>
<td>+ 493,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 206,1</td>
</tr>
<tr>
<td>Total global</td>
<td>415 210,0</td>
<td>405 275,4</td>
<td>-9 934,6</td>
<td>13 583,9</td>
<td>62 247,6</td>
<td>65 879,3</td>
<td>2 988,6</td>
<td>67 888,5</td>
<td>30 449,2</td>
<td>40 449,6</td>
<td>121 788,7</td>
</tr>
<tr>
<td>1. Personnel</td>
<td>199 540,0</td>
<td>198 783,2</td>
<td>- 756,8</td>
<td>12 759,6</td>
<td>28 282,6</td>
<td>31 429,3</td>
<td>2 750,3</td>
<td>29 846,7</td>
<td>16 922,5</td>
<td>19 534,8</td>
<td>57 257,4</td>
</tr>
<tr>
<td>1.1) Titulaires</td>
<td>179 860,0</td>
<td>178 224,2</td>
<td>-1 635,8</td>
<td>1 863,9</td>
<td>26 278,7</td>
<td>27 013,6</td>
<td>2 474,1</td>
<td>29 258,4</td>
<td>15 930,0</td>
<td>19 398,0</td>
<td>55 998,0</td>
</tr>
<tr>
<td>1.2) Laboratoire</td>
<td>4 970,0</td>
<td>5 211,3</td>
<td>+ 241,3</td>
<td></td>
<td>879,0</td>
<td>3 632,6</td>
<td></td>
<td>0,8</td>
<td>486,5</td>
<td></td>
<td>-212,4</td>
</tr>
<tr>
<td>1.3) Boursiers</td>
<td>5 880,0</td>
<td>6 371,8</td>
<td>+ 491,8</td>
<td>211,3</td>
<td>142,8</td>
<td></td>
<td></td>
<td>11,4</td>
<td>111,7</td>
<td></td>
<td>4,0</td>
</tr>
<tr>
<td>1.4) Consultants et attachés</td>
<td>8 870,0</td>
<td>8 975,9</td>
<td>+ 105,9</td>
<td>0,5</td>
<td>640,3</td>
<td></td>
<td></td>
<td>553,7</td>
<td>394,3</td>
<td></td>
<td>134,8</td>
</tr>
<tr>
<td>2. Fonctionnement</td>
<td>86 320,0</td>
<td>81 411,3</td>
<td>-4 908,7</td>
<td>805,3</td>
<td>8 551,5</td>
<td>10 550,8</td>
<td>217,5</td>
<td>5 647,7</td>
<td>9 785,2</td>
<td></td>
<td>2 512,6</td>
</tr>
<tr>
<td>2.1) Terrains et bâtiments</td>
<td>14 630,0</td>
<td>12 635,6</td>
<td>-1 994,4</td>
<td>5,6</td>
<td>503,1</td>
<td>416,5</td>
<td>8,1</td>
<td>101,5</td>
<td>262,7</td>
<td></td>
<td>321,4</td>
</tr>
<tr>
<td>2.2) Equipement technique</td>
<td>10 490,0</td>
<td>12 320,0</td>
<td>+ 1 830,0</td>
<td>649,7</td>
<td>1 691,9</td>
<td></td>
<td></td>
<td>415,5</td>
<td>839,5</td>
<td></td>
<td>744,6</td>
</tr>
<tr>
<td>2.3) Accélérateurs</td>
<td>6 780,0</td>
<td>10 930,7</td>
<td>-3 150,7</td>
<td>1 573,0</td>
<td>1 876,5</td>
<td></td>
<td></td>
<td>910,3</td>
<td></td>
<td></td>
<td>307,6</td>
</tr>
<tr>
<td>2.4) Faisceaux</td>
<td>3 330,0</td>
<td>1 845,4</td>
<td>-1 484,6</td>
<td>-5 866,0</td>
<td>1 876,5</td>
<td></td>
<td></td>
<td>-141,7</td>
<td>8 215,8</td>
<td></td>
<td>151,3</td>
</tr>
<tr>
<td>2.5) Traitement des données</td>
<td>9 820,0</td>
<td>10 341,3</td>
<td>+ 521,3</td>
<td>890,3</td>
<td>675,6</td>
<td></td>
<td></td>
<td>181,7</td>
<td></td>
<td></td>
<td>-484,6</td>
</tr>
<tr>
<td>2.6) Energie, eau</td>
<td>17 400,0</td>
<td>16 915,4</td>
<td>- 484,6</td>
<td>1 494,2</td>
<td>1 017,9</td>
<td>209,4</td>
<td>662,4</td>
<td>460,0</td>
<td>452,1</td>
<td></td>
<td>8 956,5</td>
</tr>
<tr>
<td>2.7) Administration</td>
<td>11 550,0</td>
<td>12 632,2</td>
<td>+ 108,2</td>
<td>799,7</td>
<td>1 494,2</td>
<td>1 017,9</td>
<td>209,4</td>
<td>662,4</td>
<td>460,0</td>
<td></td>
<td>8 956,5</td>
</tr>
<tr>
<td>3. Immobilisations</td>
<td>116 350,0</td>
<td>125 080,9</td>
<td>+ 8 730,9</td>
<td>19,0</td>
<td>25 413,5</td>
<td>23 899,2</td>
<td>20,8</td>
<td>32 394,1</td>
<td>3 741,5</td>
<td>18 402,0</td>
<td>21 190,6</td>
</tr>
<tr>
<td>3.1) Terrains et bâtiments</td>
<td>12 270,0</td>
<td>17 464,2</td>
<td>+ 5 194,2</td>
<td>82,8</td>
<td>325,4</td>
<td></td>
<td></td>
<td>430,5</td>
<td></td>
<td></td>
<td>199,0</td>
</tr>
<tr>
<td>3.2) Equipement technique</td>
<td>11 490,0</td>
<td>9 198,1</td>
<td>- 2 291,9</td>
<td>1 123,2</td>
<td>780,2</td>
<td>20,8</td>
<td>1 008,8</td>
<td>599,4</td>
<td>2 591,1</td>
<td></td>
<td>3 046,5</td>
</tr>
<tr>
<td>3.3) Acclerateurs</td>
<td>28 570,0</td>
<td>29 711,4</td>
<td>+ 1 141,4</td>
<td>2 630,7</td>
<td>14 143,0</td>
<td></td>
<td></td>
<td>12 803,1</td>
<td>134,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4) Faisceaux</td>
<td>27 870,0</td>
<td>32 118,9</td>
<td>+ 4 248,9</td>
<td>14 559,7</td>
<td>15 556,4</td>
<td></td>
<td></td>
<td>1 986,7</td>
<td>34,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5) Traitement des données</td>
<td>15 730,0</td>
<td>11 071,0</td>
<td>- 4 659,0</td>
<td>2 600,7</td>
<td>1 886,7</td>
<td>2 012,3</td>
<td>3 142,1</td>
<td>8 403,0</td>
<td>548,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6) Magasins</td>
<td>- 1 000,0</td>
<td>- 1 000,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 000,0</td>
</tr>
</tbody>
</table>

Crédit affecté à la physique avec le SPS

13 000,0
BUDGET 1975

LABORATOIRE I

(Programmes de base et des ISR)

(ens milliers de francs suisses)

<table>
<thead>
<tr>
<th>Chapitres et rubriques</th>
<th>Total</th>
<th>Direction générale</th>
<th>Physique I</th>
<th>Physique II</th>
<th>Physique théorique</th>
<th>Synchrotron à protons</th>
<th>Physique appliquée</th>
<th>ISR</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL GÉNÉRAL</td>
<td>429 400</td>
<td>15 180</td>
<td>65 090</td>
<td>62 570</td>
<td>3 295</td>
<td>73 925</td>
<td>4 1695</td>
<td>48 000</td>
<td>119 645</td>
</tr>
<tr>
<td>Travaux des ateliers à facturer aux Divisions</td>
<td>- 7 800</td>
</tr>
<tr>
<td>Total partiel</td>
<td>437 200</td>
<td>15 180</td>
<td>65 090</td>
<td>62 570</td>
<td>3 295</td>
<td>73 925</td>
<td>4 1695</td>
<td>48 000</td>
<td>127 445</td>
</tr>
<tr>
<td>1. Personnel</td>
<td>227 200</td>
<td>14 440</td>
<td>32 190</td>
<td>35 870</td>
<td>3 075</td>
<td>34 435</td>
<td>18 985</td>
<td>23 090</td>
<td>65 095</td>
</tr>
<tr>
<td>10) Titulaires</td>
<td>204 565</td>
<td>2 010</td>
<td>30 380</td>
<td>30 800</td>
<td>2 850</td>
<td>33 775</td>
<td>17 985</td>
<td>22 940</td>
<td>205</td>
</tr>
<tr>
<td>12) Laboratoire</td>
<td>5 975</td>
<td>-</td>
<td>960</td>
<td>4 250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14) Boursiers</td>
<td>6 700</td>
<td>6 700</td>
<td>850</td>
<td>8 200</td>
<td>225</td>
<td>660</td>
<td>440</td>
<td>150</td>
<td>1 065</td>
</tr>
<tr>
<td>15) Attachés</td>
<td>9 960</td>
<td>5 750</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Fonctionnement</td>
<td>86 210</td>
<td>710</td>
<td>9 595</td>
<td>9 500</td>
<td>200</td>
<td>6 070</td>
<td>11 300</td>
<td>2 700</td>
<td>46 135</td>
</tr>
<tr>
<td>20) Terrains et bâtiments</td>
<td>15 240</td>
<td>10</td>
<td>910</td>
<td>820</td>
<td>5</td>
<td>145</td>
<td>375</td>
<td>375</td>
<td>12 600</td>
</tr>
<tr>
<td>21) Equipement technique</td>
<td>11 185</td>
<td>-</td>
<td>905</td>
<td>1 400</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>910</td>
<td>190</td>
</tr>
<tr>
<td>22) Accelerateurs</td>
<td>5 525</td>
<td>-</td>
<td>645</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23) Equipement pour expériences</td>
<td>8 915</td>
<td>-</td>
<td>4 970</td>
<td>3 480</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>255</td>
<td>190</td>
</tr>
<tr>
<td>24) Faisceaux</td>
<td>3 645</td>
<td>-</td>
<td>1 800</td>
<td>1 900</td>
<td>-</td>
<td>965</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25) Traitements des données</td>
<td>11 870</td>
<td>-</td>
<td>905</td>
<td>1 000</td>
<td>-</td>
<td>-</td>
<td>9 445</td>
<td>150</td>
<td>370</td>
</tr>
<tr>
<td>27) Energie, eau</td>
<td>18 200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18 200</td>
<td>-</td>
</tr>
<tr>
<td>28) Administration</td>
<td>12 230</td>
<td>700</td>
<td>1 080</td>
<td>900</td>
<td>195</td>
<td>555</td>
<td>390</td>
<td>340</td>
<td>8 070</td>
</tr>
<tr>
<td>3 Immobilisations</td>
<td>123 790</td>
<td>10</td>
<td>23 305</td>
<td>17 200</td>
<td>20</td>
<td>13 420</td>
<td>11 410</td>
<td>22 210</td>
<td>16 215</td>
</tr>
<tr>
<td>30) Terrains et bâtiments</td>
<td>14 805</td>
<td>-</td>
<td>545</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 100</td>
</tr>
<tr>
<td>31) Equipement technique</td>
<td>10 920</td>
<td>10</td>
<td>1 610</td>
<td>1 500</td>
<td>20</td>
<td>965</td>
<td>690</td>
<td>2 390</td>
<td>3 535</td>
</tr>
<tr>
<td>32) Accelerateurs</td>
<td>30 885</td>
<td>-</td>
<td>1 945</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33) Equipement pour expériences</td>
<td>28 585</td>
<td>-</td>
<td>14 945</td>
<td>9 400</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34) Faisceaux</td>
<td>23 425</td>
<td>-</td>
<td>2 960</td>
<td>4 800</td>
<td>-</td>
<td>-</td>
<td>15 665</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35) Traitement des données</td>
<td>15 170</td>
<td>-</td>
<td>1 200</td>
<td>1 500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10 720</td>
<td>1 550</td>
</tr>
</tbody>
</table>
Dépenses 1974 et Budget 1975

Laboratoire II

(Programme 300 GeV)

en milliers de francs suisses

<table>
<thead>
<tr>
<th>Chapitres et rubriques</th>
<th>Exercice 1974</th>
<th>Budget 1975</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>227 120.0</td>
<td>227 200.5</td>
</tr>
<tr>
<td></td>
<td>237 900.0</td>
<td></td>
</tr>
<tr>
<td>1 Personnel</td>
<td>24 480.0</td>
<td>23 431.4</td>
</tr>
<tr>
<td></td>
<td>29 770.0</td>
<td></td>
</tr>
<tr>
<td>(1) Titulaires</td>
<td>23 680.0</td>
<td>22 631.8</td>
</tr>
<tr>
<td></td>
<td>28 770.0</td>
<td></td>
</tr>
<tr>
<td>(15) Bourses et attachés</td>
<td>890.0</td>
<td>799.6</td>
</tr>
<tr>
<td></td>
<td>1 000.0</td>
<td></td>
</tr>
<tr>
<td>2 Fonctionnement</td>
<td>23 460.0</td>
<td>24 130.5</td>
</tr>
<tr>
<td></td>
<td>35 200.0</td>
<td></td>
</tr>
<tr>
<td>(20) Terrains et bâtiments</td>
<td>1 800.0</td>
<td>2 248.8</td>
</tr>
<tr>
<td></td>
<td>4 200.0</td>
<td></td>
</tr>
<tr>
<td>(21) Equipement technique</td>
<td>2 200.0</td>
<td>2 259.3</td>
</tr>
<tr>
<td></td>
<td>3 000.0</td>
<td></td>
</tr>
<tr>
<td>(22) Accelerateurs</td>
<td>1 810.0</td>
<td>1 573.7</td>
</tr>
<tr>
<td></td>
<td>2 000.0</td>
<td></td>
</tr>
<tr>
<td>(23) Equipement pour expériences</td>
<td>—</td>
<td>170.1</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>(24) Faisceaux</td>
<td>—</td>
<td>146.6</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>(25) Traitement des données</td>
<td>500.0</td>
<td>1 205.8</td>
</tr>
<tr>
<td></td>
<td>1 000.0</td>
<td></td>
</tr>
<tr>
<td>(27) Energie, eau</td>
<td>800.0</td>
<td>367.5</td>
</tr>
<tr>
<td></td>
<td>5 700.0</td>
<td></td>
</tr>
<tr>
<td>(28) Administration</td>
<td>2 500.0</td>
<td>2 008.5</td>
</tr>
<tr>
<td></td>
<td>2 400.0</td>
<td></td>
</tr>
<tr>
<td>— Participation aux frais généraux du Laboratoire I</td>
<td>13 850.0</td>
<td>12 850.0</td>
</tr>
<tr>
<td></td>
<td>16 200.0</td>
<td></td>
</tr>
<tr>
<td>3 Immobilisations</td>
<td>179 180.0</td>
<td>179 638.6</td>
</tr>
<tr>
<td></td>
<td>172 830.0</td>
<td></td>
</tr>
<tr>
<td>(30) Terrains et bâtiments</td>
<td>39 800.0</td>
<td>57 668.7</td>
</tr>
<tr>
<td></td>
<td>78 600.0</td>
<td></td>
</tr>
<tr>
<td>(31) Equipement technique</td>
<td>12 000.0</td>
<td>11 827.1</td>
</tr>
<tr>
<td></td>
<td>12 930.0</td>
<td></td>
</tr>
<tr>
<td>(32) Accelerateurs</td>
<td>120 000.0</td>
<td>94 277.9</td>
</tr>
<tr>
<td></td>
<td>65 300.0</td>
<td></td>
</tr>
<tr>
<td>(33) Equipement pour expériences</td>
<td>—</td>
<td>336.3</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>(34) Faisceaux</td>
<td>6 480.0</td>
<td>15 490.3</td>
</tr>
<tr>
<td></td>
<td>16 000.0</td>
<td></td>
</tr>
<tr>
<td>(35) Traitement des données</td>
<td>—</td>
<td>38.3</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Division Personnel

Selon l'usage établi, il a été procédé en 1974 à l'examen quinquennal des conditions de rémunération du CERN. Une enquête détaillée, pour laquelle des contacts ont été pris avec 71 employeurs, a été menée par des membres de la Division Personnel sur les salaires, allocations, primes et indemnités, en collaboration avec les laboratoires nationaux de recherche et différentes industries des États membres. Les niveaux des traitements dans les autres organisations internationales ont également servi de référence. Les propositions du Groupe de travail du Comité des Finances acceptées par le Conseil deviendront effectives dès le 1er janvier 1975. D'autres groupes internes ont poursuivi la préparation de documents concernant la politique du CERN en matière de recrutement, de contrats, d'avancement et de terminaison.

Effectif Total du CERN au 31.12.1974

<table>
<thead>
<tr>
<th>Department</th>
<th>Titulaires</th>
<th>Sursubrants</th>
<th>Boursiers CERN</th>
<th>Attachés</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directeur général</td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physique I</td>
<td>TOTAL 425</td>
<td>3</td>
<td>2</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>NP 303</td>
<td>3</td>
<td>2</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>MSC 120</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Physique II</td>
<td>TOTAL 436</td>
<td>1</td>
<td>133</td>
<td>19</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>TC 434</td>
<td></td>
<td>133</td>
<td>19</td>
<td>64</td>
</tr>
<tr>
<td>Physique théorique</td>
<td>TOTAL 23</td>
<td></td>
<td></td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>TH 22</td>
<td></td>
<td></td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Synchrotron à protons</td>
<td>TOTAL 489</td>
<td>2</td>
<td></td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>EA 25</td>
<td></td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MPS 461</td>
<td>2</td>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Physique appliquée</td>
<td>TOTAL DD 279</td>
<td>21</td>
<td>8</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>ISR TOTAL 348</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>TOTAL 1141</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>DI + HS + PIO + TM 181</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FIN 205</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE 144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SB 611</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>TOTAL 3167</td>
<td>5</td>
<td>8</td>
<td>195</td>
<td>112</td>
</tr>
</tbody>
</table>

Legend:
- **NP** = Physique nucléaire
- **MSC** = Machine synchro-cyclotron
- **TC** = Chambres à traces
- **TH** = Études théoriques
- **EA** = Groupe Zones expérimentales
- **MPS** = Machine Synchrotron à protons
- **DD** = Données et documents
- **ISR** = Anneaux de stockage à intersections
- **DI** = Directoire
- **HS** = Services de santé et de sécurité
- **PIO** = Bureau d'information du public
- **TM** = Services traduction et procès-verbaux
- **FIN** = Finances
- **PE** = Personnel
- **SB** = Services techniques et bâtiments

Laboratoire II

| Department | TOTAL 417 | 1 | 3 | 7 | 2 | 430 |

Legend:
- **TOTAL** = Total
Les cours de gestion du personnel, orientés vers l'appréciation des résultats, organisés d'abord pour les Divisions administratives ont été étendus à certaines Divisions scientifiques et techniques. L'intensification des cours de l'enseignement technique et de langues s'est poursuivie. La plupart des cours techniques ont eu lieu sous forme de sessions concentrées de quatre heures, comportant cours, exercices et travaux pratiques. Un cours intensif d'anglais a été organisé à l'intention de la Division SB. L'expérience s'est avérée extrêmement positive sur le plan des résultats obtenus et de la motivation des élèves.

Le nombre des boursiers, stagiaires et attachés dépassait 1300 (dont 900 n'étaient pas rémunérés par le CERN) au cours de l'été.

La reintégration des membres du personnel dans le système de sécurité sociale de leur pays d'origine continue de faire l'objet de discussions avec l'Allemagne, la Belgique et la Suisse. Suite à des changements dans le fonctionnement du système de sécurité sociale français, une réouverture des négociations avec la France a été demandée.

La Commission de Reclassement des Handicapés prévue par les Statuts et Règlement du Personnel a été constituée et a commencé son travail.

Le Service médical, qui a été intégré aux nouveaux Services de santé et de sécurité, a porté son effort sur l'étude de l'état de santé et de l'aptitude médicale, satisfaisants en général, de certains groupes professionnels et de tout le personnel âgé de plus de 50 ans.

Le Secrétariat des Conférences scientifiques, qui a organisé deux Écoles d'été, a aussi apporté une assistance dans l'organisation et l'accueil des participants à plusieurs réunions, dont celle sur la technologie, tenue en avril.

Les possibilités offertes par le CERN en matière de logement ont prouvé leur utilité pour les familles des nouveaux membres du personnel, dont environ 200 ont été logées dans des appartements meublés, et pour les visiteurs de courte durée et étudiants, dont environ 5000 ont été hébergés au Foyer.

Figure 3 — Cours d'électronique organisé par le Service de l'enseignement (CERN-62 J 75)
Les fichiers du personnel sur ordinateur, mis à jour par cassette magnétique, sont à l'origine non seulement de listes ou états statistiques périodiques, mais encore d'informations plus élaborées, nécessaires aux études des différents groupes de travail. Ils sont également exploités, depuis le mois de mars, par les programmes de calcul des salaires.
Quelques améliorations ont pu être apportées aux conditions de travail des services du téléphone et du courrier. Deux pupitres ont été ajoutés au standard ainsi qu'un local au bureau du courrier pour décongestionner le trafic des appels et des messages.

Plusieurs brochures d'information du personnel ont été écrites ou mises à jour et éditées. Elles apportent les renseignements nécessaires aux nouveaux membres du personnel, notamment les attachés, aux membres qui s'apprêtent à quitter le CERN, sur divers sujets tels que les questions douanières, la scolarité, les questions sociales, le logement.
LE PERSONNEL AU TRAVAIL.
Division Services techniques et bâtiments

L'organisation de la Division est restée inchangée au cours de l'année 1974 et l'effectif des titulaires et auxiliaires est, lui aussi, demeuré stable autour de 610 personnes, cinq postes étant bloqués pour le personnel détaché auprès de l'ESO dans le cadre de la collaboration avec le CERN.

La Division comporte des services de direction et six groupes dont les activités respectives sont décrites ci-après, à savoir constructions nouvelles (pour le Laboratoire I et pour le Laboratoire II), transformations et entretien de génie civil des bâtiments, entretien et exploitation des installations techniques, ateliers de mécanique et techniques spéciales, transports, manutention et nettoyage.

Le budget de la Division s'est élevé en 1974 à 83,3 millions de francs suisses, dont 29,7 millions pour le personnel. Le budget peut se décomposer de la façon suivante :

<table>
<thead>
<tr>
<th>Activité</th>
<th>Budget (en millions de francs suisses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructions</td>
<td>19,1</td>
</tr>
<tr>
<td>Energie, eau</td>
<td>17,1</td>
</tr>
<tr>
<td>Entretien, exploitation, transformations</td>
<td>23,9</td>
</tr>
<tr>
<td>Ateliers</td>
<td>14,5</td>
</tr>
<tr>
<td>Transports</td>
<td>6,1</td>
</tr>
<tr>
<td>Direction</td>
<td>2,6</td>
</tr>
<tr>
<td>Total</td>
<td>83,3</td>
</tr>
</tbody>
</table>
Ce montant ne comprend pas les 11 millions de francs suisses correspondant aux coûts des transformations d'installations et de la sous-traitance des ateliers imputées aux budgets d'autres Divisions, ni le montant des travaux du Laboratoire II auxquels participe le personnel de la Division SB. On peut en effet estimer que le nombre de personnes de la Division dont l'activité est consacrée au programme de l'accélérateur de 300 GeV a été de 102 en 1974, dont 50 pour la construction.

Au cours de l'année 1974, les travaux suivants ont été menés sur le site du Laboratoire I : construction du hall de montage N° 275 pour l'ESO et du bâtiment pour redresseurs WRB2 (N° 273) dans la zone Ouest, reconstruction des installations de réfrigération du PS, réalisation d'un système de récupération des eaux de réfrigération pour leur reutilisation comme eau industrielle chaude, nouveau tracé de la route Nord motivé par les travaux du tunnel TT60 pour le Laboratoire II.

Les importantes études pour le complexe des bâtiments de la zone Ouest devant abriter les expériences neutrino et la chambre à bulles Gargamelle se sont poursuivies et les travaux de génie civil ont été adjugés, ils démarreront en février 1975. L'exécution des pieux de fondation ayant commencé en novembre, les appels d'offres pour les différentes installations techniques sont en cours de lancement. Les travaux de gros œuvre pour le hall 186 et le laboratoire 28 (pour la Division NP) ont démarré au début de novembre.
La collaboration de la Division se poursuit avec le Groupe Installations site du Laboratoire U, pour le compte duquel la Division SB exécute des missions techniques dans le domaine du génie civil et des installations techniques générales. Le programme très important de la zone d'expérimentation Nord a continué à absorber une partie importante des moyens d'étude de la Division, notamment dans le secteur du génie civil, et un renfort de personnel temporaire a été nécessaire.

Dans le cadre de la collaboration entre le CERN et l'ESO, les ingénieurs et projecteurs de la Division SB ont continué à apporter leur concours à la réalisation des travaux d'infrastructure de l'Observatoire de La Silla au Chili et, en particulier, à la restructuration des réseaux hydraulique et électrique.

Les efforts du Groupe Entretien ont tout particulièrement porté, en 1974, sur les économies d'énergie pour l'ensemble du Laboratoire. La crise énergétique qui a touché le monde entier a, en effet, eu des répercussions au CERN. Une chasse aux consommations superflues a été entreprise en utilisant une politique générale d'économie en matière d'électricité et de chauffage. Une réduction considérable de la consommation de fuel a été réalisée (environ 4000 tonnes), soit 30% de la consommation annuelle.

Le tableau ci-après reflète l'évolution des consommations pour les années 1969 à 1974:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation énergie active (milliers de kWh)</td>
<td>158306</td>
<td>166111</td>
<td>192184</td>
<td>203242</td>
<td>222719</td>
<td>242660</td>
</tr>
<tr>
<td>- Alimentation réseau</td>
<td>158306</td>
<td>174592</td>
<td>209618</td>
<td>224907</td>
<td>243470</td>
<td>260723</td>
</tr>
<tr>
<td>- Groupe secours</td>
<td>8481</td>
<td>17434</td>
<td>21665</td>
<td>20751</td>
<td>18063</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>158306</td>
<td>174592</td>
<td>209618</td>
<td>224907</td>
<td>243470</td>
<td>260723</td>
</tr>
<tr>
<td>Puissance instantanée maximale (kW)</td>
<td>56000</td>
<td>36800</td>
<td>47200</td>
<td>53000</td>
<td>55000</td>
<td>58500</td>
</tr>
<tr>
<td>Eau de refroidissement (milliers de m3)</td>
<td>7183</td>
<td>6712</td>
<td>8063</td>
<td>8665</td>
<td>8364</td>
<td>7493</td>
</tr>
<tr>
<td>Eau potable (m3)</td>
<td>48594</td>
<td>472636</td>
<td>545197</td>
<td>482443</td>
<td>319417</td>
<td>464040</td>
</tr>
<tr>
<td>Mazout (tonnes)</td>
<td>6848</td>
<td>10181</td>
<td>12989</td>
<td>14076</td>
<td>15818</td>
<td>11902</td>
</tr>
<tr>
<td>Gaz (m3)</td>
<td>115457</td>
<td>120256</td>
<td>113118</td>
<td>100588</td>
<td>117538</td>
<td>112618</td>
</tr>
</tbody>
</table>

D'importants travaux d'amélioration et de modernisation des équipements ont été poursuivis, tels que la mise en service d'un groupe électrogène mobile de 1 MVA, le remplacement des conduites d'alimentation en eau de l'anneau ISR et un réseau de récupération de l'eau des machines. Une importante étude en cours prépare la modernisation de la centrale thermique du Laboratoire 1 en fonction de la situation énergétique évoquée ci-dessus et de l'âge de ses équipements.

La qualité de l'eau d'alimentation du CERN a été surveillée tout au long de l’année et deux campagnes de nettoyage des conduites d'alimentation ont été menées en liaison avec les organismes locaux. Une station de filtration pilote a été installée et une étude pour la réalisation d'une station de filtration a été lancée.

L'accroissement des installations prises en charge sur les deux sites de l'Organisation s'est poursuivi sans augmentation de personnel, en faisant appel à des contrats généraux de maintenance qui ont été développés. A titre d'exemple, ont été pris en charge au Laboratoire II la nouvelle station de pompage de La Berne, six ascenseurs dont trois...
monte-charge spéciaux de 25 t, quatre puisards, l'éclairage, le chauffage et la ventilation des nouveaux bâtiments.
Le nombre d'interventions de dépannage a atteint environ 5500 pour l'ensemble du CERN

Transformations

Le nombre des demandes de reaménagement et de transformations s'est élevé pour l'année à 2600, pour un montant total supérieur à 12,5 millions de francs suisses.
Certains gros travaux ont été traités par le Groupe. On citera entre autres la transformation de l'ancien centre de calcul pour l'imprimerie (750 000 francs suisses), la construction du bâtiment pour chambres à plaques (450 000 francs suisses), la modification de la salle de contrôle du PS (375 000 francs suisses).
Parallèlement, le Groupe a assuré les travaux d'entretien des routes et bâtiments du site. Ces travaux sont nécessaires pour maintenir en état acceptable le patrimoine immobilier du CERN. Le budget 1974 correspondant est de 1,9 million de francs suisses et reste très faible par rapport au montant des investissements correspondants.

Ateliers centraux

L'organisation du Groupe Ateliers centraux a été remaniée au cours de l'année. Les activités de préparation du travail, d'ordonnancement et de sous-traitance ont été regroupées en une nouvelle Section « Ordonnancement ».
Le montant des travaux facturés aux Divisions est passé de 8,8 millions de francs suisses en 1973 à 9,3 millions de francs suisses en 1974, tandis que la sous-traitance atteignait 2,5 millions de francs suisses. À la fin de l'année, la charge de travail était très forte, atteignant la saturation dans certains secteurs et entraînant un appel croissant à la sous-traitance. Cette charge est due, pour une bonne part, au Laboratoire II, mais également à BEBC et à la préparation de la physique avec le SPS.
Dans le domaine des équipements, le montage du grand four à vide dans son puits a commencé au cours du mois de novembre.

Section Contrôle-qualité

Cette Section a reçu en 1974 plus de 500 demandes d'interventions ou d'études. Ce chiffre, en baisse par rapport à 1973, représente un nombre d'heures plus élevé.
Cette augmentation de la charge de travail a été surtout notable en métrologie et un renforcement temporaire des contrôleurs a été nécessaire, de même que l'acquisition d'une seconde machine à mesurer tridimensionnelle.
Atelier principal

La charge de travail est passée de 20000 heures au début de l’année à plus de 33000 heures à la fin décembre. La demande pour le détachement de mécaniciens-monteurs a connu une forte augmentation. A noter en particulier la constitution d’une équipe permanente pour le montage et l’amélioration des condensateurs rotatifs (ROTCO) du nouveau SC. L’ensemble du programme d’améliorations du SC et la remise en état des aimants de BEBC sont à citer parmi les travaux ayant demandé de nombreuses heures de détachement.

Pour le Laboratoire II, on peut citer la construction d’éléments des systèmes de transfert de faisceaux d’injection et d’extraction. A noter d’autre part un certain nombre de travaux délicats pour les ISR (chambre à vide en radio-métal, outillage pour le formage à chaud du titane) et BEBC (tournage d’un joint à lèvre de 1,80 m de diamètre, modifications du système de détente). Citons encore l’usinage des éléments de la chambre à vide g-2.

Atelier Ouest

Les secteurs plexiglas et araldite ont été très chargés, en particulier par la fabrication d’une série de compteurs à scintillations pour lesquels le matériau scintillateur a été coulé à l’atelier.

Figure 3 — Modification du fond et de la paroi guide position de la grande chambre à bulles europ.27 (BEBC) (CT.RN.142 2 74)
L'atelier de tôlerie a été fortement sollicité, entre autres pour les ISR, avec la mise au point d'une technique de formage à chaud d'un alliage de titane pour la construction de la chambre à vide d'une intersection, ainsi que la mise en route de la fabrication d'une série de pompes cryogéniques.

En matière d'équipement, une importante phase d'améliorations a été exécutée sur l'installation de soudure par bombardement électronique afin de la rendre plus fiable et d'acquérir ses possibilités. Des développements très prometteurs ont été conduits dans le domaine des moteurs à air et des paliers à air. Ces techniques ont été appliquées à la construction d'une centrifugeuse pour la fabrication de miroirs paraboliques.

Atelier fabrication chambres à fils

Cette Section a achevé deux programmes importants concernant des chambres destinées aux expérience avec l'aimant à champs inverses (SFM) d'une part et avec Omega d'autre part.

Les tolérances demandées sur les chambres actuelles imposent le travail en local climatisé. Comptant tenu des fabrications en cours et vu les programmes prévus pour la physique avec le SPS, une extension de ces locaux a été jugée nécessaire, portant la surface totale à 310 m².
Atelier des traitements de surfaces

Dans le secteur galvanoplastie-polissage, le traitement de grandes pièces a imposé la fabrication de cuves spéciales. L'installation d'oxydation anodique a été considérablement remaniée pour permettre le traitement des électrodes d'extraction du SPS.

Le secteur des techniques photomécaniques est resté traditionnellement très chargé en raison des fabrications de circuits imprimés et d'un nombre croissant d'usinages chimiques de haute précision.

Des études ont été faites concernant le comportement des eaux, et en particulier sur la corrosion des systèmes de refroidissement d'aimants.

Une collaboration fructueuse a été poursuivie avec le Centre nucléaire de Karlsruhe pour le polissage électrolytique de cavités supraconductrices en niobium.

Le kilométrage totalisé par l'ensemble des véhicules CERN durant l'année 1974 s'est élevé à 184 000 km, dont 28 500 km représentent des déplacements à longue distance. Par ailleurs, des transporteurs extérieurs ont parcouru environ 75 000 km pour le compte de l'Organisation.

Le parc de véhicules est passé de 330 à 375 unités; il comprend des voitures légères, utilitaires, des poids lourds, tracteurs, remorques, grues, etc., tous ces véhicules étant entretenus par la Section Transports.

Tout en continuant à assurer les services de routine (déménagements, transport de passagers pour les conférences, visites, entretien du site, ramassage des ordures, etc.), le Service a participé au démontage et au remontage de BEBC, au stockage des rondelles.
neutnu (6000 tonnes au total), à la mise en place des expériences Gargamelle, \(g-2\) et neutrino, au déchargement des transformateurs géants pour le Laboratoire II et à la mise en place des premiers aimants dans le tunnel de l'accélérateur de 300 GeV.

En ce qui concerne le nettoyage des locaux, la surface totale des sols à entretenir s'élève à la fin de 1974 à 295000 m\(^2\) et celle des vitres à 35000 m\(^2\). Ce travail est confié à des entreprises spécialisées et exécuté sous la surveillance de la Section Nettoyage, qui est également responsable de l'entretien des vêtements de travail du personnel de l'Organisation et de la gestion des dortoirs.

\textit{Journées de technologie}
Les différents groupes de la Division ont participé au succès des Journées de technologie en présentant 21 sujets technologiques dignes d'attention, dont 16 dans les domaines du Groupe Ateliers centraux.
Groupe Physique de santé

Le Groupe a consacré l'essentiel de son activité à l'évaluation des risques dus aux rayonnements pendant l'exploitation et l'entretien des accélérateurs et lors de l'utilisation de sources radioactives, ainsi qu'au contrôle de l'émission de radiations ou de radioactivité par les installations. Des efforts considérables ont porté sur l'évaluation courante de l'exposition du personnel aux rayonnements dans l'enceinte du Laboratoire.

L'injection dans les anneaux de stockage à intersections de faisceaux de protons d'une intensité atteignant 2.5×10^{12} s$^{-1}$ en provenance du synchrotron à protons ne s'est traduite que par une faible augmentation du niveau de radioactivité induite dans les anneaux, mais les dispositifs de décharge de faisceaux ont commencé à constituer des sources de rayonnements importantes. Les valeurs mesurées de la radioactivité des poussières et de la radioactivité dispersée dans l'air n'ont pas dépassé 2% et 7% du niveau maximum admissible respectivement pour les anneaux et les dispositifs de décharge de faisceaux. Les débits de dose de rayonnements vagabonds ont été faibles sur tout le pourtour des ISR.

Au cours de la fermeture annuelle du synchrotron à protons, le personnel a été soumis à une exposition de 37 rem, répartis entre 115 personnes, soit une diminution de 35% de la dose par comparaison avec l'année précédente, due à une amélioration de la planification et de l'organisation du travail.

Surveillance et contrôle des rayonnements
Des installations de décharge de faisceaux atteignant une intensité de 5×10^{12} s$^{-1}$ ont fait l’objet d’études théoriques et expérimentales afin de déterminer le danger d’irradiation qu’elles présentent, et des recommandations ont été formulées en vue de leur construction. Le Groupe Physique de santé a été appelé à exercer une surveillance constante et à donner de nombreux avis lors de la modification de l’implantation des faisceaux dans le Hall Est du PS. L’installation neutino fonctionnant avec des faisceaux d’une intensité atteignant 3×10^{12} s$^{-1}$ a posé des problèmes de protection contre les rayonnements tant pendant qu’après l’exploitation. L’émission de gaz radioactifs et le rayonnement vagabond ont nécessité une amélioration des mesures de protection existantes et du blindage. En dépit de l’intensité proton plus élevée (atteignant 4.5×10^{11} s$^{-1}$) des faisceaux éjectés dans le Hall Ouest, on a pu éviter d’imposer des restrictions particulières dues aux radiations grâce à la très courte durée de ce mode d’exploitation (une journée).

La reconstruction du synchro-cyclotron était pour l’essentiel achevée à la fin de l’année. Au cours du démonage et du montage, la dose totale du personnel a été de 145 rem repartis de manière satisfaisante entre les participants à ces travaux. Un nouveau système de surveillance des rayonnements a été construit et installé dans le hall du SC, ISOLDE et les zones d’expérimentation du synchro-cyclotron.

Quarante-quatre conteneurs de déchets radioactifs ont été préparés et expédiés aux autorités suisses. Soixante-cinq nouvelles sources radioactives ont été enregistrées à l’inventaire des sources qui compte au total 820 unités.

Les postes de surveillance du site, équipés de dosimètres à thermoluminescence (TLD) au CaF$_2$ Dy, dont les mesures sont relevées tous les mois, se sont montrés en bon accord avec d’autres instruments. Les débits de dose enregistrés dans des zones extérieures au site du CERN se sont révélés acceptables et en deçà des limites prescrites.

Contrôle individuel

Quarante-quatre mille films γ et 26 000 films neutron ont été utilisés pour le contrôle individuel. La dose totale reçue par le personnel du fait de l’exploitation du Laboratoire a été de 390 rem. En janvier et en avril, la dose totale a présenté des maxima atteignant le double de la moyenne mensuelle de 1973, dus à l’arrêt du PS et à la modification de l’installation neutino. L’étude de dispositifs de contrôle individuel autres que les films-badge présentement utilisés s’est poursuivie.

Appareillage et recherche

Des détecteurs de radioactivité induite ont été mis au point. L’installation de surveillance des effluents liquides a été achevée. Les problèmes liés à l’utilisation de compteurs à faible bruit de fond pour la mesure des rayonnements vagabonds sur le site ont fait l’objet d’une étude approfondie et un système amélioré a été mis au point. Il a été proposé de relier ces détecteurs à une installation de traitement des données par ordinateur. Les installations de la salle de comptage à bas bruit de fond ont été achevées et complétées par un système d’analyse d’amplitude des impulsions par ordinateur. Le nouveau bâtiment d’étalement a été achevé et mis en service.

Dans le cadre de la préparation de l’équipement destiné à de nouvelles expériences radiobiologiques avec des faisceaux de pions et de neutrons, on a essayé un télescope de compteurs et étudié une chambre d’ionisation spéciale. Les systèmes biologiques qui seront utilisés pour ces expériences ont été préalablement étudiés avec des rayons γ du 60Co.
Groupe Sécurité du travail

De nombreux plans et spécifications d'installations industrielles et expérimentales ont été soumis au Groupe pour étude et commentaires. Les projets examinés ou en cours d'examen concernent notamment:

- l'installation d'un important ensemble de chambres à fils multiplaques derrière la chambre à bulles Gargamelle,
- le développement des installations de stockage d'hydrogène et de deutérium liquides pour BEBC,
- des impactomètres à argon liquide pour les ISR,
- des séparateurs de particules supraconducteurs,
- une cable à hydrogène dans le hall de la machine SC,
- une installation électrolytique pour la production de deutérium,
- le bâtiment neutro à dalle inclinée de la zone Ouest, avec un espace semi-ouvert abritant un dewar de 35 m³ pour hydrogène liquide,
- un grand four à vide dans le Hall 153.

Les inspections des nouvelles installations et les tournées régulières d'inspection des laboratoires, des zones d'expérimentation et des ateliers, effectuées avec les délégués à la sécurité et les contrôleurs, ont continué d'être profitables en permettant de relever divers risques d'accident que l'on tend à oublier ou à négliger dans la routine quotidienne.
En étroite collaboration avec les utilisateurs, on s’est particulièrement attaché à accroître la sécurité technique et d’utilisation de l’appareillage d’expérimentation nécessitant l’emploi de gaz et de vapeurs inflammables.

La Section Mécanique a poursuivi ses activités de routine consacrées aux inspections, aux contrôles de qualité et aux essais de réception des réservoirs à pression, des éléments d’appareils très divers et des engins de levage.

Le système améliore de contrôle des substances toxiques est pratiquement au point, et un dépôt pour les déchets chimiques est en cours de construction. En matière d’hygiène du travail, une étroite cooperation a été maintenue avec le Service médical.

Dans le domaine de la prévention des incendies, les recommandations ont porté sur les méthodes de travail ainsi que sur les installations, l’équipement et, le cas échéant, sur les modifications aux bâtiments. En ce qui concerne le Laboratoire II, des directives ont été préparées pour les halls d’expérimentation, les bâtiments auxiliaires et le SPS proprement dit.

Le Groupe Sécurité du travail a continué de collaborer avec l’ESO et, après avoir procédé à une inspection des diverses installations de l’Observatoire au Chili, il a fait un certain nombre de recommandations. Des inspections des éléments du télescope et d’autres équipements du point de vue mécanique et pour des contrôles de qualité ont également été effectuées pour le compte de l’ESO.

En septembre s’est tenue au CERN une conférence de trois jours sur la sécurité à laquelle ont participé les délégués de différents laboratoires européens.

STATISTIQUES D’ACCIDENTS EN 1974

<table>
<thead>
<tr>
<th></th>
<th>Laboratoire I</th>
<th>Laboratoire II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre total d'accidents déclarés</td>
<td>244</td>
<td>19</td>
</tr>
<tr>
<td>Nombre d'accidents entraînant une absence</td>
<td>63</td>
<td>5</td>
</tr>
<tr>
<td>Nombre d'accidents entraînant une incapacité par 100 000 heures de travail*</td>
<td>0.58</td>
<td>0.5</td>
</tr>
<tr>
<td>Nombre de jours d'inaptitude</td>
<td>8286**</td>
<td>35</td>
</tr>
<tr>
<td>Nombre de jours d'inaptitude par 100 000 heures/homme de travail (y compris la perte équivalente à un accident mortel**)</td>
<td>76.17</td>
<td>3.52</td>
</tr>
</tbody>
</table>

*100 000 heures de travail correspondent approximativement à une période d’activité de 50 années

**Ce nombre est très élevé en raison de l’accident mortel qui est assimilé à une incapacité de 7500 jours (7500 jours de travail équivalent à environ 30 années d’activité).
Services centraux

Un effort particulier a été consacré en cours d’année à l’étude d’une réorganisation du service des visites en vue de réduire les dépenses en personnel, tout en faisant mieux comprendre le CERN à ses visiteurs, dont le nombre s’est élevé à près de 11000 en 1974. Des propositions ont été formulées en vue d’utiliser davantage de matériel d’exposition et de démonstration, complété par des moyens audio-visuels.

Une expérience précieuse a été acquise au cours des préparatifs de la Réunion sur la technologie qui s’est tenue en avril et à laquelle la PIO a particulièrement contribué par la fixation de normes de présentation, la préparation de photographies et de documentation et l’installation de l’exposition centrale. Cette Réunion a accru l’intérêt porté à l’Organisation, intérêt que l’on s’emploie à entretenir et à favoriser.

Le COURRIER CERN a connu une bonne année et, malgré le renchérissement du papier et l’augmentation du tirage, il a pu conserver son équilibre financier grâce aux recettes accrues fournies par les annonces. Le rédacteur en chef a fait une visite prolongée aux États-Unis, où le COURRIER a déjà un grand nombre de lecteurs, et il a été encouragé à examiner les solutions qui permettraient de traiter plus complètement des activités scientifiques de tous les principaux laboratoires de physique des hautes énergies. Une grande enquête a été entreprise en vue de réviser la liste de diffusion actuelle et d’éliminer ainsi les dépenses inutiles.

Les services généraux comprennent les sapeurs-pompiers, secouristes, police du site, les techniciens des salles de conférences et les jardiniers.

En 1974, le volume de travail est demeuré à peu près constant par rapport à 1973. La traduction des documents et la rédaction des procès-verbaux pour le Groupe de travail sur la politique des pensions et le Groupe de travail sur les traitements se sont révélées des tâches assez astreignantes, les réunions de ces Groupes se tenant d'ordinaire presque en même temps que les sessions du Conseil et les réunions de ses Comités.
Le Conseil a approuvé le programme de construction et de mise en exploitation du Laboratoire de 300 GeV du CERN lors de sa quarante-cinquième session, le 19 février 1971.

Il a été convenu que le coût de ce programme ne devrait pas dépasser 1150 millions de francs suisses aux coûts de 1970 et à prix constants, et que la durée du programme ne devrait pas excéder huit ans.

Le Conseil a nommé M. J. B. Adams Directeur général du Laboratoire II du CERN.
Le signe le plus évident de l'avancement des travaux du programme 300 GeV en 1974 aura sans aucun doute été l'achèvement du forage du tunnel de l'accélérateur, avec la première mise en place des éléments de la machine dans la portion terminée du tunnel.

Au dernier jour de juillet, la foreuse géante surgissait de la roche dans l'alignement de la section droite LSS1, revenant ainsi à son point de départ après un voyage de dix-sept mois. Pendant ce temps, elle avait creusé 7 km de tunnel à la moyenne de 20 m par jour, en traçant sa route à quelques centimètres près par rapport à sa trajectoire théorique sur la totalité du parcours. Comme pour fournir la démonstration de sa précision et de sa maniabilité, elle est réapparue à son point de départ avec un décalage de quelques millimètres seulement.

La molasse dans laquelle le tunnel a été creusé s'est avérée très semblable à ce que laissaient prévoir les carottages effectués en 1970, bien qu'on n'ait pas prévu autant d'hydrocarbures, en particulier le gaz méthane sous haute pression rencontré en cours de forage. Cependant, ni le méthane, ni les poches d'eau occasionnelles, ni même les zones plus nombreuses où la roche était fracturée n'ont retardé la foreuse plus de quelques jours à chaque fois. Tous ceux qui ont eu à s'occuper de ces opérations aussi difficiles que dangereuses méritent d'être félicités pour avoir fait un excellent travail en respectant les règles de sécurité et les délais prescrits. La foreuse et son long train échangeur de wagonnets ont maintenant été retirés du tunnel et sont provisoirement entreposés sur le site.

En mars, quelque deux mois après que la foreuse eut dépassé la section droite LSS4, les travaux de finition du tunnel ont commencé à cette même section droite et en direction de la section droite LSS3, c'est-à-dire en sens inverse de la marche de la foreuse. En juillet, le génie civil en avait fini entre les sections droites LSS4 et LSS3, et à la fin de septembre il achevait la portion comprise entre les sections droites LSS3 et LSS2. A la fin de l'année, le tunnel de l'accélérateur était terminé sur la moitié de sa circonférence.

Aussitôt achevé le premier sextant du tunnel, l'installation des éléments de l'accélérateur a commencé avec la pose des tuyauteries et des chemins de câbles. Le premier aimant, un quadripôle, a été installé dans ce sextant à la fin d'octobre, et à la fin de l'année ce même sextant était complètement équipé avec, au total, 140 aimants de déflexion et de focalisation se suivant sur près d'un kilomètre. Le programme d'installation est du type continu, les opérations se succédant dans un ordre logique, avec des équipes réparties dans le tunnel l'une à la suite de l'autre. Le tout progresse dans le tunnel à raison d'une demi-période magnétique, c'est-à-dire 32 m, par jour. Des répétitions de ce processus complexe, organisées dans le laboratoire à la fin de l'été, ont permis d'attaquer l'installation dans le tunnel dès le premier jour au rythme prévu.
Il est rendu compte, dans les diverses sections de ce Rapport, de l'avancement des autres éléments du SPS, tout aussi importants que l'achèvement du tunnel et les travaux d'installation. Dans l'ensemble, la plupart des éléments progressent de manière satisfaisante et la majorité d'entre eux en sont au stade de la fabrication en usine, en cours d'essais au CERN ou en instance d'installation. Nous rencontrons toujours beaucoup de difficultés à faire respecter les délais de livraison par les industries européennes, et l'assistance que nous devons fournir aux entreprises, petites et grandes, pour résoudre les problèmes de production semble beaucoup plus importante qu'il y a quelques années. Nous découvrons également qu'il y a de plus en plus d'entreprises qui comptent sur leur clientèle pour vérifier leurs produits, au lieu de procéder elles-mêmes aux inspections et contrôles de qualité en usine. Il s'ensuit que notre personnel doit consacrer beaucoup plus d'heures-homme que prévu à vérifier les livraisons industrielles.

En dépit de ces difficultés, nous prévoyons toujours de terminer l'installation du SPS pour le milieu de 1976, avec mise en service de l'accélérateur au cours du second semestre de cette même année, de manière à alimenter la zone d'expérimentation Ouest en protons de haute énergie avant la fin de 1976.

John B. Adams
Directeur général du Laboratoire II
Le programme de l'accélérateur de 300 GeV

Zone des bureaux-laboratoires

Au cours de l'année l'équipement de la zone des bureaux-laboratoires du Laboratoire II a été complété par la construction d'un garage destiné aux véhicules de sécurité du site et d'un bâtiment de stockage offrant une surface de planchers de 2000 m² supplémentaires pour les éléments du SPS. De plus, la capacité de stockage de mazout pour la centrale thermique a été accrue de 50% par l'addition d'un troisième réservoir. Enfin, un restaurant a été ouvert au bloc III pour le personnel.

Alimentation électrique du site

La ligne 380 kV venant de Genissiat et le poste électrique principal sur le site ont été achevés et mis en service en 1974. Le site du Laboratoire II est désormais alimenté en électricité en provenance du réseau français EDF, prêt pour les essais des composantes principales du SPS en 1975. Un système de comptage spécial utilisant un ordinateur est en cours d'installation, système qui exercera une surveillance continue sur la consommation d'énergie de la machine. Les discussions avec l'EDF concernant la fourniture d'électricité sont près d'aboutir.

Figure 1 — Le transformateur de 90 MVA (CRN 154 à 74)

Figure 2 — Les tableaux 16 kV de la sous-station électrique (CRN 144 à 74)
Alimentation en eau du site

La construction de la station de pompage d’eau située au Vengeron, sur les bords du lac Léman, se déroule suivant les prévisions, qui fixent sa mise en service au milieu de 1975. La mise en place des canalisations de 10 km de long allant de cette station de pompage jusqu’au site est achevée. Les deux réservoirs d’eau sur le site offrant une capacité totale de 10 000 m³ sont également terminés et en service. La première partie de la station de pompage du CERN, située près des réservoirs d’eau et qui distribue l’eau brute sur le site, est entée en service au début de l’année et quatre des sept bâtiments annexes sont maintenant alimentés avec de l’eau en provenance de cette station. Les travaux de génie civil des tours destinées à refroidir l’eau brute avant son rejet dans le Nant d’Avril se sont achevés à la fin de l’année. Pour satisfaire aux règles écologiques locales, un système de recyclage et de réchauffage de l’eau a été étudié, système devant diminuer les écarts de température au rejet.

Travaux souterrains

A la fin de 1973, la moitié de la circonférence du tunnel avait été creusée. L’excavation s’est poursuivie en 1974 et, à la fin de juillet, le tunnelier avait rejoint LSS1. Les 7 km du tunnel de la machine ont donc été parcourus en 17 mois, à une vitesse qui est passée de 12 m par jour au départ à une vitesse moyenne dépassant les 22 m par jour pour les derniers kilomètres. La qualité de la roche rencontrée par le tunnelier s’est trouvée très proche de celle annoncée par les sondages de reconnaissance effectuées sur le site en 1970 et 1971, mais la quantité d’hydrocarbures rencontrée, en particulier le gaz méthane à haute pression, n’était pas prévue. Le tunnelier et ses équipements auxiliaires se sont avérés bien adaptés à la roche à creuser et il n’y eut aucune panne importante pendant toute la période d’excavation. Tous ces équipements ont été maintenant retirés du tunnel et stockés temporairement sur le site.

Le chantier de bétonnage final complétant le tunnel de la machine a débuté en LSS4 en mars et, à la fin de l’année, la moitié de la circonférence du tunnel, d’une longueur d’environ 3,5 km, était prête pour l’installation des éléments du SPS. L’excavation des trois tunnels de transfert qui relient le SPS à son injecteur (le CPS du Laboratoire 1) et à ses deux zones d’expérimentation a été achevée au cours de
l'année. La longueur totale de ces trois tunnels est d'environ 3 km. Ils ont été excavés en utilisant des explosifs. De même, l'excavation du tunnel neutrino et des ouvrages de la zone neutrino a été achevée à la fin de l'année. Environ un tiers de la longueur de ces tunnels a été bétonné.

À la fin de l'année, environ 80% de l'ensemble des travaux des ouvrages souterrains étaient achevés. En considérant les incertitudes et les risques inhérents à cette catégorie d'activités de génie civil, les travaux ont été menés avec un succès remarquable et les retards qui ont pu se produire ont été soit absorbés par les marges de sécurité prévues dans le plan de travail, soit minimisés par la réorganisation des tâches.

Bâtiments auxiliaires

Des sept bâtiments auxiliaires situés en tête des puits d'accès au tunnel de la machine, un seul a été achevé en 1973. En 1974, tous les autres bâtiments auxiliaires ont été terminés, à l'exception du bâtiment neutrino dont le démarrage est lié à l'achèvement du puits neutrino. Aucun retard prévisible ne s'est produit malgré le transfert du contrat pour les installations de chauffage à une nouvelle entreprise à la suite du dépôt de bilan du premier titulaire de ce contrat.

Le bâtiment de contrôle central a été achevé au début de l'année et mis à la disposition du Groupe Contrôle en avril. Le bâtiment sous-station électrique a été achevé en août et la zone adjacente recevant le compensateur d'énergie réactive a été achevée en octobre.

Installation des équipements

Le premier équipement pour le chauffage et la ventilation du tunnel de l'accélérateur a été mis en service en août et le second en novembre.

Les stations de réfrigération par eau ont été terminées dans trois bâtiments auxiliaires au cours de l'année et leur réception provisoire a été prononcée. Une partie des autres stations dans deux autres bâtiments auxiliaires a été achevée. L'installation des conduites d'eau déminéralisée est terminée dans quatre bâtiments auxiliaires et en cours dans deux autres. Ces mêmes conduites sont également installées dans trois des puits et dans deux sextants de la machine.
Les installations électriques ont débuté à la fin de 1973 et se sont poursuivies tout au long de 1974. Dix-sept des dix-huit transformateurs 18 kV/380 V ont été livrés sur le site et dix d'entre eux sont actuellement en fonctionnement. Les tableaux de basse tension étaient complètement installés dans cinq des bâtiments auxiliaires. À mesure que les puits et les tunnels étaient mis à disposition au cours de l'année, l'installation des échelles à câbles et des câbles de puissance démantaient et, à la fin de l'année, environ un tiers des installations était en place.

Zone d'expérimentation Nord

Les travaux d'infrastructure (routes, drainages, etc.) de la zone d'expérimentation Nord ont débuté dans la seconde moitié de l'année et des sondages de reconnaissance ont été effectués sur cette partie du site pour guider les entreprises dans leurs offres pour les travaux de génie civil. Tous les plans de génie civil pour la zone Nord ont été approuvés pendant la seconde partie de l'année et un appel d'offres a été lancé pour l'exécution des travaux correspondants. L'adjudication du contrat a été faite à la fin de décembre et il est prévu que les travaux débutent sur le site vers mars-avril 1975. Le dossier des plans d'exécution pour ces travaux est en cours d'établissement dans un bureau d'études extérieur. Un tiers de ces plans était achevé à la fin de l'année.

Des appels d'offres pour les équipements de service de cette zone ont été lancés vers la fin de 1974. Le contrat pour la fourniture des ponts roulants a été adjugé en novembre et le contrat pour le chauffage et la ventilation sera prêt au début de 1975.

Groupe Aimants

Pendant l'année 1974, de nombreux aimants et composants de tous types ont été livrés au Hall d'assemblage du Laboratoire II. Les travaux du Groupe ont surtout été consacrés à la réception, aux essais, au montage ainsi qu'à tous les aspects de la préparation finale des composants en vue de leur installation dans le tunnel de l'anneau.
Les procédures détaillées d’installation et d’alignement ont été mises au point en collaboration avec les Groupes Études mécaniques et Géodesie et Métrieologie, à la fin de l’année, le premier sextant de la machine était installé.

Les aimants du SPS sont constitués de tôles en acier de très haute qualité. Celui-ci a été fabriqué en respectant strictement les tolérances mécaniques et magnétiques imposées par la spécification du CERN, et livré avec une certaine avance sur le calendrier prévu. Les divers constructeurs d’aimants ont reçu, à ce jour, plus de 90% des 16000 tonnes d’acier nécessaires. Une collaboration continue entre le fournisseur d’acier et le CERN a permis de maintenir le champ coercitif moyen de l’ensemble à moins de 0,002 oersted de sa valeur nominale.

La précision remarquable de la production de l’acier, ainsi que le mélange judicieux des différents lots, effectué par le constructeur des circuits magnétiques des dipôles, ont assuré l’uniformité requise pour le niveau du champ à l’injection. Bien plus de la moitié...
des culasses des dipôles ont maintenant été livrées, et la précision de leur fabrication a été vérifiée par des mesures magnétiques portant sur plus de 300 dipôles complets.

La fabrication de l'un des deux types de bobines d'excitation des dipôles reste encore la préoccupation majeure du Groupe. Toutefois, on espère que la livraison de bobines par le second constructeur, prévue pour le début de 1975, permettra de satisfaire aux exigences de l'installation, avec quelques ajustements du programme correspondant.

Le constructeur des quadripôles a maintenu le plein rythme de production d'environ trois amants par semaine, de sorte qu'au début de l'installation plus de la moitié des 216 quadripôles requis avaient été livrés.

Au total, 12 quadripôles agrandis sont nécessaires, ils seront installés dans les régions d'extraction de la machine. Ce sont des homologues à l'échelle 11/9 des quadripôles normaux, et leur pouvoir de focalisation doit être aussi exactement que possible le même que celui des quadripôles principaux. Les premiers d'entre eux ont été livrés et des mesures magnétiques précises ont montré que cette harmonisation peut être obtenue avec un écarts inférieur à 1/1000 durant tout le cycle d'accélération.

La totalité des 240 dipôles de correction de l'orbite à l'injection ont été livrés et mesurés. 75% des sextupôles de correction de la chromaticité sont arrivés sur le site, ainsi que le premier octopôle permettant de réaliser l'amortissement de Landau.

Au cours de l'année, l'étude technique des petits amants multipolaires de correction d'harmoniques a été achevée et un prototype a été construit en collaboration avec la Section des paramètres. Un appel d'offres pour la fourniture de 130 amants a été lancé, et la fabrication devrait démarrer au cours du premier semestre de 1975.

Les préparatifs en vue de la fabrication des barres omnibus en cuivre pour les connexions entre les dipôles et les quadripôles principaux ont été achevés au cours de l'année, ce qui a permis de commencer l'installation du circuit magnétique avec une avance de deux semaines sur le calendrier, au rythme d'une demi-période (32 m) par jour.

Avec le démarrage de l'installation, les principales activités du Groupe se sont concentrées sur les divers aspects de la préparation finale des éléments. Celle-ci implique des mesures mécaniques et magnétiques précises, permettant d'ajuster les propriétés de chaque amant et de définir les références d'alignement. En octobre, au début de l'installation des amants, le Hall d'assemblage du Laboratoire II offrait un spectacle impressionnant, avec des empilements de plus de 300 dipôles, 100 quadripôles et de nombreux amants plus petits attendant d'être sélectionnés pour l'installation.

Figure 10 — Brasage des barres omnibus en cuivre utilisées pour la connexion du système magnétique principal (CERN-74-1074)
Le montage des principales alimentations pour les dipôles et les quadripôles se poursuit. Environ deux tiers des alimentations sont maintenant installées. L'étude technique de leur système électronique est achevée et la plupart de ses sous-ensembles ont été commandés.

L'élément principal du compensateur de puissance reactive, une grande reactance à noyau saturable, est en cours de fabrication. Tous les éléments de son filtre d'harmoniques ont été livrés et sont en cours de montage.

Les constructeurs des 180 redresseurs auxiliaires ont lancé leur fabrication conformément au calendrier et neuf d'entre eux ont été livrés. Une commande de 22 redresseurs supplémentaires, requis pour le faisceau extrait alimentant la zone Nord, a été passée récemment.

Les essais du prototype de redresseur auxiliaire et de son équipement de régulation ont été couronnés de succès. En conséquence, la conception du système électronique entièrement nouveau de ces redresseurs a pu être définitivement arrêtée. Des spécifications ont été établies pour une partie de ce système et des appels d'offres ont été lancés en vue de sa fabrication.

Malgré plusieurs difficultés rencontrées au cours de la fabrication de ses principaux éléments, le système accélérateur est en train de prendre sa forme définitive. Un premier lot des éléments les plus importants est maintenant disponible, de sorte qu'il est possible de commencer les essais finals dans des conditions réelles.

Les problèmes de soudage et de brasage posés par les cavités accélératrices ont causé initialement de graves préoccupations. Néanmoins, la première section de la première cavité a été livrée au CERN à la fin d'octobre, et quatre autres sections ont été livrées avant la fin de l'année. Les 11 tubes de glissement nécessaires pour les mesures d'accord des sections ont été finalement assemblés et brasés au CERN en octobre. Un groupe complet de tubes destiné à la première section de la première cavité a été achevé à la fin de novembre.

Figure 11 Section d'une cavité HF du SPS II sur deux cavités III dans le SPS, chacune formée de cinq sections de ce type (CERN 74-1174)
Les supports, les joints a vide et les éléments de refroidissement des cavités accélératrices sont achevés. Les plans du système de verrouillage sont établis.

Un grand nombre de fenêtres a vide sont maintenant disponibles ainsi qu'un ensemble complet de coupleurs. A la suite d'une étude complémentaire des bandes passantes supérieures de la structure accélératrice, des boucles ont été ajoutées aux couvercles des coupleurs, elles serviront à amortir également les modes de résonance supérieurs de la structure.

La première des trois charges terminales de 500 kW a été livrée et essayée à la puissance HF maximale disponible, soit 100 kW. Des extrapolations à 500 kW montrent que la charge ne s'chauffera pas exagérément à une telle puissance. Des essais finals seront effectués dès que l'on disposera d'une puissance de 500 kW.

En ce qui concerne les lignes de transmission de puissance, on a rencontré des difficultés avec les premiers disques de céramique qui ont été réalisés aux dimensions nominales à cause des fissures qui se sont produites au cours de la fabrication. A la suite d'une étude de difficultés, une nouvelle fabrication utilisant différentes formes de disques a été résolue. Au cours des essais, les disques finals ne se sont fissurés qu'en présence d'un champ correspondant à une puissance de 2,5 MW, niveau bien supérieur aux 500 kW requis. Tous les éléments des deux lignes sont maintenant disponibles. Du fait de modifications du calendrier d'installation dans le tunnel et dans le puits d'accès, la mise en place a été reportée au début de 1975.

Au début de l'année, le constructeur s'est heurté à quelques difficultés avec le prototype du bloc amplificateur de puissance de 125 kW. A la suite d'une étude de différentes procédures de fabrication avec différentes formes de disques, le problème a été résolu. Au cours des essais, les disques finals se sont fissurés qu'en présence d'un champ correspondant à une puissance de 2,5 MW, niveau bien supérieur aux 500 kW requis. Tous les éléments des deux lignes sont maintenant disponibles. Du fait de modifications du calendrier d'installation dans le tunnel et dans le puits d'accès, la mise en place a été reportée au début de 1975.

En ce qui concerne les lignes de transmission de puissance, on a rencontré des difficultés avec les premiers disques de céramique qui ont été réalisés aux dimensions nominales à cause des fissures qui se sont produites au cours de la fabrication. A la suite d'une étude de difficultés, une nouvelle fabrication utilisant différentes formes de disques a été résolue. Au cours des essais, les disques finals ne se sont fissurés qu'en présence d'un champ correspondant à une puissance de 2,5 MW, niveau bien supérieur aux 500 kW requis. Tous les éléments des deux lignes sont maintenant disponibles. Du fait de modifications du calendrier d'installation dans le tunnel et dans le puits d'accès, la mise en place a été reportée au début de 1975.

La cage de Faraday qui abritera le système à basse puissance est déjà installée. On poursuit les travaux de développement et de construction de l'équipement électronique de ce système. La plupart des éléments de la boucle de phase de la boucle radiale ont été construits sous leur forme définitive. Ces éléments comprennent des mélangeurs à réponse de phase cohérente qui convertissent la fréquence de 200 MHz en la nouvelle fréquence intermédiaire de 10,7 MHz, des circuits de mise à niveau à grande dynamique, des détecteurs synchrones, des circuits de normalisation et des détecteurs HF logarithmiques.

On a passé commande pour d'autres éléments, notamment des filtres piézo-électriques et des éléments pour circuits micro-ondes. Les circuits de programmation de la phase ont été montés et l'équipement générateur de fréquence (avec programmes de fréquence grossier et fin) est en cours de construction. La commande digitale de la fréquence IF a été étudiée théoriquement et l'équipement correspondant est en cours de mise au point.

On a défini les électrodes de détection du faisceau qui seront utilisées avec le système à basse puissance comme suit. Les électrodes de détection radiale seront une version modifiée des électrodes équipant le système de visualisation de l'orbite fermée. Le prototype pour les électrodes de détection de la phase a été accepté à la suite des résultats de mesure, la version définitive est en cours de construction. Les mesures sur les prototypes grandeur nature des électrodes de détection à large bande ont donné des résultats satisfaisants, et l'étude finale a commencé. Il convient de mentionner que le SPS a construit une électrode à large bande du même type, destinée au CPS; celle-ci a été installée au milieu de l'année et fonctionne correctement.
On a déterminé les impédances de couplage longitudinales que les éléments de l'installation de vide présentent au faisceau de protons. Pour la plupart de ces éléments, l'impédance de couplage a été déterminée de manière approximative par le calcul; mais pour les plus dangereux d'entre eux, notamment les ensembles a soufflet de la chambre a vide, les résonances ont été mesurées, et l'effet de résistances d'amortissement a été déterminé expérimentalement. L'impédance de couplage longitudinale des boîtiers de pompe utilisés dans l'anneau du CPS a également été mesurée avec la plus grande précision possible, vu les instabilités observées dans le CPS sur le faisceau dégroupé à une intensité de 6×10^{12} ppi. Cette mesure a été effectuée à la suite d'études complémentaires sur les méthodes de transfert du faisceau entre le CPS et le SPS; de telles études ont été activement poursuivies sur le CPS, à la fois théoriquement et expérimentalement.

En parallèle avec les travaux portant sur le système HF du SPS, un autre système à 200 MHz a été mis au point pour le groupage du faisceau dans le CPS. Il comprend quatre cavités avec les amplificateurs de puissance correspondants. La première cavité (prototype) sera installée au cours du prochain grand arrêt du CPS. Le système à basse puissance sera constitué principalement d'éléments mis au point pour le système correspondant du SPS.

Ligne de transfert pour l'injection

L'implantation définitive de la ligne de transfert TT10 conduisant le faisceau du CPS au SPS a été arrêtée. À l'extrémité amont de cette ligne, certaines modifications ont été apportées pour simplifier les travaux de génie civil au point de bifurcation ou la ligne quitte le tunnel actuel TT2. Deux collimateurs, distants d'un quart de longueur d'onde, seront installés au début de TT10 pour produire un pinceau de particules pour les premières études d'injection dans le SPS. Chaque collimateur sera percé de quatre trous de collimation, de sections différentes mais fixes, et d'un grand orifice pour le passage libre du faisceau. Chacun de ces trous pourra être amené dans l'axe du faisceau par déplacement latéral des collimateurs.

Figure 12 — Un des quadrupôles de 0.5 m de long destinés à la ligne de faisceau TT10 reliant le CPS au SPS (CERN-29175)
Le premier des 30 quadrupôles de 0,5 m de longueur destinés au TT10 a été livré au début de l'année. Il a donné la distribution de champ prévue et le profil des pôles a pu être approuvé pour la fabrication de la série. La livraison de la série a commencé en août et elle est maintenant pratiquement terminée.

Les aimants de déflexion horizontale et verticale et les aimants de guidage refroidis par air pour TT10 sont disponibles. Les aimants à septum pour l'injection ont tous été livrés au cours du second semestre et les mesures de leur champ magnétique, notamment du champ de fuite devant le septum, sont en cours. Les supports de tous les éléments magnétiques de TT10 ont été commandés et leur livraison est prévue pour le début de 1975.

Aimants déflecteurs rapides pour l'injection, l'extraction et la décharge de faisceau

Des prototypes courts des aimants déflecteurs pour l'extraction et la décharge du faisceau ont été construits pour vérifier les principes de conception, la distribution de champ et la réponse dans le temps des aimants définitifs. Comme matériau magnétique, les constructeurs ont utilisé le nouveau type de ferrite SC11 dont l'induction de saturation dépasse 0,3 T et dont le comportement au vide est excellent. Le prototype d'aimant déflecteur pour la décharge du faisceau a été soumis sans problème à plus d'un million d'impulsions d'une amplitude de 10 kA, durant chaque 25 µs. Ces deux prototypes d'aimant déflecteur seront installés dans le SPS et utilisés pour exécuter des oscillations bétastroniques horizontales et verticales pour l'analyse du faisceau et les mesures de Q.

Un prototype de l'aimant de balayage horizontal pour la décharge du faisceau, réalisé avec des tôles de 0,35 mm d'épaisseur, a été construit et mesuré. Il a fourni une distribution de champ satisfaisante et il subit actuellement des essais d'endurance avec les impulsions nominales d'une amplitude de 30 kA, durant chaque 50 µs.

Tous les éléments des aimants déflecteurs définitifs, c'est-à-dire les blocs de ferrite, les cadres métalliques, les enceintes à vide, les traversées isolantes en céramique, les supports et les systèmes d'alignement, ont été commandés. Malgré la livraison tardive de certains éléments par l'industrie, l'assemblage des aimants définitifs a commencé en novembre, presque comme prévu par le calendrier, dans une partie de la «salle propre» spécialement aménagée à cet effet.

Pour obtenir la réponse en impulsion désirée, chaque aimant est relié à un certain nombre de condensateurs d'adaptation et de résistances de terminaison, logés dans des boîtes d'adaptation fixées sur la plaque de base de l'enceinte à vide de l'aimant. Il y a jusqu'à huit boîtes par aimant et il faut prévoir environ 120 boîtes au total, leur cons-

![Figure 13 — Assemblée au premier aimant déflecteur du SPS (CERN-115 1274)](image-url)
struction a été standardisée dans toute la mesure du possible pour tous les systèmes d’aimants déflexeurs. Ces boîtes sont actuellement en cours d’assemblage en parallèle avec les aimants.

Le prototype de réseau formeur d’impulsion, d’une impédance caractéristique de 7,5 Ω, qui fournit des impulsions de 4 kA d’une durée réglable entre 1 et 24 μs, a été très largement utilisé en 1974 pour contrôler la fiabilité de différents types de commutateurs haute tension. Le circuit à «thyragnitron» a été finalement choisi pour tous les systèmes d’aimants déflexeurs. Ce commutateur hybride se compose d’un thyatron en céramique rempli de deutérium shunté par trois ignitrons montés en série. Le thyatron donne l’instant exact du début de l’impulsion et la montée rapide en courant, tandis que la plus grande partie du courant passe après quelques microsecondes par la série d’ignitrons. Les thyatrons sont du nouveau type CX 1171 B, dans lequel l’anode habituelle a été remplacée par un second ensemble cathodique. De cette façon, le «thyragnitron» peut faire passer le courant dans les deux sens et est insensible aux tensions inverses provoquées par les réflexions. Sa durée de vie estimee est de l’ordre de 10^7 impulsions.

Un prototype de générateur d’impulsions, d’une impédance caractéristique de 3 Ω, pour le système de décharge du faisceau a également été construit et essayer à 60 kV. On a pu montrer qu’avec un réglage précis et particulier du réseau formeur d’impulsion, il est possible de produire des impulsions de 10 kA et de 25 μs avec des oscillations superposées sur le palier de l’impulsion, d’une amplitude de ±10% du courant pulsé moyen. Ces grandes oscillations de courant haute fréquence provoquent des contraintes très élevées.

Figure 14 - Le thyatron en céramique a deux cathodes du type CX 1171 B avec un anode de tension croissante. Utilisé en parallèle avec trois ignitrons montés en série, il constitue un commutateur du «thyragnitron» pouvant commuter des impulsions de 10 kA 25 μs à temps de montée très brûlant (CIRN TV 74 74).

Figure 15 - Réseau de réseau formeur d’impulsion (PIN) de 3 Ω comprenant le système de décharge du faisceau. Chargé à 60 kV, ce PIN produit des impulsions de courant de 10 kA 25 μs avec des oscillations superposées sur le palier d’impulsion. Leur amplitude oriente à 1 kA (CIRN-S9 70 74).
dans les éléments et entraînent une usure des contacts électriques par décharges par effet corona. En conséquence, ce générateur d’impulsions est actuellement utilisé pour contrôler soigneusement la durée de vie de tous les éléments du système de décharge du faisceau en vue d’éliminer les points faibles éventuels.

Pour les câbles coaxiaux haute tension qui relient les aimants déflecteurs installés dans le tunnel du SPS aux générateurs d’impulsions situés dans les bâtiments auxiliaires, il a été décidé d’utiliser le même câble de 50 Ω de type RG 220 U amélioré que celui qui a été adopté pour le système d’extraction sur dix tours du CPS. Pour chaque aimant déflecteur, plusieurs câbles seront utilisés en parallèle. Le nombre de câbles dépend de l’impédance, comprise entre 3 Ω et 10 Ω, des différents systèmes d’aimant déflecteur.

La livraison des condensateurs HT de tous les réseaux formeurs d’impulsion (PFN) se poursuit conformément au calendrier. Pour éviter les risques d’incendie, il est interdit de remplir les enceintes des PFN avec de l’huile minérale. L’utilisation d’askarel (noms commerciaux pyralene et clophen) pose des problèmes d’ordre technique et physiologique, car ce produit attaque un certain nombre de matériaux isolants et irrite la peau. En conséquence, toutes les enceintes des PFN seront remplies d’huile silicone.

Les alimentations de 70 kV, courant continu, prévues pour les aimants déflecteurs d’injection et de décharge du faisceau ont été commandées et leur construction progresse conformément au calendrier. Pour l’extraction rapide et les mesures de Q qui exigent plusieurs impulsions par cycle de machine, on utilisera des alimentations à charge résonante. Un prototype de ces alimentations a été essayé avec succès avec le générateur d’impulsions de 4 kA et peut fournir deux impulsions de 4 kA, à un intervalle de 80 ms, avec un temps de répétition total de 2 s. Les paramètres des différentes alimentations à charge résonante définitives ont été déterminés. Les éléments de ces alimentations ont été standardisés et ont tous été commandés. Ces éléments seront utilisés également pour les générateurs d’impulsions des dipôles pulsés pour l’extraction par résonance entière et des quadrôpôles pulsés pour l’extraction rapide-lente par résonance demi-entièr e. L’assemblage commencera en février 1975 avec les alimentations prévues pour les mesures de Q.

Les circuits de connexion entre les systèmes d’aimants déflecteurs et les ordinateurs du SPS ont été définitivement mis au point et le logiciel a été établi. L’ensemble a été essayé en reliant le générateur d’impulsions de 4 kA et le prototype d’alimentation à charge résonante à l’ordinateur NORD-10 situé dans le Hall d’assemblage et il est maintenant possible de faire fonctionner ce système à distance à partir de l’ordinateur.

Système d’extraction

Un prototype grandeur nature, de 3 m de longueur, du septum électrostatique (ES) réalisé avec des fils de tungstène de 0,15 mm de diamètre, espaces de 1,5 mm, a été construit. Une méthode sûre de montage et de tension des fils par des ressorts individuels a été mise au point.

Le système de vide du septum électrostatique a été conçu pour pouvoir fonctionner à des pressions aussi basses que 10⁻⁹ torr. Un vide de cette qualité serait souhaitable lorsque les enceintes du septum électrostatique seront installées dans le SPS, car il limite le nombre des ions qui sont produits par le faisceau en circulation et qui peuvent provoquer un claquage en pénétrant dans la région de champ élevé du septum après avoir dérivé à travers les fils.

Des essais haute tension ont été effectués au laboratoire avec le modèle de septum électrostatique de 3 m en utilisant des cathodes en titane et en peraluman oxydé dans un bain d’acide chromique. Ce dernier type de cathode est utilisé également dans les septums électrostatiques du CPS. Il a été constaté que la tenue en tension d’une cathode en titane dépend fortement de la pression de l’enceinte à vide. Les valeurs types du champ électrique maximal qui a pu être maintenu de façon sûre avec les cathodes en titane dans un intervalle de 17,5 mm ont été de 100 kV/cm à 10⁻⁶ torr et 70 kV/cm à 10⁻⁹ torr. Avec la cathode en peraluman, le champ maximal a été de 130 kV/cm à toutes les pressions comprises entre 10⁻⁶ torr et 3 x 10⁻⁸ torr, pression la plus basse qui a pu être obtenue avec la cathode en peraluman, celle-ci ne pouvant pas être étuvée. En conséquence, on a l’intention d’installer des cathodes en peraluman dans les enceintes du septum électrostatique pour les premiers essais d’extraction. Cependant, la couche d’oxyde à la surface de
la cathode en peralumine est facilement endommagée par les claquages qui se produisent entre les électrodes du septum électrostatique. Ces claquages à une pression de 3×10^{-8} torr pourraient surtout être provoqués par les ions produits par le faisceau en circulation et pénétrant dans la région de champ élevé. Pour cette raison, le septum électrostatique sera équipé d'électrodes d'extraction, au-dessus et au-dessous du faisceau circulant, destinées à recueillir les ions produits par le faisceau avant que ceux-ci puissent s'engager entre les électrodes du septum.

En attendant, tous les autres éléments du septum électrostatique, c'est-à-dire les enceintes à vide, les modules de pompage, les traversées isolantes HT, les supports d'électrodes, les supports d'enceinte et les longues poutres de soutien, ont été commandés et leur livraison se poursuit à un rythme satisfaisant. Un assemblage d'essai d'une enceinte avec les éléments définitifs a été réalisé et deux enceintes définitives seront entièrement équipées avant la fin de l'année.
Tout l'équipement des circuits électriques 300 kV, c'est-à-dire les alimentations, les câbles, les fiches et les résistances, a été commandé et, à la fin de 1974, on disposait de suffisamment d'éléments pour réaliser le circuit électrique d'un système d'extraction complet.

Tous les éléments des aimants à septum mince (4 mm) et épais (16 mm) ont été commandés et, avant la fin de 1974, une quantité suffisante d'éléments pour un système d'extraction complet avait été livrée. Un assemblage d'essai avec des éléments définitifs a été effectué et, à la fin de 1974, quatre enceintes définitives ont été entièrement équipées.

Un prototype de l'aimant à septum épais a été soumis à un essai d'endurance. Après 3.3×10^8 impulsions, l'essai a été interrompu car l'un des trous du conducteur s'était bouché. L'origine de cet incident fait actuellement l'objet d'une enquête. Lorsque le septum a été démonté, l'isolement du conducteur de retour de courant, réalisé en fibre de verre impregnée de polyimide et traitée à 300°C, n'a montré aucun signe d'usure.

Le câble des barres omnibus pour les aimants à septum a été livré et le brassage des modules de barre omnibus a commencé en novembre. Les systèmes à connexion rapide de 25 kA ont été assemblés et achevés à la fin de 1974.

La livraison des aimants de déformation d'orbite pour l'extraction a été déroulée de façon satisfaisante et sera achevée au début de 1975. Le premier sextupôle pour l'extraction a été livré en octobre et la livraison de tous les sextupôles sera achevée en mars 1975. Les mesures magnétiques sur les aimants de déformation d'orbite et sur les sextupôles sont en cours. La livraison des quadrupôles et des octupôles pour l'extraction commencera en janvier 1975 et devrait être terminée à la fin de juin 1975.

Moniteurs de faisceau

Les moniteurs de faisceau du système d'extraction et des lignes de transfert pour le faisceau du CPS injecté dans le SPS et pour les faisceaux extraites destinés aux zones d'expérimentation Ouest et Nord ont été standardisés. Il existe trois types de moniteurs. Premièrement, les moniteurs à émission secondaire avec des feuilles entières pour les mesures d'intensité de faisceau, avec deux demi-feuilles pour les mesures de position.

Figure 18 — Introduction dans une enceinte à vide d'un électroaimant à septum destiné à l'extraction. Au-dessus de la salve on peut observer les rafales des étincelles interneuses (CI RN-343 175)
de faisceau ou avec une grille composée de bandes étroites pour les mesures de profil de faisceau. Deuxièmement, les minisondes constituées d'une bande ou d'un fil déplacés à travers le faisceau pour mesurer, également par émission secondaire, le profil des faisceaux de faible section comme ceux que l'on rencontre près du système d'extraction et juste en amont des cibles. Troisièmement, les écrans lumineux observés par des caméras de télévision en circuit fermé. Le Groupe BT est responsable du matériel pour tous ces moniteurs de faisceau, tandis que la partie électronique est fournie par le Groupe Contrôle (CO). Un total d'environ 250 petites enceintes à vide avec leurs supports ont été commandées pour ces moniteurs de faisceau et leur livraison a commencé en octobre 1974.

Certaines de ces enceintes abriteront une combinaison de plusieurs des types de moniteurs énumérés ci-dessus.

Les prototypes des mécanismes d'actionnement des différents moniteurs de faisceau ont été mis au point et construits par le Groupe Tous les mécanismes d'actionnement (135 pour les moniteurs à émission secondaire, 70 pour les minisondes et 35 pour la TV) ont été commandés.

En octobre 1974, 110 têtes de mesure à émission secondaire ont été commandées ainsi que les fenêtres d'observation radiorésistantes (stabilisées au cérium) pour les moniteurs à écrans lumineux. La transparence de ces fenêtres reste bonne à des doses supérieures à 10⁸ rad. Les écrans lumineux eux-mêmes ont été commandés en décembre.

Des essais ont été effectués avec les versions finales des moniteurs à émission secondaire et des minisondes dans un faisceau de particules du Hall Ouest, en utilisant les circuits électroniques réalisés par le Groupe CO. Ces essais ont été entièrement satisfaisants. Une grande attention a été accordée aux problèmes de mise à la masse dans la conception des circuits électriques et des têtes de mesure. De plus, les enceintes à vide elles-mêmes reposent sur des supports isolants en vetrinite et sont isolées du reste de l'installation de vide à l'aide de brides isolantes. En conséquence, d'excellents rapports signal-bruit ont été obtenus dans les essais de faisceau.
Faisceaux de protons extraits destinés aux zones d'expérimentation Ouest et Nord

L'implantation de ces lignes de faisceaux est maintenant bien définie. Au cours du premier semestre, certaines petites modifications ont été apportées lorsque le tracé des faisceaux secondaires en aval des cibles a été connu de façon plus détaillée.

Le contrat pour les quadripôles de transfert de faisceau de 1,5 m et 3 m qui seront utilisés pour toutes les lignes de faisceaux de protons extraits a été passé en 1973. Le début de la livraison a été retardé d'environ six mois, par suite de difficultés techniques rencontrées principalement dans la fabrication des bobines. Le premier quadripôle prototype a été livré en septembre. Il a donné la distribution de champ prévue et le profil de pôle a pu être approuvé pour la fabrication de la série. Il existe un réel danger que la livraison tardive de ces aimants quadripolaires retarde le moment où l'on pourra disposer du premier faisceau de protons pour les expériences.

Le contrat pour les dipôles de guidage de 0,7 m et 1,4 m de longueur destinés aux lignes de faisceaux extraits a été passé à la fin de 1973 et le premier dipôle de guidage sera livré au début de 1975.

Pour assurer la déflexion dans les lignes de faisceaux de protons extraits, on utilisera des aimants du type MBB de l'anneau principal, ils sont tous inclus dans le contrat actuel du Groupe Aimants. L'étude technique des modifications requises et des supports spéciaux permettant d'utiliser ces aimants dans un plan vertical ou incliné est achevée. Les raccordements électriques et hydrauliques de ces aimants ont été adaptés à leur utilisation dans les lignes de transfert. Tout cet équipement est commandé et a été partiellement livré. Un premier amant pour déflexion verticale a été assemblé et testé.

On a commandé les amants de déflexion pulsés en C, de 3 m de longueur, destinés aux deux dispositifs d'aguillage de faisceau qui sont installés dans l'aire de distribution souterraine de TT60, et qui dirigent le faisceau de protons sur les cibles produisant le faisceau à séparation HF et les faisceaux neutrons à bande large et à bande étroite. Leur fabrication se poursuit conformément au calendrier et le premier amant sera livré au début de 1975.

L'étude technique des amants de fractionnement à septum en acier a été achevée. Il y aura deux types d'amants l'un, comprenant deux septums séparés en acier, sera utilisé dans le dispositif de fractionnement du faisceau en trois branches pour la zone Ouest, et l'autre, comprenant un seul septum, dans les dispositifs de fractionnement du faisceau en deux branches de la zone Nord. Les culasses seront en acier massif et les bobines.

Blocs de décharge de faisceau et cibles

Des blocs absorbeurs seront utilisés pour la décharge du faisceau du SPS, soit dans la section droite LSS4 pour le faisceau interne, soit dans les lignes TT20 et TT60 pour le faisceau extrait, lors des études de machine. On a effectué une étude détaillée des effets thermiques et thermomecaniques qui se produisent pendant l'absorption d'une giclée de 10^{13} protons de 400 GeV obtenue par extraction rapide et possédant une énergie cinétique de 640 kJ. Chaque bloc absorbeur se composera d'un noyau entouré de deux demi-coquilles en fonte d'un diamètre extérieur de 0,96 m et d'une longueur de 4 m. A l'exception du noyau prévu pour les blocs absorbeurs de LSS4, pour lequel l'étude technique et les travaux sur modèle se poursuivent, tous les éléments des blocs absorbeurs étaient définis et leurs plans achevés en décembre 1974. Les demi-coquilles en fonte de tous les blocs absorbeurs ainsi que les noyaux et supports pour les blocs absorbeurs de TT20 et TT60 ont été commandés avant la fin de l'année.

Juste en amont des blocs de décharge de faisceau installés dans LSS4, des cibles de raclage sont prévues pour réduire la remittance horizontale ou verticale ou la dispersion en quantité de mouvement du faisceau en circulation, et pour éliminer les protons d'impulsion différente qui ne sont pas capturés par la HF à l'injection ou qui sortent de la zone de stabilité HF pendant l'accélération. L'étude technique de ces cibles de raclage et de leur mécanisme de déplacement est terminée et les mécanismes prototypes sont en cours de fabrication et d'essais. Les enceintes à vide prévues pour ces cibles ont été commandées en décembre 1974.

Les problèmes de refroidissement des cibles externes ont été étudiés en détail. Pour les faisceaux secondaires de haute énergie, il semble intéressant d'utiliser des cibles à plaques minces pouvant être facilement refroidies par les bords. Pour l'optique des faisceaux secondaires, une telle cible se présente comme une source bien délimitée dans la direction perpendiculaire au plan de la plaque, l'élargissement de la source résultant des interactions des particules secondaires dans le plan de la cible s'étant révélé peu important aux énergies élevées. Pour les faisceaux secondaires de basse énergie, il est possible de réduire l'élargissement latéral de la source en usinant des gorges longitudinales dans la plaque de la cible de chaque côté de la région d'interaction avec le faisceau. Des prototypes de cibles en béryllium avec gorges longitudinales ont été fabriqués par l'industrie.

Les principes de conception des postes de cibles prévus pour les faisceaux de protons d'extraction lente dans les zones Ouest et Nord ont été définis et l'étude technique détaillée des postes de cibles pour la zone Ouest a commencé. Les principes de conception des postes de cibles prévus pour les faisceaux neutrons à bande large et à bande étroite, qui utiliseront le faisceau de protons d'extraction rapide et de pleine intensité, sont encore à l'étude.

Electronique

Un important équipement électronique devra être mis en place dans les bâtiments auxiliaires pour desservir les systèmes de commandes, de protection et d'acquisition des données des aimants spéciaux, principalement ceux de déflexion rapide et d'extraction, qui seront installés dans le SPS. Dix membres du Groupe Transfert des faisceaux travaillent...
Les 24 ordinateurs commandes initialement ont tous ete livres et acceptes à titre provisoire. Une fois arretes les plans de la zone d'expérimentation Nord, il s'est avéré nécessaire de commander un ordinateur supplementaire qui sera livre en avril 1975. Dix de ces ordinateurs sont definitivement installés dans les batiments auxiliaires et le batiment de commande: les autres sont installés dans les laboratoires et dans le Hall d'assemblage, ou ils sont utiles pour la mise au point et les essais de l'appareillage, qui arrive maintenant en grande quantité, avant son installation dans le tunnel et les batiments. L'experience qu'on acquiert actuellement permettra d'évaluer la fiabilité des ordinateurs. Les donnees recueillies a ce jour sont encourageantes.

Le systeme de transmission de messages a ete livre dans les delais et installé dans le batiment de commande. Dix ordinateurs ont ete relie au systeme, dont certains par des lignes de transmission plus longues que celles requises pour l'installation definitive; l'ensemble a fonctionné de maniere satisfaisante. Plusieurs millions de messages ont ete echangés entre les ordinateurs, et il semble que la fiabilité prescrite dans les specifications sera atteinte. Il faudra cependant poursuivre les essais pendant plusieurs mois pour le confirmer. Le systeme fonctionnera de facon reguliere au debut de 1975.

Figure 22 — Installation du systeme de transmission des messages dans la salle de commande principale (CLRN-201174)
La livraison des châssis et des alimentations CAMAC a été faite avec une certaine lenteur, mais le retard sur le calendrier est maintenant en train de se combler. Les modules CAMAC ont été commandés à trois entreprises en premier. Deux d'entre elles ont respecté les délais de livraison, tandis que la troisième à pris plusieurs mois de retard et il a fallu se procurer certains modules chez un autre fabricant pour l'installation initiale. Au total, près de la moitié des unités CAMAC requises ont été livrées et un tiers installées.

La livraison des modules pour le système de multiplexage se poursuit de manière satisfaisante, et près de la moitié de la commande initiale a été livrée. En février, un contrat concernant des châssis et des alimentations a été passé, et un tiers de la commande a été livré et installé en même temps que les modules. A mesure que s'achève l'étude technique d'autres éléments de l'accélérateur, de nouveaux besoins sont apparus en matière de multiplexage, et des modules et des châssis supplémentaires ont été commandés.

L'étude technique des modules du système de sequencement qui s'intègrent dans les châssis de multiplexage a été achevée, et un contrat pour la fabrication de 550 unités a été passé en novembre. L'étude du générateur central de sequencement se poursuit.

L'étude technique d'un certain nombre d'unités à usage particulier s'est achevée au cours de l'année, et des prototypes ont été construits. Il s'agit entre autres de dispositifs permettant de mesurer avec une grande précision l'intensité dans les alimentations en courant continu, et de générateurs de fonctions spéciales pour la commande des alimentations pulsées et des éléments de correction magnétique. Des contrats pour la fabrication de ces dispositifs seront passés au début de 1975.

Les détails des méthodes de commande de l'appareillage dans les lignes de faisceaux secondaires et de réalisation d'installations permettant l'interconnexion des expériences avec le système de commande ont été mis au point, en collaboration avec le Groupe Zones expérimentales.

En ce qui concerne le logiciel, une version améliorée du langage interprétatif de commande NODAL, plus rapide et permettant de manipuler les chaînes de caractères, a été rédigée. Elle a été intégrée au moniteur temps réel SYMTRON, qui est une version modifiée du moniteur SINTRAN II fourni par le constructeur, auquel a été adjoint un système d'entrée-sortie généralisé. Ce système d'entrée-sortie prend en compte une structure de fichiers définis par leurs noms, de sorte qu'il est maintenant possible d'interroger des programmes et de transmettre des données d'un ordinateur à un autre au moyen d'instructions NODAL. Les travaux relatifs au «système» se trouvent ainsi pratiquement achevés et l'effort principal porte maintenant sur les «modules de traitement des données», qui sont de petits programmes spécialement conçus pour chaque type d'équipement de base, ainsi que sur les programmes d'application.

Le système de contrôle des essais a fonctionné en permanence dans le Hall d'assemblage pour l'essai des prototypes et de l'équipement de série destinés au Groupe Transfert des faisceaux ainsi qu'aux Sections Vide et Surveillance des faisceaux. Un autre ordinateur a été installé pour les essais en ligne des modules de traitement des données.

A la suite des essais effectués avec le prototype de pupitre de commande, trois pupitres analogues ont été commandés pour la salle de commande principale ainsi qu'un...
quatrième plus simple pour le contrôle de la sécurité. Ces pupitres ont été mis en place et sont en cours d'équipement. Un pupitre est complètement installé et fonctionne avec son ordinateur en mode indépendant. Il sera relié au début de 1975 au système de transmission de messages et pourra alors être utilisé pour les essais de commande à distance de l'équipement installé dans les bâtiments auxiliaires. On met actuellement au point des sous-programmes qui serviront d'élément de base pour l'établissement des programmes de commande et de visualisation nécessaires. Les éléments de l'installation centrale de distribution des signaux vidéo nécessaires pour le système de visualisation équipant les pupitres de commande ont été livrés et le système est en cours d'installation. Les modules d'un système semblable, qui sera utilisé pour commuter des signaux analogiques aux oscilloscopes, ont été commandés. Toutes les caméras de télévision, les dispositifs d'observation et les amplificateurs qui fonctionneront dans les bâtiments auxiliaires ont été livrés, et la construction des caméras spéciales radiorésistantes qui seront utilisées dans le tunnel se poursuit selon le calendrier.

Le premier dispositif entièrement automatisé de contrôle de l'accès au tunnel au moyen de codes perforés dans les cartes d'identification individuelles est pratiquement prêt pour les essais. Les dispositifs de contrôle de l'accès aux zones d'expérimentation sont à l'étude. Le plan général du système de verrouillage de la machine a été accepté et la construction d'éléments prototypes a commencé.

Dans le domaine de l'appareillage de mesure, bien que la fabrication des détecteurs de position du faisceau destinés au contrôle de l'orbite fermée ait causé quelques difficultés au fournisseur, on a reçu et essayé un nombre d'unités suffisant pour équiper dans les délais le premier demi-sextant de la machine. Des prototypes de l'équipement électronique de ces détecteurs de position ont été acceptés et la livraison des unités de série a commencé. Le premier lot d'alimentations destinées aux dipôles de correction a été reçu, essayé et installé dans le bâtiment auxiliaire. Les prototypes des détecteurs de position spéciaux plus grands dont on aura besoin dans certaines des longues sections droites sont à l'essai.

Le premier transformateur d'intensité du faisceau produit en série et le prototype d'analyseur de faisceaux à ionisation ont été essayés au PS avec les chaînes complètes d'acquisition des données alimentant un ordinateur NORD-10 installé dans la salle de commande du PS. Ces essais ont été très satisfaisants. Un détecteur à émission secondaire de chaque type a été installé dans une ligne de faisceau dans la zone d'expérimentation Ouest avec la première des unités électroniques de série et un ordinateur NORD-10. Ces essais ont également été couronnés de succès.
Les progrès réalisés en ce qui concerne les autres dispositifs de surveillance du faisceau, détecteurs à bande large, appareils de mesure de Q, etc., ont été satisfaisants.

La Section Installations a posé environ 175 km de câbles pour le premier secteur de la machine et ces câbles sont en cours de raccordement à l'appareillage. Les fabricants de câbles ont éprouvé certaines difficultés à se procurer les matières premières, mais ces difficultés sont maintenant surmontées. La quasi-totalité des baies a été livrée et installée dans les bâtiments à faîtières et une nouvelle commande a été passée pour les zones d'expérimentation. Un grand nombre de boîtes d'interconnexion sont en cours de fabrication.

Le bureau de dessin d'électronique et l'atelier ont travaillé sans relâche à la construction de prototypes et de boîtes d'essai afin que l'installation et la mise en service des milliers d'unités électroniques requises puissent se poursuivre à un rythme aussi rapide que possible.

La Section Ingénieurs en mécanique et le Bureau de dessin ont travaillé activement à achever l'étude détaillée des éléments de la machine. L'étude de l'ensemble des outillages requis pour l'installation et l'alignement des équipements dans le tunnel a également exigé un gros effort. En outre, presque tous les ingénieurs et les projeteurs ont dû consacrer une bonne part de leur temps à suivre la fabrication et les essais d'éléments de la machine chez les fabricants.

En 1974, les études relatives aux équipements destinés aux zones d'expérimentation ont commencé. Un système d'aimant enfichable pour les zones à forte radioactivité a notamment été mis au point et essayé avec succès sur un prototype. Il permet la mise en place précise d'un aimant sur des supports préalignés et son raccordement automatique aux circuits d'eau et d'électricité sans intervention humaine à proximité, uniquement au moyen d'un engin de levage utilisant un système de référence pour la positionnement. Pour les tunnels qui ne sont pas équipés d'engins de levage, un véhicule de transport spécial d'une capacité de 30 tonnes a été conçu pour la mise en place précise des blocs de décharge de faisceau et des aimants de fractionnement. Si nécessaire, il peut facilement être équipé d'une commande à distance.

La figure 25 montre un prototype de système de connecteurs enfichables pour un aimant (CERN-409-075).
Afin de faire face à un volume de travail exceptionnel, un contrat portant sur huit années-homme environ a été passé avec un bureau d'études extérieur. Le volume de travail de la Section Atelier a atteint lui aussi un niveau record. Un grand nombre de mécaniciens qualifiés ont été détachés auprès d'autres groupes pour aider à la construction des cavités HF, à l'assemblage des stations d'observation du faisceau, à l'achèvement des sections droites courtes, à la fabrication des bobines des septums et des barres omnibus des aimants, et au soudage des pièces d'extrémité sur les chambres à vide des aimants. Ils ont été remplacés par du personnel en régie pour maintenir une utilisation optimale des installations de l'atelier. L'atelier confie également des travaux à quelque 30 entreprises sous-traitantes.
La Section Vide a pratiquement achevé l'étude détaillée de l'installation de vide de l'anneau et des lignes de transfert (jusqu'aux cibles des lignes d'extraction). La livraison en série d'éléments à usage général de l'installation de vide de la machine est déjà bien avancée. Les livraisons sont pratiquement terminées pour les pompes, les joints et les tubes. La livraison des éléments spéciaux de l'installation de vide des longues sections droites a commencé. Environ 300 aimants principaux ont été équipes de chambres à vide complètes. Le montage des chambres à vide des sections droites courtes préassemblées de l'anneau a commencé. L'installation de vide d'un modèle de demi-période a été assemblée et soumise avec succès à des essais de pompage. Des résultats satisfaisants ont également été obtenus lors des essais de pompage sur une section de tube de 40 m destinée aux lignes de transfert de faisceau.

Les essais des équipements de contrôle de l'installation de vide des bâtiments auxiliaires ont commencé, à l'aide des ordinateurs installés dans ces bâtiments et du système de multiplexage destiné au contrôle à distance. L'assemblage et les essais d'étanchéité de l'installation de vide dans les périodes normales de l'anneau ont commencé en novembre 1974.

L'année 1974 a été une période marquante pour la Section Installations et des travaux d'installation sont maintenant en cours dans quatre des six bâtiments auxiliaires et dans trois secteurs du tunnel de l'aimant principal. L'installation des services dans l'anneau, notamment de l'éclairage, des systèmes de telecommunications, des câbles d' alimentation électrique et de contrôle et des circuits d'eau de refroidissement, a commencé le 8 juillet 1974 et a progressé en moyenne depuis cette date au rythme d'une demi-période, soit 32 m, par jour. L'installation des éléments de la machine a commencé le 7 octobre 1974 par le tracage de leur emplacement sur le sol du tunnel et, le 21 octobre, le premier aimant quadrupolaire était placé sur ses supports. Depuis cette date, l'installation des aimants et de leur système de barres omnibus a progressé elle aussi à raison de 32 m par jour. Ce rythme a pratiquement été atteint dès le premier jour grâce aux essais entreprises auparavant sur un modèle de demi-période installé dans le Hall d'assemblage.

La planification et le transport de tous les matériaux et équipements nécessaires à l'installation sont organisés par la Section Installations au moyen d'un programme spécial d'ordinateur appelé TABLOID qui a été établi avec l'aide de la Division DD du Laboratoire. La Section dispose maintenant d'un important parc de tracteurs électriques, de véhicules de manutention et de remorques spéciales (environ 200 au total) constitué dans ce but.

La contribution du bureau de dessin aux travaux d'installation tend à diminuer parallèlement. Les plans d'implantation de l'anneau principal sont maintenant terminés. Ceux des tunnels de transfert sont en cours d'achèvement.
La Section Installations est également responsable du stockage des équipements sur le site du Laboratoire II, elle a récemment mis en service un nouveau bâtiment de stockage de 2000 m² qui s'ajoute à une zone de stockage découverte de 5000 m² entièrement occupée à l'heure actuelle.

Groupe Radiations

La mise au point du système de protection contre les rayonnements sur le site du Laboratoire II s'est poursuivie. Des programmes d'ordinateur pour l'enregistrement et la comptabilisation des doses reçues par le personnel et le contrôle des matériaux radioactifs ont été établis et les procédures ont été adaptées en conséquence. Des prototypes d'équipements de mesure du rayonnement diffusé et de la radioactivité ont été essayés au cours d'expériences en laboratoire et de mesures sur le site. Tous les équipements mobiles de mesure peuvent maintenant être commandés. La révision des codes de sécurité « Radiation » et du manuel de sécurité « Radiation » a été achevée en collaboration avec le Groupe Physique de santé du Laboratoire I.

Les calculs de blindage et l'établissement du programme pour les codes de cascades nucléon-méson selon la méthode de Monte-Carlo se sont poursuivis. Des estimations de rayonnement et des calculs de blindage ont été faits pour un grand nombre de configurations de blindage précises dans les tunnels de transfert et les zones d'expérimentation. Le Groupe a consacré une très large part de ses activités à des estimations de doses et d'activité rémanente ainsi qu'à des calculs d'échauffement par rayonnement, en collaboration étroite avec d'autres groupes du Laboratoire II.

L'établissement des codes de transport pour les muons a progressé, un programme (KYLUS) est maintenant disponible pour le calcul de la pénétration des muons à travers des géométries de blindage complexes, il est composé par un programme d'ordinateur relatif au transport des muons (TOMCAT) qui tient compte de toutes les interactions de muons jusqu'à des énergies très élevées. Une évaluation des problèmes de rayonnement des muons dans la zone d'expérimentation Ouest est en cours d'achèvement en collaboration avec le Groupe Zones expérimentales.

Des visiteurs et des conseillers appartenant à diverses universités ont participé à l'établissement des programmes et aux calculs de blindage. L'étude des résultats des premières mesures du rayonnement pour des muons dont l'énergie atteint 300 GeV a été menée à bien en collaboration étroite avec le Fermi National Accelerator Laboratory. Les résultats ont confirmé la valeur de nos estimations fondées sur les programmes relatifs aux cascades nucléon-méson.

En 1974, une large part de l'activité du Groupe Radiations a été consacrée à la fabrication, aux essais, à l'étalonnage et à l'installation du système de détection des rayonnements. La quasi-totalité des détecteurs de rayonnement sur le site et des stations de contrôle annexes a été livrée et le tiers environ était installé à la fin de l'année. Les limites pour la transmission des données ont été définies et on a procédé avec succès aux essais d'un premier système avec son raccordement à l'ordinateur. La construction des dispositifs de surveillance de l'air, des eaux et de la ventilation est en cours. En ce qui concerne le système de détection mis au point pour les tunnels et les zones d'expérimentation, des essais approfondis sur des prototypes ont permis de sélectionner les éléments les mieux adaptés à une utilisation en milieu fortement radioactif. La livraison des premiers dispositifs de surveillance des tunnels est prévue pour le milieu de 1975. Un contrat a été passé pour la fourniture de dosimètres individuels et des prototypes seront fournis au début de 1975. Ce système permettra une amélioration du contrôle de l'exposition individuelle et un enregistrement rapide des doses individuelles reçues. La réalisation du système de détection des pertes de faisceau progresse comme prévu. Les premiers travaux d'installation des chambres à ionisation et des préamplificateurs avaient commencé avant la fin de l'année. Les mesures du bruit de fond du rayonnement diffusé sur le site et de la radioactivité dans des échantillons d'eau, de sol et de plantes ont également commencé.

Les travaux d'irradiation et de sélection de matériaux radiorésistants se sont poursuvis. Alors qu'en 1973 les essais concernaient des séries relativement étendues d'éléments...
Les travaux du Groupe en 1974 ont été très diversifiés et ont porté sur un grand nombre de petites séries d'éléments et de matériaux. Des essais ont été effectués sur des métaux, des céramiques, des verres, des matériaux pour supports de bobines d'aimants, des peintures, des lubrifiants et des huiles isolantes, pour ne citer que quelques exemples. Le programme d'essais de composants électroniques dans des accélérateurs, des reacteurs et des sources de rayonnement gamma s'est poursuivi. On s'est attaché à comparer les effets constatés pour la même dose dans différents champs de rayonnement.

Les études concernant la manipulation des éléments radioactifs dans les postes de cibles et d'autres zones fortement radioactives se sont poursuivies en collaboration étroite avec le Groupe Etudes mécaniques. Un prototype d'aimant enfichable conçu pour les zones de cibles a été construit et a subi avec succès différents essais.

Le levé topographique du site du Laboratoire II et de ses environs en vue des changements prévus du réseau routier est maintenant achevé. Ce levé a été effectué à l'échelle 1/1000. Les plans correspondants ont été exécutés et publiés. Ils sont disponibles à différentes échelles. Seules de petites zones bordant la zone Nord sont encore en cours de levé. Le levé des conduites d'eau, d'électricité et des câbles de contrôle de l'accélérateur et leur rattachement aux bâtiments auxiliaires ont été terminés. Les plans au 1/500 de ce grand réseau souterrain sont en cours et seront publiés en couleur pour une meilleure compréhension par les divers utilisateurs. Les levés au 1/500 des zones entourant les bâtiments auxiliaires sont bien avancés. En plus de ces activités, la Section Topographie a dû faire face à environ 100 demandes de travaux pour le Laboratoire II et 45 pour le Laboratoire I.

Le réseau géodésique de surface a fait l'objet d'une nouvelle mesure au printemps. Il a été étendu, afin de couvrir une zone plus grande pour satisfaire aux exigences de la zone d'expérimentation Nord. Normalement, la triangulation était effectuée avec des théodolites et la trilatération avec un telluromètre MA 100. Cette année, il a été possible de doubler les mesures de distances grâce au prêt d'un géodolite par le FNAL. Ces mesures de contrôle effectuées indépendamment ont permis aussi d'améliorer la précision. Les coordonnées des points géodésiques et des piliers qui sont maintenant construits au-dessus des puits PA2, PA3 et PP5 sont connues avec une précision relative de 10⁻⁶.

Pour le géodésien, l'élément le plus important de l'année a été l'arrivée de la machine Robbins à son point de départ en LSS1, le 31 juillet, à 10 h 32. La foreuse a été guidée au moyen d'un cheminement géodésique, en utilisant un gyrothéodolite employé manuellement pour la première moitié de la circonférence. Pour la seconde moitié, le cheminement a été réalisé avec un gyrothéodolite automatisé par la Section Électronique et mécanique du Groupe. L'erreur transversale du cheminement souterrain a été inférieure à ce qui avait été prévu, et, en ce qui concerne le dernier sextant, entre PA6 et PP1, l'erreur transversale a été de 1,5 mm seulement.

Une fois le tunnel terminé, le cheminement gyroscopique a été calculé pour toute la longueur de la circonférence, sans tenir compte des références venant de la géodésie de surface. Parti du puits 1 et revenant au même point, après 7 km de cheminement souterrain, le vecteur de fermeture était de 70 mm seulement. Cela aurait été suffisant pour les besoins de la construction, mais, en 1971, qui aurait pris le risque de ne pas avoir de géodésie de surface et de se fier uniquement au gyrothéodolite?

Des mesures de la position des voussoirs constituant la première voûte du tunnel ont été effectuées tout autour de l'anneau. Ces contrôles n'ont montré aucune erreur systématique de la position radiale du tunnel. Par contre, du fait de la tendance de la tête de la machine Robbins à s'enfoncer, la distribution statistique des mesures a montré une erreur verticale systématique qui a dû être corrigée. La seconde voûte du tunnel et le
radier, entre LSS4 et LSS1, sont maintenant terminés et, tous les 32 m, un contrôle géométrique de la position du coffrage a été effectué. L'altitude de la chape ainsi que la position des boîtes électroniques dans le sol du tunnel ont été contrôlées.

Une fois la seconde voûte achevée, les potences ont été installées sur la paroi intérieure et sur la paroi extérieure du tunnel, entre PP4, PA3 et PA2. Les potences matérialisent la figure géodésique de référence pour la mise en place des composants de l'accélérateur. Pour respecter la maille du synchrotron, les potences ont été installées en face des points de référence amont des quadrupôles, tous les 32 m. La figure géodésique de référence est donc constituée par une chaîne de quadrilatères complets dont toutes les longueurs sont mesurées à l'invar. Afin d'augmenter la rigidité de cette longue chaîne (1152 m entre deux puits), des liaisons supplémentaires ont été exécutées grâce à la mesure des écarts avec un appareil utilisant le fil de nylon comme référence entre des ensembles de deux ou trois quadrilatères. Les mesures sont terminées dans les sextants 4° 3' et 3° 2'. Pour obtenir les coordonnées des potences, chaque sextant a été compensé séparément par les moindres carrés. La compensation des deux sextants en une seule fois a donné une différence de 2 mm pour la comparaison des données de PA3 avec la valeur trouvée précédemment. Comme ces résultats correspondaient bien aux coordonnées du réseau géodésique de surface transferred au fond du tunnel, il a été décidé d'utiliser ces dernières comme points fixes pour la compensation. Les problèmes concernant l'ensemble de la matrice de la figure géométrique de référence du SPS sont maintenant résolus, soit par la méthode d'élaboration, soit par itération. Les solutions ainsi développées semblent être d'un grand intérêt pour de nombreux utilisateurs, à l'intérieur comme à l'extérieur du CERN.

L'installation du premier quadrupôle dans le tunnel a eu lieu le 8 octobre. Avant la mise en place de ce quadrupôle, il a été nécessaire de tracer sur la chape la position des trous de fixation des supports d'aimants. Le géodésien doit ensuite installer les supports à leur altitude théorique qui tient compte de la courbure de la terre. Lorsque deux quadrupôles ont été mis en place avec précision par rapport aux deux potences correspondantes, les quatre dipôles d'une demi-période sont installés et l'inclinaison transversale mesurée en cinq paires de points de référence pour déterminer le plan moyen de chaque aimant. A la fin de 1974, le sextant PP4-PA3 a été complètement installé et aligné du point de vue géodésique. L'allure normale de la mesure d'une demi-période par jour a déjà été atteinte.
La géométrie des tunnels de transfert T10, T20 et T60 est terminée. Les mesures de stabilité ont commencé en T20. Les points de repère installés dans ce tunnel n'ont montré aucun mouvement supérieur aux erreurs de mesure.

Les rapports géologiques sur T10 et T20 ont été publiés, ainsi que celui concernant le sextant PP1-PA2, sur la base des informations fournies par le géologue consultant.

Cette période a été marquée par deux événements majeurs : l'approbation par le Comité du SPS et le Comité de la Recherche nucléaire de l'implantation des faisceaux pour expériences avec compteurs dans le Hall Ouest, ainsi que des plans relatifs au faisceau de muons et à une ligne d'extension future du faisceau de protons dans la zone Nord.

L'installation de faisceaux pour expériences avec compteurs prévue pour 1976 dans le Hall Ouest comprend (voir Figure 32) :

Issus de la cible T1
- S1, faisceau séparé HF pour Omega.
- P1/Y1, faisceau de protons atténué alimentant le faisceau d'hypérons.

Issu de la cible T3
- E1/H1, faisceau d'électrons ou de hadrons pour Omega ou pour un autre poste d'expérimentation au nord d'Oméga.

Issus de la cible T5
- H3, faisceau de hadrons,
- N3, faisceau neutre

L'étude détaillée de l'optique des faisceaux a progressé favorablement, tandis que se poursuit activement l'examen de deux problèmes majeurs, à savoir l'implantation des blindages nécessaires pour ramener à un niveau acceptable le bruit de fond des muons à l'extrémité du Hall, et la manipulation de l'équipement dans la zone de cibles hautement radioactive. Quant à l'installation neutrino de la zone Ouest, la décision d'installer à la fois le faisceau à bande large et celui à bande étroite dans l'aire souterraine a conduit à modifier et à compléter l'ensemble des travaux de génie civil. Ces changements ont été incorporés dans les plans sans retarder les travaux de construction. Le creusement de l'aire souterraine neutrino est terminé et la fabrication des blocs de fonte qui serviront de filtre de muons a progressé de façon satisfaisante.

Figure 32 — Zone d'expérimentation Ouest du SPS — plan d'ensemble
L'établissement du plan de masse de la zone Nord, dont la première partie avait été approuvée en octobre 1973, a été mené à terme avec la définition du faisceau de muons et du hall EHN2, ainsi que d'une éventuelle ligne d'extension du faisceau de protons dans le cas de développement des installations après le programme 300 GeV. En fait, contrairement aux vues antérieures, il a paru judicieux de réserver le second hall d'expérimentation EHN2 aux seules recherches sur les muons, tandis qu'un faisceau de protons pourrait être installé ultérieurement à côté du faisceau de muons dans la première partie du tunnel 83 dont il s'écartait ensuite pour suivre sur le site une ligne indépendante de celles des deux halls EHN1 et EHN2. On a arrêté la conception définitive du faisceau de muons en s'attachant avec un soin particulier à réduire le halo à quelques pour-cent.

Les plans définitifs des travaux de génie civil pour l'ensemble de la zone ont été établis en vue des appels d'offres (voir le rapport du Groupe Installations site). On a dressé les plans et passé commande des aimants les plus importants à installer après les cibles et le long des faisceaux. Les alimentations de tous les faisceaux des deux zones Ouest et Nord (280 au total) ont également été commandées. Des études approfondies du système de contrôle et des moniteurs de faisceaux ont été entreprises ou poursuivies en étroite coopération avec le Groupe Contrôle et les expérimentateurs. Elles ont abouti à une proposition pertinente, qui a finalement été adoptée. Le compteur DISC permettant d'identifier les particules jusqu'à la plus haute énergie pouvant être atteinte a été défini et on a passé commande de tous les éléments du premier compteur. Les chambres à vide et les éléments des faisceaux de la zone Ouest ont aussi été commandés.

Enfin, sur le plan administratif, toutes les personnes travaillant pour les zones d'expérimentation au sein du Laboratoire I (Département PS et Division MPS) et du Laboratoire II ont été transférées au Groupe conjoint Zones expérimentales (EA).

Service de l'Administration

Le site est maintenant acquis dans sa quasi-totalité, aussi bien du côté suisse que du côté français. Son périmètre a été adapté en quelques endroits, en particulier au niveau de la zone Nord, il a été élargi pour faciliter l'implantation des installations qui doivent y être construites. Toutes ces acquisitions se sont faites sans expropriation.

La réorganisation du réseau routier desservant le Laboratoire, décidée par le gouvernement français, a été mise au point avec les services compétents, les travaux sont en grande partie achevés.

En collaboration avec le Groupe Installations site, la réalisation par les services locaux compétents d'un foyer-hôtel et d'un parc à caravanes, à l'intention du personnel des entreprises et ultérieurement des visiteurs du CERN, a été étudiée, les travaux de construction de cet ensemble sont commencés.

Avec le Contrat de Superficie mettant à la disposition de l'Organisation la partie suisse du site de l'accélérateur, l'ensemble des documents juridiques de base nécessaires à l'établissement du Laboratoire sont réunis. Ce contrat a été signé à la fin de l'année. Les nombreux problèmes juridiques naissant des relations avec les administrations nationales et locales des Etats-hôtes, les entreprises et les particuliers ont été réglés au jour le jour.

Le régime douanier et fiscal du Laboratoire est pleinement entré en application, l'arrivée des marchandises, qui sont dédouanées sur place sans attente aux frontières,
s'est sensiblement accrue. L'existence du tunnel reliant les deux Laboratoires a été consacrée par un accord franco-suisse.

En 1974, la production de la plupart des éléments du SPS a atteint le stade de la fabrication en série, et un très grand nombre d'éléments ont été livrés sur le site. L'installation des éléments de l'accélérateur dans le tunnel a également commencé dans le courant de l'année.

Les calendriers concernant la fabrication, les essais et l'installation des différents éléments du SPS ont été régulièrement mis à jour et distribués au personnel à tous les échelons du Laboratoire.

La charge la plus importante dans le travail de planification a été due aux retards de livraison de certaines entreprises. Le calendrier des différentes opérations d'essais et d'installation a dû être remanié en conséquence. Cela a été possible jusqu'ici grâce à des changements dans l'ordre de certaines opérations ainsi qu'à la réduction des marges prévues à l'origine dans le programme. À l'heure actuelle, les échéances fixées initialement peuvent encore être respectées, mais tout nouveau retard dans les livraisons se traduira nécessairement par un glissement de l'ensemble du programme.

Les contrats et commandes de moyenne importance relatifs à la construction de l'accélérateur ont sensiblement augmenté en nombre au cours de 1974. Cette période est également marquée par la négociation des premiers contrats concernant la zone d'expérimentation Nord.

Au total, 54 appels d'offres ont été lancés pour des marchés dépassant 200 000 francs suisses, avec une moyenne de 45 entreprises consultées dans chaque cas. Sur ce nombre, 14 adjudications représentant des marchés de plus de 750 000 francs suisses ont été soumises à l'approbation du Comité des Finances. Au total, 60 contrats ont été passés avec l'industrie.

Les contrats de moins de 200 000 francs suisses ont donné lieu à 440 enquêtes de prix (au lieu de 170 en 1973), et plus de 5 400 commandes ont été passées (3 200 en 1973).

Les contrats et commandes signés en 1974 se montent au total à 134 millions de francs suisses environ.

Dans le but de mieux informer les industries européennes sur les besoins du Laboratoire II, une feuille d'information a été créée qui donne des détails sur les futurs marchés. Ces feuilles, diffusées en complément des listes semestrielles relatives aux besoins futurs, traitent chacune d'un appel d'offres particulier, et des exemplaires sont communiqués aux membres du Comité des Finances et à un certain nombre d'organisations professionnelles représentant l'industrie.

Pour plusieurs adjudications importantes, en particulier celles concernant les travaux de génie civil dans la zone d'expérimentation Nord, des questionnaires preliminaires ont été adressés à plus de 160 entreprises dans tous les États membres.

Enfin, le texte des documents accompagnant les appels d'offres, ainsi que la procédure de redaction des commandes et contrats, ont été sensiblement améliorés dans le sens d'une plus grande efficacité.

Les plans et spécifications de 126 aimants multipolaires, qui forment le système de correction harmonique du SPS, ont été dressés, un prototype a été construit et son champ magnétique mesuré. Il est prévu que la fabrication commencera au début de 1975, de sorte que l'ensemble de l'équipement puisse être installé bien à temps pour les premiers essais de l'accélérateur. Ces aimants correcteurs, parmi lesquels il y a des quadrupôles, des sextupôles et des octopôles, ont pour fonction de corriger les bandes d'airâge de deuxième, troisième et quatrième ordre qui menacent la stabilité radiale et verticale du faisceau de protons circulants. Des expériences réalisées dernièrement en collaboration avec le FNAL de Batavia ont montré que ces effets, s'ils ne sont pas corrigés, peuvent sévèrement limiter l'intensité acceptable par un accélérateur de la dimension du SPS.

L'analyse par la Section des paramètres des mesures magnétiques faites sur les dipôles et quadrupôles principaux du SPS suggère que les imperfections du champ qui entraînent ces résonances seront considérablement moindres qu'au FNAL. Elles devront néanmoins être corrigées, mais on n'aura pas besoin d'aimants de correction puissants. Ces aimants a refroidissement par air ont 44 cm de longueur pour un poids de 30 kg. Chacun aura sa propre alimentation, ce qui permettra d'exécuter sur la circonférence de l'accélérateur un système d'harmoniques azimutales de Fourier. L'amplitude et la phase de ce système varieront au cours de tout le cycle d'accélération, chaque alimentation aura son propre générateur de fonction qui reproduira une tension analogue à partir d'une référence digitale fournie par le système de commande du SPS.

La Section des paramètres, dont le rôle sera de coordonner le démarrage du SPS et d'étudier les futures améliorations de l'accélérateur, s'est occupée au cours de l'année des performances des nombreux systèmes de diagnostic actuellement mis au point par le Groupe Contrôle. La Section assure également la liaison avec la Division MPS, en...
suivant les travaux d'adaptation du CPS à son rôle d'injecteur du SPS. A cette fin, certains membres de la Section ont récemment assisté à des expériences visant à ramener l'espace de phase longitudinal assez important du faisceau du CPS, après dégroupement, aux limites d'un faisceau acceptable et accélérable par le SPS.

Une des nouveautés du SPS est son système de commande, dont dépendra le fonctionnement harmonieux et régulier de l'accélérateur. Dans le cadre de ses travaux préparant la mise en service du SPS, la Section collabore étroitement avec les membres du Groupe Contrôle à l'étude des dispositifs de visualisation fournis par ordinateur et permettant l'exploitation de la machine. Le logiciel au niveau des pupitres de commande sera constitué d'un certain nombre d'éléments standard en cours d'élaboration. Le système de correction va servir de banc d'essai pour les méthodes de contrôle avant leur application aux autres éléments de l'accélérateur.

Section du Personnel

Les membres de la Section du Personnel sont désormais davantage occupés à l'administration qu'au recrutement du personnel du Laboratoire II, dont l'effectif compte plus de 450 personnes. Les efforts se poursuivent en vue d'améliorer l'enregistrement et la présentation des informations concernant le personnel et qui sont nécessaires à la direction du Laboratoire ou à des fins administratives. Une liaison étroite est maintenue avec la direction et le personnel du Laboratoire II, ainsi qu'avec les services intéressés du Laboratoire I.
RAPPORTS CERN

CERN 74-1 LAZIYAN, P., LIBHAL, I., MATTHEWSON, R., TLIJAN, W. Computer-aided control of separated bubble chamber beams

CERN 74-2 BROWN, K. L., ISLIM, C. DECAY TURTLE (Trace Unlimited Rays Through Lumped Elements) - a computer program for simulating charged particle beam transport systems, including decay calculations

CERN 74-3 LAURENT, J. M. Analyse de la perte de poids des testicules de souris après irradiation aux neutrons de 14 et de 100 MeV

CERN 74-4 GENTSCH, H., GYGI, E., HANNEY, M., SCHNEIDER, F. Image intensifier camera for streamer chamber photography

CERN 74-5 BLONJ, R. E. Machine a bobiner les fils métalliques ultra-fins utilisés dans la fabrication des chambres à fils de petites dimensions

CERN 74-6 HARRISON, K. A versatile cable and connector assembly testing apparatus (NP 206)

CERN 74-7 BARTHÉLÉMY, J. F. Calcul numérique des dérivées partielles successives des fonctions de deux et de trois variables, applications au développement de Taylor-MacLaurin

CERN 74-8 Topical meeting on intermediate energy physics, Zuoz, Switzerland, 4-13 April 1973

CERN 74-10 AXELSSON, O. On preconditioning and convergence acceleration in sparse matrix problems

CERN 74-11 DE BOER, W. Dynamic orientation of nuclei at low temperatures. a study of the mechanisms of dynamic polarization in polarized targets

CERN 74-12 LINDSAY, J., MILLERIN, C. T., TARLE, J. C., VERWEIJ, H., WENDLER, H. A general-purpose amplifier and read-out system for multiwire proportional chambers

CERN 74-13 KIZIR, R. L. Dipole septum magnets

CERN 74-14 BELL, M., DÖVE, G. Numerical computation of field distribution and frequency in the lower passbands of a symmetrical periodic structure, pt 2, results

CERN 74-15 JACOB, M. Hadron physics at ISR energies.

CERN 74-16 SCHORR, B. Introduction to reliability theory. Lectures given in the Academic Training Programme of CERN 1973-1974

CERN 74-17 ISLIM, C. HALO - a computer program to calculate muon halo

CERN 74-19 BRUNS, T., OLOTSSON, K. S., PALANDRI, E. M., SEGAL, B., SLITTENHAAR, H. J., STRACK-ZIMMERMANN, H. SUPERMUX - a multi-host front end concentrator system for asynchronous consoles

CERN 74-20 LEUTZ, H., SCHMITTFESS, F., WENNINGER, H. [comp.] (CERN Track Sensitive Target Group) Selected physics data on neon-hydrogen mixtures
CERN 74-21 Ausu'halon, M., Yonovitch, D. D., Gojile, K., Lambert, K. P., Ranft, J., Wilson, E. Radiation measurements around the Fermilab 300 GeV main accelerator

CERN 74-23 Proceedings of the 1974 CERN school of computing

CERN 74-24 Russell, R D Streatr, T C [ed.] PL-11 - a programming language for the DEC PDP 11 computer

CERN 74-25 Laurant, J M Effet sur la racine principale de Vicia Faba de l'exposition aux rayons gamma du Co, aux protons de 600 MeV et aux neutrons de 4 et de 400 MeV

ARTICLES PUBLIÉS DANS DES PÉRIODIQUES, LIVRES SCIENTIFIQUES ET COMPTES RENDUS DE CONFÉRENCES

Aachen Berlin-Bonn-CERN-Cracow-Heidelberg-Warsaw Collaboration Planarity of high energy collisions
International seminar on deep inelastic and many-body processes at high energies, Dubna, 7-13 June 1973 Proceedings, Dubna, Joint Inst Nucl Res, 1973 D1, 2-7411, p 164-179

Amsterdam-CERN-Nijmegen Collaboration Multi-channel analysis of the reaction K^-p -> K^0-> K^0n p at 42 GeV/c
Fifth international symposium on many particle hadrodynamics, Eisenach and Leipzig, 4-10 June 1974 Proceedings, ed by Ranft, G and Ranft, J., Leipzig, Karl-Marx-University, 1974, p 140-143

Amsterdam-CERN-Nijmegen Collaboration The production of K^0p and K^*+ in K^-p reactions at 4 2 GeV/c
Fifth international symposium on many particle hadrodynamics, Eisenach and Leipzig, 4-10 June 1974 Proceedings, ed by Ranft, G and Ranft, J., Leipzig, Karl-Marx-University, 1974, p 122-130

Clermont-Ferrand-Lyon-Strasbourg-CERN Collaboration p-He coherent scattering at 24 GeV, observation of elastic scattering and production processes by a missing mass method

Adams J B The SPS - a European project

Nucl Phys 877, p 180-225, 1974

Adrino, M., Del Giudice, E., Di Vecchia, P., Furini, S. Couplings of three excited particles in the dual-resonance model

Ader, J P, Salin, P, Meyers, C. Exchanged naturality contributions from high-energy polarization measurements in two-body inclusive and exclusive reactions
Nucl Phys 852, 237-281, 1974

Aderholz, M., Lazeyras, P., Lehmann, I., Mathewson, R., Teijey, W. High-resolution ionization measurements in the region of the relativistic rise
Nucl Instrum Meth 118, 419-430, 1974

ALBRIGHT, C. H. Charmed-particle production by neutrinos with the Weinberg SU(4) currents. Nucl Phys B75, 539-545, 1974

ALBROW, M. G. Correlations at ISR energies. Fifth international symposium on many particle hadrodynamics, Eisenach and Leipzig, 4-10 June 1974 Proceedings, ed. by RANFT, G. and RANFT, J., Leipzig Karl-Marx-University, 1974, p 390-392

ALBROW, M. G. Diffusive processes at high energy (experimental). Fifth international symposium on many particle hadrodynamics, Eisenach and Leipzig, 4-10 June 1974 Proceedings, ed. by RANFT, G. and RANFT, J., Leipzig Karl-Marx-University, 1974, p 930-961

ALDOW, M.G., BARBER, D.P., BOGAERTS, A., BRONJAKOVIC, B., BROOKS, J.R., CHANN, C.Y.,
CLEGG, A.B., ENL. F.C., ROOIJMAN, P., LOEHLING, P.K., MCCURBIN, N.A., MURPHY, P.G.,
RUDEL, A., SINS, J.C., SINGH, A.L., SINGH, J., TIMM, J. (CHLM Collaboration) Correlations in
quasi-elastic proton-proton scattering at total c.m. energies of 23 and 31 GeV

ALDOW, M.G., BARBER, D.P., BOGAERTS, A., BRONJAKOVIC, B., BROOKS, J.R., CHANN, C.Y.,
CLEGG, A.B., ENL. F.C., ROOIJMAN, P., LOEHLING, P.K., MCCURBIN, N.A., MURPHY, P.G.,
RUDEL, A., SINS, J.C., SINGH, A.L., SINGH, J., TIMM, J. (CHLM Collaboration) Inclusive two
charged particle correlations in pp collisions at total c.m. energies of 45 and 53 GeV
Phys. Lett. 51 B, 421-423, 1974

ALDOW, M.G., BARBER, D.P., BOGAERTS, A., BRONJAKOVIC, B., BROOKS, J.R., CLEGG, A.B.,
ENL. F.C., GIL, C.N.P., LOCKE, D.H., LOEHLING, P.K., MURPHY, P.J., RUDEL, A., LACOURT, A.,
SINS, J.C., TIMM, J. A self-checking system of data acquisition and control using a two branch
Camac highway
First international symposium on Camac in real time computer applications, Luxembourg, 4-

ALOCK, J.W., COTTINGHAM, N., MICHAEL, C. The periphery of the proton
Nucl. Phys. 267, 445-451, 1973

ALPER, B., BOGGILD, H., BOOTH, P., CARROLL, L.J., VON DARDEL, G., DANGAARD, G., DUFF, B.,
HANSEN, K.H., JACKSON, J.N., JARLSKOG, G., JONSSON, L., KLOVNING, A., LESTRAM, L., LEE, C.H.,
KWONG, L., LILLETHUN, E., LILHORN, G., OHLAND-NULESEN, S., PRENTICE, M., SHARRACK, S.,
QUARRIE, D., WUSE, J.M. (British-Scandinavian ISR Collaboration) Correlations between charged
particles emitted at large angles in high-energy proton-proton collisions

ALPER, B., BOGGILD, H., BOOTH, P., CARROLL, L.J., VON DARDEL, G., DANGAARD, G., DUFF, B.,
HANSEN, K., JACKSON, J.N., JARLSKOG, G., JONSSON, L., KLOVNING, A., LESTRAM, L., LILHORN, E.,
OHLAND-NULESEN, S., PRENTICE, M., SHARRACK, S., WEISS, J.M. (Bergen-CERN-Copenhagen-Liver-
pool-Lund-Rutherford-Stockholm-UC London Collaboration) New results on charged particle pro-
duction in the central region of proton-proton collisions at the CERN ISR
Colloque sur la physique hadronique aux énergies des ISR, Marseille, 21-23 November 1973

ALTARELLI, G., CARIBBO, N., MAIANI, L., PETRONZIO, R. Neutrino processes in a compound model
for the nucleon

ALTARELLI, G., CARIBBO, N., MAIANI, L., PETRONZIO, R. The nucleon as a bound state of three
quarks and deep inelastic phenomena
Nucl. Phys. 269, 531-556, 1974

AMALDI, U. Introductory remarks to a discussion on rising cross sections

AMATI, D. A dynamical approach to successive asymptopia
Phys. Lett. 48 B, 253-256, 1974

AMATI, D. Scaling distribution of large transverse momenta
Phys. Lett. 50 B, 373-376, 1974

AMATI, D., CANZACCHI, L. Some remarks on a UV detection system for a H2 streamer chamber
Oxford conference on computer scanning - image processing with CRT's and vidicons in high
energy physics and other applications, Oxford, 2-5 April 1974 Proceedings, ed by DAVEY, P., G

ANDERS, A., ANTONSEN, J., SHUKUNDUKOV, V., STUMPTE, B., WISKOTT, D. Dynamic astigmatism and focus correction of the cathode ray tube of FRASME.

ANDRES, H., SOEL, L. Track detection in ERASME for the film from the new generation of bubble chambers.

ANJERT, B., HILLI, Z. The tungsten evaporation limit of hot-cathode ionization gauges.
J. Vac. Sci. Tech. 11, 461-465, 1974

ASNK, A. M. Stossspannungs-Messstechnik
Berlin, Springer, 1974

Nucl. Phys. B69, 1-14, 1974

AUBERT, J. J., BROLL, C. Track parametrization in the CERN split-field magnet.
Nucl. Instrum. Meth. 120, 137-141, 1974

BAARLI, J. Consideration of some problems in dosimetry and radiobiology of stopped negative pions.
Fortschr. Röntgenstr. Nucl. Med. 120, 98-103, 1974

Nucl. Phys. A234, 469-503, 1974

BACKENSTOS, G., BORGSTROM, L., EGGER, J., HAGELBERG, R., HERRLANDER, C. J., KOCH, H., POWL, H. P., PRICE, R. H., SCHWITTER, A., TAUSCHER, L. Anomalies in the strong interaction shifts and width of the 1s level in pionic 9Li, 7Li, and 9Be.
Fifth international conference on high-energy physics and nuclear structure, Uppsal, 18-22 June 1973 Contributions, ed by DALLGREN, S., DISBERGB, O. and THILL, G. Uppsala, 1973, p 146

BACKENSTOS, G., EGGER, J., KOCH, H., POWL, H. P., SCHWITTER, A., TAUSCHER, L. Intensities and strong interaction attenuation of kaonic x-rays.
Nucl. Phys. B73, 189-201, 1974

Nucl. Phys. A232, 519-532, 1974
BACKER, J. Exotic bound states of strange hadrons
Contemp Phys 15, 197-225, 1974

Phys Lett 50B, 387-390, 1974

BAILLON, P., BRICMAN, C., FERRO-LUZZI, M., PERREAU, J. M., TRIPP, R. D., YPSILANTIS, T., DECLAIN, Y., SEGUINOT, J. Measurement of the real part of the forward scattering amplitude in K^+p elastic scattering between 0.9 and 2.6 GeV/c
Phys Lett 50B, 377-382, 1974

Phys Lett 50B, 383-386, 1974

BAIRI, M. Higher order terms in the c expansion of the Pomeron propagator

BALL, D. Computing facilities in support of high energy physics

Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Contributions, ed by DAIHLGREN, S., SUNDBERG, O and TIBELL, G., Uppsala, 1973, p 12

BARNIER, R., CAFFO, M., REMIDIO, E. A contribution to sixth-order electron and muon anomalies, 3
Nuovo Cim Lett 9, 690-692, 1974

BARNIER, R., REMIDIO, E. Sixth order electron and muon (g-2)/2 from second order vacuum polarization insertion
Phys Lett 49B, 468-470, 1974

BARROUR, I. M., MOOKHOUSE, R. G. High energy pion photoproduction amplitudes from fixed-t dispersion relations and duality
Nucl Phys 869, 637-656, 1974

BARGMANN, H. Dynamic thermal shock resistance
Topics in applied continuum mechanics, ed by ZEMAN, J. L. and ZIEGLER, F., Wien, Springer-Verlag, 1974, p 174-181

BARGMANN, H. Recent developments in the field of thermally induced waves and vibrations
Nucl Eng Design 27, 372-385, 1974

BARGMANN, H. Stress waves in elastic rods induced by radiation heating
Nucl Eng Design 30, 234-241, 1974

Nucl Instrum Meth 117, 501-508, 1974

Nucl Phys, 867, 413-424, 1973

BEBEL, D., WAMBACH, U. M. The transverse-momentum distribution in the central region in phenomenological dual model

BEELL, J. S. The Melosh transformation and the Pryce-Tani-Foldy-Wouthuysen transformation
BELL, J S., HEY, A J G A theoretical argument for something like the second Melosh transformation

BELL, J S., KARL, G., LLEWELLYN SMITH, C. *Isospin bounds for energy partition in Ω and Σ annihilation.
Phys Lett 52, 363-366, 1974

BEMPORAD, C., BEUSCH, W., DUFEY, J P., POLGÁR, E., WEBSDALE, D., ZAVIDOROGA, O., FLURI, L.,
FREUDENREICH, K., GENTIT, F X., MÜHLEMANN, F., ASTBUR, P., LEE, J G., LETHEREN, M Coherent production of K⁺ π⁺ π⁺ on nuclei and determination of the K⁺ π⁺ π⁺-nucleon cross-section
Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Proceedings, ed by Tibell, G., Amsterdam, North-Holland, 1974, p 127-130, discussion, p 130

BEMPORAD, C., BEUSCH, W., DUFEY, J P., POLGÁR, E., WEBSDALE, D., ZAVIDOROGA, O.,
FREUDENREICH, K., GENTIT, F X., MÜHLEMANN, F., ASTBUR, P., LEE, J G., LETHEREN, M Coherent production of K⁺ π⁺ π⁺ on nuclei and determination of the K⁺ π⁺ π⁺-nucleon cross-section
Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Contributions, ed by Dahlgren, S., Sundberg, O and Tibell, G., Uppsala, 1973, p 34

BEMPORAD, C., BEUSCH, W., WEBSDALE, D., FREUDENREICH, K., MÜHLEMANN, P., PERNEGR, J.,
WEITZEL, W., BELLINI, G., DI CORATO, M., PALOMBO, F., RANCOITA, P G Partial wave amplitude of the Λ states coherently produced on nuclei

BENINCASA, G P., DANEELS, A., HEYMANS, P Software system for open loop control of a synchrotron via special purpose consoles

BENVENUTI, C Characteristics, advantages, and possible applications of condensation cryopumping
J Vac Sci Tech 11, 591-598, 1974

BENVENUTI, C Study of a cryopump for possible use on the ISR.
Le Vide, 168, 235-241, 1973

BERENDS, F A., GAEMERS, K J F., GASTWANS, R Hard photon corrections for Bhabha scattering
Nucl Phys B68, 541-550, 1974

BERGER, E L Multiparticle production processes at high energy

BERGER, E L Semi-inclusive rapidity correlations in cluster emission models
Phys Lett 49B, 369-373, 1974

BERGER, E L., COCCONI, V T., COUNIHLIAN, M J., COGHEN, T., GENSCH, U., KARIMAA, V., KELLNER, G.,
KOTANSKI, A., KUHN, D., MORRISON, D R O., SCHMIDT, P., SOFRIOU, D., STROYNOWSKI, R.,
TRIANTIS, F A., WALT, H Multiplicity cross sections for 100 GeV/π-π interactions
Nucl Phys B77, 365-374 1974

BERNABEU, J Neutral currents in semi-leptonic processes Aτ = 0
Nuovo Cim Lett 10, 329-332, 1974

BERNABEU, J Total muon capture rates, average neutrino energy and nuclear structure

BERNABEU, J, CANNATA, F Total muon capture rates and the average neutrino energy
Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Contributions, ed by Dahlgren, S., Sundberg, O and Tibell, G., Uppsala, 1973, p 133

BERNABEU, J, ERIKSON, T E O., FERRO-FONTAN, C The nucleon electromagnetic polarizabilities
Nucl. Phys 49B, 381-384, 1974
BERNABEI, J. LEICHH, T E O., JARLSKOG C Parity violations by neutral currents in muonic atoms
Phys Lett 30B, 467-471, 1974

BERNABEI, J. JARLSKOG, C Polarizability contribution to the energy levels of the muonic helium
(μ⁴He)⁺
Nucl Phys B75, 59-71, 1974

BERNABEI, J. JARLSKOG, C Polarizability contributions to the neutron-electron amplitude at threshold.
Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Contributions ed by DAEI, GRIEN, S., SUNDBORG, O and TIrell, G., Uppsala, 1973, p 21

BERNABEI, J. ROS. J Charge and current distributions in elastic electron scattering by 1p shell nuclei
Nucl Phys 1220 1-12, 1974

BERNARDINI, M, BOLLINI, D BRUNINI, P L., PIOMENTINO, E, MASSAM, T., MONARI, L., PALMONARI, F., RIMONDI, F., ZICCHIU, A. The energy dependence of σ(e⁺e⁻→hadrons) in the total centre-of-mass energy range 1.2 to 3.0 GeV
Phys Lett 51B, 200-204, 1974

BERTIN, A., CARBONI, G., GORINI, G., PIZZURRA, O., POLACCO, E., TORELLI, G., VITALE, A., ZAVATTINI, E. Measurement of the initial population and decay rate of the (μ⁴He)⁺ system in a helium target at 50 atm
Phys Rev Lett 33, 253-256, 1974

Nuovo Cim 23B, 489-526, 1974

BERTIN, A., VITALI, A., PLACCI, A., ZAVATTINI, E. Muon capture in gaseous deuterium
Phys Rev D8, 3774-3793, 1973

BIASAS, A., JACOB, M., POAORSAL, S. Heavy particle production and cluster models of high-energy collisions
Nucl Phys 875, 259-268, 1974

BIANCHI, M., BARIL, J., SULLIVAN, A H., DI PAOLA, M., QUINTILIANI, M. RBE values of 400-MeV and 14-MeV neutrons using various biological effects
Symposium on biological effects of neutron irradiation, Neuherberg, 22-26 October 1973 Proceedings, Vienna, IAEA, 1974, p 349-357

BLAIR, W. CERN HPD status
HPD collaboration meeting, Saclay, 22 September 1972 Proceedings, ed by BLAIR, W and MOOREHEAD, W G. CERN DD 73-12, p 10-11

BLICKENHINDT, D. Monte Carlo study of light transmission through a cylindrical tube
J Vac Sci Tech 11, 570-574, 1974

International seminar on deep inelastic and many-body processes at high energies, Dubna, 7-13 June 1973 Proceedings, Dubna, Joint Inst Nucl Res., 1973, D1, 2-7411, p 148-163

BOCK, R K. Initiation to HYDRA

BÖCK, R K., PASDOLA, E., ZOLL, J. Software concepts for large application programs
Computer Phys Comm 5, 400-403, 1973

BÖCK, R K., ZOLL, J Probleme der Stereophotogrammetrie in der Hochenergiephysik
Bildmess Luft 9, 9-19, 1973

Nucl Phys B79, 1-9, 1974
Böhm, A., Botzo, M., Ellis, R., Forti, H., Ferraro, M., Madrani, G., Naroska, B., Rupha, C., Sette, G., Staude, A., Strolini, P., De Zorzi, G. Observation of a diffraction minimum in the proton-proton elastic scattering at the ISR
Phys Lett 498, 491-496, 1974

Böhm, M., Joos, H., Krammer, M. Quark dynamics and strong meson decays
Nucl Phys B69, 349-371, 1974

Böhm, M., Krammer, M. Generalized vector dominance and the pion form factor.
Phys Lett 50B, 457-459, 1974

Böhm, M., Joos, H., Krammer, M. Meson spectrum, decays and form factors from a dynamical quark model

Phys Lett 53B, 297-300, 1974

Bonazzolla, G. C., Bressani, T., Chavassa, E., Dellacasa, G., Fainberg, A., Ferrero, L., Iazzi, F., Mirtachir, W., Misso, A., Rinaldi, G., Minetti, B. On the (π^+, π^-) reaction in 11C

Bonnier, B. Phenomenological upper and lower bounds on the $\pi\pi$ S wave scattering lengths
Nucl Phys B75, 333-342, 1974

Bonnier, B., Johannesson, N. Constraints imposed by the data above 1 GeV on the low-energy $\pi\pi$ amplitudes
Nucl Phys B83, 440-452, 1974

Borghini, M., De Boer, W., Morinengo, K. Nuclear dynamics, polarization by resolved solid-state effect and thermal mixing with an electron spin-spin interaction reservoir
Phys Lett 48A, 244-246, 1974.

Nucl Phys B81, 61-69, 1974

Nucl Phys B68, 29-43, 1974

Nucl Instrum Meth 115, 235-244, 1974

Bourjety, C., Fischer, J., Seadjia, Z. Analytic parametrization of high energy forward scattering amplitude, 2, $K^+\pi^-\pi^-$ scattering
Nucl Phys B67, 452-463, 1973

Bozzo, M., Ogilvie, J., Vanuxem, J. P. A computer-controlled test system for MWPC electronics
Nucl Instrum Meth 122, 599-603, 1974

Bradamante, F. (CERN-Trieste High-Energy Group) Status report on the experiment $\pi^-p \to p\pi^-$ and $\pi^-\Sigma^-K^+$ on a polarized proton target to study backward scattering at 35 GeV/c

Nucl Instrum Meth 116, 541-549, 1974
Further results on the operation of high-accuracy drift chambers

An algebraic approach to the saturation of chiral SU(3) \times SU(3)

Data transmission is faster with ternary coding

A combined analysis of the K^+ \rightarrow \pi^0 e^+ v and K^- \rightarrow \pi^- e^- v decay modes

A search for large transverse momentum electrons at the CERN ISR

An asymptotically free Regge on field theory

A new unitarity bound on e^+ e^- annihilation

Quark additivity for mass splittings in the p_x \rightarrow \infty frame
M. Chaichian, H. Satz, A. Stursa, L. S. S. The spherical drift chamber for x-ray imaging applications.

M. Ciattoni, M., Marchisini, G. Absorptive effects and consistency.

M. Ciattoni, M., Marchisini, G. Rescattering corrections and the triple-Pomeron coupling.

J. Cleyman, J., Komen, G. J. Charged spin-one partons?

J. Cleyman, J., Siu, L. M. Parton model expectations for weak pion production by neutral currents.

F. Clope, F. E. The current status of constituent quarks in resonance photo and electroproduction.

Clope, F. E. Electroproduction final states as $\omega \rightarrow 1$.
CLOSE, F E On the transformation between current and constituent quarks and consequences for polarised electroproduction structure functions
Nucl Phys B80, 269-298, 1974

CLOSE, F E, O'SHORIN, H., THOMSON, A M Current and constituent quarks, their implications for resonance excitations polarised and unpolarised inelastic structure functions
Nucl Phys B77, 281-308, 1974

CACCIONI, G Concluding remarks — an interpretation of the present evidence about multiple hadron phenomena
Fifth international symposium on many particle hadrodynamics, Eisenach and Leipzig, 4-10 June 1974 Proceedings, ed by RAMT, G., and RAMT, J., Leipzig, Karl-Marx-University, 1974, p 965-968

CACCIONI, G Second-order interference as a tool for the determination of hadron fireball dimensions
Phys Lett 49B, 459-461, 1974

CACCIONI, G Total cross-sections and related phenomena at ISR energies

Nucl Instrum Meth 114, 381-383, 1974

COMBLY, F, PICASSO, E The muon (g-2) precession experiments — past, present and future
Phys Reports 14, 1-58, 1974

CORNILF, H., MARTIN, A Constraints on the phases of helicity amplitudes due to positivity

COUNIHAN, M J Some consequences of the KNO scaling law for charge multiplicity distributions
Nuovo Cim Lett 9, 561-564, 1974

CRAIGIE, N S., PREPARATA, G Current algebra and the nature of the Pomeranchuk mechanism
Phys Lett 52B, 84-86, 1974

CRAIGIE, N S., ROTHIE, K D Multihadron production in a cascade model for e^+e^- annihilation, 1. total cross section and multiplicity distribution
Nucl Phys B82, 370-380, 1974

CRAIGIE, N S., ROTHIE, K D Multihadron production in a cascade model for e^+e^- annihilation, 2. multiplicity and inclusive distribution
Nucl Phys B82, 381-396, 1974

CRAIGIE, N S., ROTHIE, K D Multi-pion production in a cascade model for e^+e^- annihilation

CROWLEY-MILLING, M C Computer control applied to accelerators
Meeting on technology arising from high-energy physics, Geneva, CERN 24-26 April 1974 Proceedings, ed by JENSE, A and TAYLOR, C S., CERN 74-9, v 1, p 120-128

CROWLEY-MILLING, M C, HYMAN, J T., SHERING, G C Interpretive software for a large one off process

CSONKA, P L., KÖLBRIG, K S Photon-photon scattering with synchrotron radiation
Phys Rev D10, 251-261, 1974

CUNDY, D C Neutrino physics

DAHLEN, H D, STEINER, F Unitarity relation for deep inelastic scattering
Phys Lett 48B, 55-59, 1974

Dansels, A A data bank for on-line process control, the synchrotron injector
DANIELS, A Multi-Console — an interactive display for process control
Neue Technik 16, 389-397, 1974

DAVIS, H E The handling of data from experiments
Meeting on technology arising from high-energy physics, Geneva, CERN, 24-26 April 1974
Proceedings, ed. by JESSE and TAYLOR, C S, CERN 74-91, p 146-154

DI ATTIS, S P STRUP, J Why and how to make constituent and current quarks different
Nucl Phys B77, 509-544, 1974

DI BEER, W High dynamic orientation of protons, deuterons and carbon-13 nuclei
First specialized colloquium “pulsed nuclear magnetic resonance and spin dynamics in solids”, Cracow, 28 August-1 September 1973

DI BEER, W, BORGHI, M, MORIMOTO, K, NITINOKOSKI, T O, UNO, T Dynamic polarization of protons, deuterons, and carbon-13 nuclei, thermal contact between nuclear spins and an electron spin-spin interaction reservoir
J Low Temp Phys 15, 249-267, 1974

DI BEER, W, NITINOKOSKI, T O Dynamic proton polarization in propanol below 0.5 K
Nucl Inst Phys Meth 114, 495-508, 1974

DE BREIN, J P, PECZANSKI, R Amplitudes for p and A2 Regge exchanges in Λ production processes
Nucl Phys B81, 484-501, 1974

DE RAFAEL, E, ROSNER, J L Short-distance behavior of quantum electrodynamics and the Callan-Symanzik equation for the photon propagator
Ann Phys 82, 369-406, 1974

Nucl Phys B71, 52-81, 1974

Nucl Phys B75, 47-58, 1974

Nucl Phys B70, 237-256, 1974

Nucl Phys B70, 215-228, 1974

Nucl Phys B81, 1-17, 1974

198

Diddens, A. N. High energy, low multiplicity reactions

Diddens, A. N. Very high energy hadron experiments

Di Lalla, L. Correlations in high transverse momentum final states

Ebert, D., Otto, H. J. Asymptotic behaviour of a dual two-Pomeron graph in the missing mass resonance region

Ellis, J. Theoretical ideas about e⁻e⁺→ hadrons at high energies

Ellis, S. D. Non-scaling behaviour in parton models for large transverse momenta

Ellis, S. D. Theoretical models for large transverse momentum phenomena

Ellis, S. D. What is happening at large transverse momentum?

Elvekjaer, F., Johnson, R. C. Line reversal, SU₃ and exchange degeneracy in K⁺N charge exchange at 4 GeV/c

Elvekjaer, F., Johnson, R. C. Polarization sum rules

Elvekjaer, F., Johnson, R. C. Tensor exchange in meson-baryon scattering

Elvekjaer, F., Martin, B. R. The structure of t-channel exchanges in KN scattering

ENG Li, J., FLAUSCH, W., GIBBARO, B., MÖNNING, F., PACA, K., REINER, K., SCHRÖPFER, H. Measurement of inclusive neutron spectra from p-Be up to 24 GeV/c incident momentum Nucl Phys B64, 173-193, 1973

EPSTEIN, H. GLAUSER, V. The role of locality in perturbation theory Ann Inst H Poincare 19, 211-295, 1973

ERNF, F. C. On the contribution of stopping protons to the rise in the proton-proton inelastic cross-section at high energies Phys Lett 49B, 356-360, 1974

FAIKER, P., MARTIN, A. D., MICHAEL, C. Analysis of mass shift due to weak interactions Nucl Phys B74, 397-411, 1974

FAIKER, P. RIAZUDDIN, F. RIAZUDDIN, F. Charge symmetry and neutral current in a unified model of weak and electromagnetic interactions Nuovo Cim 23A, 33-50, 1974

FERRANDO, R., GRAY, S. W., KRUSCH, A. D., DE BOUR, W., PARKER, E. F., RATNER, L. G., O'TALLON, J. R. Simultaneous measurement of 2 and 3 spins in proton-proton elastic scattering at 6 GeV/c Phys Lett B52, 243-246, 1974

FERRANDO, A. Pion plot analysis of πp → π+π-π+ at 3.9 GeV/c Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1972 Proceedings, ed by DUIMO, F., GIOVANNINI, A. and RATTI, S., Pavia, INFIN, 1974, p 397-412

GERRAFF, S. Super-gauge transformations on the six-dimensional hypercone, Nucl Phys B77, 73-90, 1974

FERRARO, S., GATTI, R., GRILLO, A. Positivity restriction on anomalous dimensions Phys Rev D9, 3564-3565, 1974
Ferrara, S., Ilievouk, J., Zumino, B. Supergauge invariance and the Gell-Mann-Low eigenvalue
Nucl Phys B77, 413-419, 1974

Ferrara, S., Tista, M. Canonical dimensions in asymptotically conformal invariant theories.
Phys Lett 49B, 95-98, 1974

Ferrara, S., Zumino, B. Supergauge invariant Yang-Mills theories
Nucl Phys B79, 413-421, 1974

Ferrara, S., Zumino, B., Wess J. Supergauge multiplets and superfields
Phys Lett 57B, 239-241, 1974

Ferre Fontana, C., Rubinstein, H R. Is \(\alpha' \) also the \(e^4 \) annihilation scale?
Nucl Phys B74, 378-386, 1974

Flender, D. C., Grieg, D., Metzmacher, K. D., Pearce, P. High voltage pulse generators for kicker magnet excitation.

Fields, J. H., Fiorentini, G. Corrections to the \(g-2 \) frequency in weak focusing storage devices due to betatron oscillations.
Nuovo Cim 21A, 297-328, 1974

Firti, M. Cryogenes

Fischler, B. Ultra-high vacuum

Flugge, G. (CERN-Hamburg-Orsay-Vienna Collaboration) Experimental results on large-angle elastic pp scattering at the CERN ISR.

Franzinietti, C. Total \(v \) and \(\bar{v} \) cross sections and inelastic processes.

Fridman, A. Features connected with the use of deuteron targets in \(\bar{p}d \) interactions at 5.55 GeV/c.

Fubini, S. Present trends in particle physics.

Fubini, S., Rein, C. Effective degrees of freedom in strong-interaction processes.
Nuovo Cim 23A, 331-347, 1974

Gabathuler, K., Wilkin, C. Elastic pion-deuteron scattering near the 3-3 resonance.
Nucl Phys B70, 215-228, 1974

Gailard, M. K. Some open questions in K decay.
Triangle meeting on weak interactions, Smolenca, 4-6 June 1973 Proceedings, Acta Phys Slov, 24, 132-166, 1974

Gatto, R., Preparata, G. Senile scaling in electron-positron annihilation.
GOUNARIS, G. J. Duality in the current propagator
Nucl. Phys. B69, 574-584, 1974

GOURSIN, M. The quark parton model for deep inelastic lepton scattering

GRASSBurger, P., Kühnelt, H., SchiWLA, D. Finite energy bounds for πN scattering
Nucl. Phys B75, 493-508, 1974

GRASSBurger, P., Michaeli, C., MITTINEN, H. I. Two-body quantum number exchange from many particle production data
Phys Lett 52B, 60-64, 1974

Nucl Phys B75, 1-19, 1974

GRAY, H., Hansroul, M., Lassalle, J. C., Zanifla, P. Identification of digitized particle trajectories

GUMOWSKl, I. Sensitivity of certain dynamic systems with respect to a small delay
Automatica 10, 659-674, 1974

GUMOWSKI, I., SCHINDL, K. Periodic solutions of a second-order phase lock system
Seventh congress AICA on hybrid computation, Prague, 31 August 1973 Proceedings, Prague, p 139-142

GUPTA V. Constraints on the charged-multiplicity distribution from neutral-charged-particle correlations
Nuovo Cim Lett 11, 668-672, 1974

HAGEDORN, R. What happened to our elementary particles? (Variations on a theme of Jauch)

HAGEDORN, R. Thermodynamics of strong interactions

Seventeenth international conference on high energy physics, London, 1-10 July 1974 Proceedings, ed by SMITH, J. R., Chilton, Rutherford Laboratory, 1974, p 1V 95 IV 100

HANSEN, P. G. Noyaux éloignes de la vallée de stabilité pour la désintégration bêta
J Physique C5, 5-29, 1974

HANSROUHL, M., TOWNSEND, D., ZANILLA, P. The application of multi-dimensional analysis techniques to the processing of event data from large spectrometers

HARARI, H. Multihadron production at high energies — phenomenology and theory
HART, W T The prospects for large capacity set support systems imbedded within generalized data management systems

HART, W Some geometrical reconstruction techniques for the new chambers
HPD collaboration meeting Saclay, 22 September 1972 Proceedings ed by Blair, W and Morehaid W G. CERN DD 73-12, p 107-108

MULLER G SCHUR, W G Observation of neutrino like interactions without muon or electron in the Gargamelle neutrino experiment
Nucl Phys B73 1-22, 1974

HART, H, KROLL, P, JAKOB H Pion-nucleon scattering amplitudes at energies between 15 and 14 GeV and small momentum transfer
Nucl Phys B71, 1-28, 1974

HART, H, C, KLAI, J R Field product renormalization and Wilson-Zimmermann expansion in a class of model field theories
Nuovo Cim 19 A 1 1 3-172, 1974

HART, H G Equilibrium energy distribution in a non-linear potential well in the presence of quantum fluctuations

HART, H G Influence of the Touschek effect on lifetime measurements in SPEAR

HART, H G Possibility of observing turbulence in SPEAR
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973 Proceedings, Berkeley, LBL, 1973, PEP Note 57, 4 p

HART, H G Some possible causes of bunch shape distortion in SPEAR
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973 Proceedings Berkeley, LBL, 1973, PEP Note 56, 3 p

HART, P Phase transitions due to gravitation

HEY, A J G SU(6) and decays of baryon resonances

HEY, A J G, WEYERS, J Quarks and the helicity structure of photoproduction amplitudes
Phys Lett 48B, 69-72, 1974

HINN, M G N CERN and its work
Meeting on technology arising from high-energy physics, Geneva, CERN, 24-26 April 1974 Proceedings ed by Jesse, A and TAYLOR, C S., CERN 74-9, v 1, p 5-18

HINT, G E STYLER F New dispersion relations and their application to partial-wave amplitudes

HOLBERT, M, BAARLI, J Some preliminary investigations on the contribution of muons to the stray radiation level around the CERN 28 GeV Proton Synchrotron
Hog, E., Wiskott, D. Automatic measurement of photographic plates with a photo-diode array
Geneva, ESO, 1974 (Tech Rep No 5)

Hoogland, W., Grayler, G., Hyams, B., Jones, C., Willhammer, P., Blum, W., Dietl, H.,
Koch, W., Lorinz, E., Lüttjen, G., Männr, W., Meissburger, J., Stierlin, U. Isospin-two ππ
phase shifts from an experiment π⁺p → π⁺π⁻n at 12.5 GeV/c
Nucl. Phys. B69, 266-278, 1974

Horlitz, G., Woltz, S., Harigl, G. Bubble creation by electrons from tritium decay in a hydro­
gen bubble chamber

Horlitz, G., Woltz, S., Harigl, G. Bubble growth and bubble densities in bubble chambers filled
with neon/hydrogen mixtures
Nucl. Instrum. Meth. 1/7, 115-124, 1974

Hornshøj, P., Hansen, P. G., Jonson, B. Alpha decay widths of neutron deficient francium and
halogen isotopes

Collaboration) Widths for s- and d-wave α-decay of neutron-deficient isotopes with Z = 82

Hübner, K. ISR performance report
Seminar on e-p and e-e storage rings, Hamburg, DESY, 8-12 October 1973 Proceedings ed. by
Bienlein, J. R., Dammann, I., and Wiedmann, H., Hamburg, DESY 73 66, p 643-664

Hünter, J., Taucher, L., Wilkin, C. An analysis of pion-nucleus scattering lengths within an n-
cluster model
Nucl. Phys. A231, 455-461, 1974

Humble, S. An impact parameter description of single and double diffraction dissociation
Nucl. Phys. B76, 137-156, 1974

Hyams, B., Jones, C., Willhammer, P., Blum, W., Dietl, H., Grayler, G., Koch, W., Lorinz, E.,
Lüttjen, G., Männr, W., Meissburger, J., Stierlin, U. Peripheral pp production and decay
angular distribution in the reaction π⁺p → π⁻n at 18.8 and 9.8 GeV

Hyams, B., Jones, C., Willhammer, P., Blum, W., Dietl, H., Grayler, G., Lorinz, E., Lüttjen, G.,
Männr, W., Meissburger, J., Ochs, W., Stierlin, U. t-dependence and production mechanisms
of the α, f and g resonances from π⁻p → π⁻π⁺n at 17.2 GeV

Iliopoulos, J. Interactions faibles — revue
Cinquième école d'ete de physique des particules, Gif-sur-Yvette, 24 septembre-6 octobre 1973

Iliopoulos, J., Zumino, B. Broken supergauge symmetry and renormalization
Nucl. Phys. B76, 310-332, 1974

Inami, T., Mettinen, H. I. Dual properties of strangeness annihilation processes
Phys. Lett. 49B, 67-72, 1974

Irving, A. C., Michael, C. High energy production and decay of vector and tensor mesons
Nucl. Phys. B82, 282-312, 1974

Iselin, F. Camac hardware
First international symposium on Camac in real-time computer applications, Luxembourg,
4-6 December 1973 Proceedings, Camac Bull. No 9, suppl. 9-12, 1974

Itzykson, C. Champs, Lagrangiens, symetres
Cinquième école d'ete de physique des particules, Gif-sur-Yvette, 24 septembre-6 octobre 1973

Itzykson, C. Fluctuating magnetic fields

Jacak, M. Strong interaction dynamics
International school of subnuclear physics — properties of the fundamental interactions, Erice,
p 138-219
JACOB, M. STROYVOWSKI, R The shape of the quasi-elastic peak
Nucl Phys B52, 189-200, 1974

JAMES, F. Numerical calculation techniques in spaces of high dimensionality

JANKE, W. ERASME—automatic processing of bubble chamber photographs

JARLSSON, G. Inclusive pion production at high p_T

JARLSSON, G. Weak interactions in atoms and nuclei

JESSE, A. Bibliography of CERN publications concerning technology

JESSE, A. Guide to information sources in technology

JOHANNESON, N. A soluble realistic model for low energy ππ scattering
Nucl Phys B69, 557-561 1974

JOHNSON, K. CERN status

JOHNSON, K. Some speculations on possible future CERN projects

JOHNSON, R C, VLASSOPULOS, S D P. Simple Z^a* model
Phys Lett 50B, 343-348, 1974

JONES, A W, JONES, E, WILLIAMS, E M. The application of alumino-silicate alkali ion sources to the study of ion desorption of surface gas
Vacuum 24, 451-454, 1974

JOSEPH, C. Detailed balance in pion photoproduction in the first resonance region

KARL, G. Muon-electron universality at high energies and hadronic corrections to e^+e^- → μ^+μ^-
Nucl Phys B75, 72-76, 1974

KEIL, E. Diffusion-like blow-up in asynchronous bunched beam collisions
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973 Proceedings, Berkeley, LBL, 1973, PEP Note 59, 4 p

KEIL, E. The excitation of non-linear resonances by a displaced elliptical beam

KEIL, E. Proton beam instabilities

KEIL, E, PELLEGRINI, C, SESSLER, A M. Tune shifts for particle beams crossing at small angles in the low-β section of a storage ring
Nucl Instrum Meth 118, 165-170, 1974

KIEZLE, W. Comment on the cross sections of the S, T, and U mesons
Koch, H. Strong interaction effects in hadronic atoms
Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Proceedings, ed by ThieU, G Amsterdam, North-Holland, 1974, p 225-236, discussion, p 236-238

KoEn, G. J. Unitarity and current algebra constraints in a low-energy Kπ model
Nuovo Cim 19 A, 265-278, 1974

Kroll, P. The slope of the proton-proton scattering amplitude at t = 0
Nucl Phys B74, 157-166, 1974

Kyriakopoulos, E. Isospin relations of inclusive reactions
Nuovo Cim 20 A, 537-558, 1974

Kyriakopoulos, E. Some applications of isospin relations of inclusive reactions
Nuovo Cim 20 A, 559-569, 1974

Lambert, K. P., Van de Voorde, M. High radiation dose luminescent and optical dosimetry systems

Lambert, K. P., Van de Voorde, M., Dole, T., Inada, T. A calorimetric radiation dosimeter for an accelerator environment
Nucl Instrum Meth 72, 501-508, 1974

Litchfield, P. J. Baryon resonances

Litchfield, P. J. Spin-parity of the Σ (1580)
Phys Lett 51 B, 509-511, 1974

Litchfield, P. J., Hemingway, R. J., Baillon, P., Albrecht, H., Burkhardt, E. Partial-wave analysis of the reaction K^+p → Λ(1815)π between threshold and 2170 MeV
Nucl Phys B74, 12-18, 1974

Litchfield, P. J., Hemingway, R. J., Baillon, P., Albrecht, H., Putzer, A. Partial-wave analysis of the reaction K^+p → KΔ(1230) in the energy region 1915-2170 MeV
Nucl Phys B74, 39-58, 1974

Litchfield, P. J., Hemingway, R. J., Baillon, P., Putzer, A., Schleich, H. Partial-wave analysis of the reaction K^+p → Λ(1520)π in the energy region 1915 2170 MeV
Nucl Phys B74, 19-38, 1974

Litt, J., Meunier, R. Cerenkov counter technique in high-energy physics

Llewellyn Smith, C. H. Inelastic lepton scattering

Llewellyn Smith, C. H. An introduction to renormalizable models of weak interactions

Llewellyn Smith, C. H. An introduction to renormalizable models of weak interactions and their experimental consequences

Llewellyn Smith, C. H. Unified models of weak and electromagnetic interactions
MIFTTINFN, H I Phenomenology of BB interactions.
Symposium on annineutron-nucleon interactions, Liblice-Prague, 25-28 June 1974. Proceedings,
ed by MONTANET, L. CERN 74-18, p 405-420, discussion p. 421

MIFTTINFN, H I Two-body correlations at the NAL-ISR energies
Fourth international symposium on multparticlc hydrodynamics, Pavia, 31 August-4 September
1973 Proceedings, ed by DUMINO, F., GIOVANNINI, A and RATTI, S. Pavia, INFN, 1974,
p 582-587

MINAKOWSKI, P. Quark triplets in self-interaction and the light-cone structure of current commutators
Nucl Phys B68, 119-156, 1974

MOHL, D E P. Space-charge effects at transition energy, an attempt to scale from the CPS to PEP 6
and other machines
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973 Proceedings, Berkeley, LBL,
1973 PEP Note 41, 11 p

MOHL, D E P. MORTON, P L. The use of nl-knockout to measure synchrotron oscillation frequencies
and energy spread
1973 PEP summer study, Stanford and Berkeley, 6-31 August 1973. Proceedings, Berkeley, LBL,
1973 PEP Note 68, 14 p

MONTAGLIE, B W. ZOTTER, B W Very-high-luminosity insertions for the CERN Intersecting Storage
Rings
Nucl Instrum Meth 120, 9-16, 1974

MONTANET, L. Are meson daughters observed in pp annihilations at rest?
Second inter... nal winter meeting on fundamental physics, Formigal, Spain 28 January-
2 February 1974 Proceedings, ed by AGUILAR-BNITEL, M., and RUBIO, J A. Madrid, Inst
Estud Nucl, 1974, p 189-207

MORTL, A. PLAUT, G. How do clusters look in semi-inclusive cross sections?
Nucl Phys B78, 541-551, 1974

MORRISON, D R O Experimental review of strong interactions at high energy
Fifth Hawaii topical conference in particle physics, Hawaii, 21 August 1973 Proceedings, ed
by DOUION, P N., PETERSON, V Z and TIAN, S F, Honolulu, Univ Press Hawaii, 1974, p 183-
499

MORRISON, D R O Recent results from European high energy accelerators
International symposium on high energy physics, Tokyo, 23-27 July 1973 Proceedings, ed by
HARA, Y., FUJIKAWA, K., IDA, M., OYAMAGI, Y. and TAKAHASHI, K., Tokyo, Tokyo Univ,
Inst Nucl Study, 1973, p 67-134

MUKHOPADHYAY, N C, CANN, TA F. The persistence of supermultiplet selection rules in nuclear
weak and electromagnetic transitions
Phys Lett 51B, 225-228, 1974

MÜLLER, F, LöD, D., SCHIRADR, H., HÖGLUND, Å., PENGRA. W (ISOLDE Collaboration) The
decay of 129Xe
Nucl Phys A224, 437-467, 1974

MUSSET, P. État des résultats expérimentaux sur la recherche des courants neutres.
J Physique C3, 1-7, 1973

NAPPOULOS, D V., Vlassopulos, S D P. Implications of the recent $e^+e^-\to\text{hadron + X}$ data
on the leptonic world
Nuovo Cim Lett 10, 751-756, 1974

NEUFELD, J. Comments on the theory of radiation risk, pts 1-2
Health Phys 26, 229-243, 1974

NEURATH, P W, BRENNER, J P., SELLES, W D, GELSEN, E S, POWELL, B W, GALLUS, G.,
VASTOLA, E. Computer identification of white blood cells
International computing symposium, 1973, Davos. 4-7 September 1973 Proceedings, ed by
GÜNTHER, A., UYERAT, B and LIPPS, H., Amsterdam, North-Holland, 1974, p. 399-405

NIEBERGALL, F., RENGLE, M., STIER, H H., WINTER, K., AUBLAT, J J., DE BOUARD, X., LEPYLETIER, V.,
MASSONET, L, PESSARD, H., VIVARGENT, M., WILLIAMS, T R., YVORT, M., BARTL, W., NEUHOFER, G.,
SCHILLER, M. Experimental study of the $\Delta S/\Delta Q$ rule in the time-dependent rate of $K^0\to\pi\pi$
NILSSON, S Study of the fragmentation $p^+ A^0$ and $K^- A^0$ at 4.2 GeV/c

OHLIV Dual models

OLSSON, M G Resonance and background addition with application to a pole model of the $\Delta(1220)$ resonance

OLSSON, M G Solutions of the multichannel unitarily equations describing the addition of a resonance and background, application to a pole model of photoproduction
Nucl. Phys. B78, 55-76, 1974

OTT, G., RUEHL, G., WIECZORKA, H., BOTICHER, H., NOWAK, W. D., BOKAMANN, K., PILICHOW, H., COCCOA, V. T., COLMAN, M. J., HANNY, J. D., KITANO, A., MORRISON, D. R. O., SOTIROIU D., STRYFOWSKI, R., WAHL, H., HIRONS, T., LITUER E (Aachen-Berlin-Bonn CERN-Heidelberg Collaboration) Partial-wave analysis of the $\pi^+ \pi^-$ system produced in the reaction $\pi^+ p \rightarrow (\pi^+ \pi^+ \pi^-) p$ at 8, 16 and 23 GeV/c
Nucl. Phys. B80, 1-11, 1974

PALAU, F. P., YNDURAIN, F J Low-energy pp scattering parameters

PARK, C. Large-momentum behaviour and analyticity in the coupling constant.
Nuovo Cim. 21 A, 179-186, 1974

PETRPMANN, A., BAERAL, J. Radioactive gas and aerosol production by the CERN high energy accelerators and evaluation of their influences on environmental problems
Environmental surveillance around nuclear installations, Warsaw, 5-9 November 1973 Proceedings Vienna IAEA, 1974, v 7, p 433-448

PYNIO, A (CERN-Trieste High-Energy Group) Strip lines for read-out of multiwire proportional chambers

PIGLET, O. Construction of a strictly renormalizable effective Lagrangian for the massive Abelian Higgs model

PIRLA, P., POLESKI, S. Fast leading particles and long-range rapidity correlations between pions

POKORSKI, S., VAN Hove, L. Independent production of particle clusters, a third general feature of high energy hadron collisions?

POMENTALE, T. Homotopy iterative methods for polynomial equations

PRIFARATA, G. Massive quarks and large transverse momenta, I, large-angle two-body scattering

PRUVOST, J., BARLOUTAUD, R., GRISLIN, J., PIERRE, F., PORTE, I P., BRICMAN, C., PETERSON, J. O., MYER, J., FILTHUTH, H., KLUGE, E. (CERN-Heidelberg-Saclay Collaboration) A study of the reaction $K^- p \rightarrow \Sigma(1385) n$ between 0.6 and 1.2 GeV/c

RADER, R., BARLOUTAUD, R., GRISLIN, J., PRUVOST, J., TALLINI, B., FILTHUTH, H., LEIBCHER, R., SCHLEGEL, H., MEYER, J., PETERSON, J., SMITH, J. R., VRANA, J. The reaction $K^- p \rightarrow \Lambda n$ from 0.8 to 1.84 GeV/c
RANIT, G., RANIT, J. Azimuthal correlations and independent-cluster emission model

RANIT, G., RANIT, J. Semi-inclusive two-particle rapidity correlations at ISR energies and independent cluster emission model
Nucl. Phys. B33, 283-310, 1974

RANIT, J., ROLLNIK, J. T. Monte Carlo programs for calculating three-dimensional high-energy (50 MeV-500 GeV) hadron cascades in matter
Computer Phys Commun. 7, 327-342, 1974

RFEL, L. B. High-energy properties of a class of unitary eikonal models for multiproduction
Nucl. Phys. B68, 177-188, 1974

ROHNSWIG, C., VLNI ZIANO, G. Regge couplings and interpolants from the planar dual bootstrap
Phys. Lett. 52B, 335-340, 1974

ROUSSET, A. Neutral currents

ROUSSET, A. Observation of single pion production in neutrino-like interactions without a charged lepton

RUHINSTEIN, H. R. Theory of nucleon-antinucleon annihilation

RUHINSTEIN, H. R. Theory of inclusive processes

RUSSELL, R. D. Camac facilities in the programming language PL-11
First international symposium on Camac in real-time computer applications, Luxembourg, 4-6 December 1973 Proceedings, Camac Bull., No. 9, suppl. 79-82, 1974

RUSSELL, R. D. PL-11

RUSSELL, R. D., SPARRMAN, P., KRIEGER, M. ORION — the Omega remote interactive on line system

SACHERER, F. J. Bunch lengthening

SACTON, J. (Aachen-Brussels-CERN-Ecole Polytechnique (Paris)-Milano-Orsay-University College (London) Collaboration) A search for the reaction $\mu^- + e^- \rightarrow e^+ + \mu^-$

SALIN, P. High-energy two-body photoproduction
International symposium on electron and photon interactions at high energies, Bonn, 27-31 August 1973 Proceedings, ed by ROLLMKE, H. and PFEL, W., Amsterdam, North-Holland, 1974, p 201-226

SALIN, P. Phénoménologie de Muller-Regge

SALIN, P., SOFFER, J. Conditions on exchange mechanisms for polarization effects in inclusive reactions

SARKAR, S. Broken conformal Ward identities in non-Abelian gauge theories
Phys. Lett. 50B, 499-503, 1974
SARKAR, S Dimensional regularisation and broken conformal Ward identities

SARKAR, S Mixing of operators in Wilson expansions

SARKAR, S The Schwinger mechanism in non-Abelian gauge theories

SATZ, H Dual models and statistical bootstrap

SAUNDERS, J., WILKIN, C. Proton-nucleus scattering at medium energies

SAVOY, NAVARRO, A. Phenomenological study of the differential cross-section of np and Kp elastic scattering at 5 and 10 GeV at all angles
Nuovo Cim Lett. 9, 619-626, 1974

SCHIELE, O., HAGEMANN, E. Half-lives of 121Cd and 121In isotopes

SCHILLER, P. (Aachen-UCLA-CERN Collaboration) Measurements of pp \rightarrow (p\pi^+\pi^-) + X at the ISR

SCHINZ, W. Machine studies in the ISR

SCHORR, B. On the choice of class intervals in the application of the chi-square test
Math Operationsforsch. Statist. 5, 357-377, 1974

SCHORR, B. On the choice of the class intervals for the chi-square test of goodness of fit
Z. Angew Math Mech 54, 249-251, 1974

SCHORR, B. Programs for the Landau and the Vavilov distributions and the corresponding random numbers

SCHREMPP, B., SCHREMPP, F. Dual peripheral model up to Serpukhov energies

SCHREMPP, B., SCHREMPP, F. Two-body reactions at high energies
Fourth GIFT seminar on theoretical physics — strong interactions and high energies, Barcelona, 11-18 April 1973 Proceedings, GIFT 74-3, p 328-424

SCHRODER, W. U., JAHNKE, U., LINDBERGER, K.H., RÖSCHERT, G., ENGFER, R., WALTER, H. K. Spectra of neutrons from \mu capture in thallium, lead and bismuth
Z. Phys. 268, 57-64, 1974

SLAEKER, S. L. (CERN-Columbia-Rockefeller-Saclay Collaboration) The observation of leptons of large transverse momentum

SINS, J.C. Intersecting storage rings — review of recent results from the European Centre for Nuclear Research

SINS, J.C. Single particle distribution at high energies

SINS, J.C. Topics in particle physics with colliding proton beams
Si xl R U Black-hole physics — an introduction

Smith, A M. An experimental review of large transverse momentum phenomena

Smith, J., Wray, D. Size of polarization in inclusive processes
Nucl. Phys. B73, 231-236, 1974

Styvesson, G R., Höglund, M., Neuteln, J., Rindi, A., Routti, J. T., Pretté, S. Standardizing the fluence-to-dose-equivalent conversion factors for whole-body neutron exposures

Stora, R. Introduction à la quantification des champs (theories Lagrangiennes perturbatives)

Strubbe, H Calculations with SCHOONSCHIP

Strubbe, H Manual for SCHOONSCHIP, a CDC 6000/7000 program for symbolic evaluation of algebraic expressions
Computer Phys Commun 8, 1-30, 1974

'T Hooft, G. Gauge field theory

'T Hooft, G Magnetic monopoles in unified gauge theories
Nucl Phys B79, 276-284, 1974

'T Hooft, G Magnetic monopoles in unified theories

'T Hooft, G A planar diagram theory for strong interactions
Nucl Phys B72, 461-473, 1974

'T Hooft, G A two-dimensional model for mesons
Nucl Phys B75, 461-470, 1974

Tauscher, L., Schneider, W. Optical potential calculations for the ls level in pionic atoms
Z Phys. 271, 409-415, 1974

Taylor, B G Phase-distortion compensator for high-density digital magnetic-tape recording
Electron Lett 10, 492-493, 1974

Turnill, M. C T ABMAN — a dynamic core and file management system

Tymons, B J., Tuyin, J W N., Baarli, J. System for personnel dosimetry in mixed radiation fields

Ulrich, H., Boschitz, E T., Engelhardt, H D., Lewis, C W. Multinucleon removal in the absorption of π^- at rest and at 60 MeV.
Phys Rev Lett 33, 433-436, 1974

Van Hove, L Coherent particle production and the propagation of hadronic systems through nuclear matter
Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Proceedings, ed by Tisell, G., Amsterdam, North-Holland, 1974, p 109-113

213
Van Hove, L. Diffraction dissociation as cluster production
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1971 Proceedings, ed by Di Mino, F., Giovannini, A. and Ratti, S., Pavia, INFN, 1974, p 580-581

Van Hove, L. High energy hadron collisions on complex nuclei and the propagation of hadronic systems through nuclear matter
Particle interactions at very high energies, pt A ed by Spiller, D., Halzen, F. and Weiskir, J New York, Plenum 1974 p 371-383

Van Hove, L. Multi-dimensional analysis and parametric fitting in few-body hadron collisions
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1973 Proceedings ed by Di Mino, F. Giovannini, A. and Ratti, S., Pavia, INFN, 1974, p 439-444

Van Hove, L. Particle production in complex nuclei
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1973 Proceedings, ed by Di Mino, F. Giovannini, A. and Ratti, S., Pavia, INFN, 1974, p 619-624

Veltman, M. Gauge field theories

Venzianno, G. Duality and multiparticle production
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1973 Proceedings, ed by Di Mino, F. Giovannini, A. and Ratti, S., Pavia, INFN, 1974, p 325-335

Venzianno, G. Large N expansion in dual models
Phys Lett 52B 220-222, 1974

Venzianno, G. Unitarity sum rules and the two-Reggeon cut
Nucl Phys B69, 317-324, 1974

Vreelst, H. A multi-user data network for communication between computers
Camae Bull No 10, 1-8, 1974

Verma, C. Special purpose processors

Vincelli, M L. (CERN-Serpukhov Collaboration) The reactions \(\pi^+ p \to \eta n \) and \(\pi^+ p \to X^0 n \) at 15 and 40 GeV/c

von Egidy, T., Povil, H. P. Muonic and pionic L- and M-series in carbon and oxygen and the pionic 2p level shift and width of oxygen
Nucl Phys A232 511-518, 1974

Walter, H K., Bracke, H., Engler, R., Kankellit, E., Michaelson, R., Schniewely, H., Schroeder, W U., Zeidler, A. Nuclear excitation and isomer shifts in muonic atoms
Fifth international conference on high-energy physics and nuclear structure, Uppsala, 18-22 June 1973 Contributions ed by Dahlgren, G., Sundberg, O., and Tiell, G., Uppsala, 1973, p 140

Walter, H K. Nuclear excitation and isomer shifts in muonic atoms, 2, model-independent parametrization and discussion

Wise, J H. Factorization of discontinuities of multi-Regge amplitudes
WLSS, J., ZUMINO, B. A Lagrangian model invariant under supergauge transformations
Phys Lett 49B, 52-54, 1974

WLSS, J., ZUMINO, B. Supergauge invariant extension of quantum electrodynamics

WLSS, J., ZUMINO, B. Supergauge transformations in four dimensions
Nucl Phys B70, 39-50, 1974

WETHERELL, A M High-energy hadronic collisions

WYERS, J. Concluding remarks

WYERS, J. Constituent quarks and current quarks
Particle interactions at very high energies, pt B ed by SPRY, D. HAYFN F and WYERS J New York, Plenum, 1974, p 41-95

WYERS, J. Possible representations of local current algebra
Phys Lett 50B, 349-351, 1974

WILKIN, C. Medium energy pion-nucleus scattering

WILLERS, I M A new integration algorithm for ordinary differential equations based on continued fraction approximations
Comm ACM 17, 504-508, 1974

WILSON, E J N Field tolerances and apertures for superconducting magnets

WIND, H. Momentum analysis by using a quintic spline model for the track
Nucl Instrum Meth 115, 431-434, 1974

WOLFSTEIN, L. The neutron electric dipole moment as a test of the superweak interaction theory
Nucl Phys B77, 375-385, 1974

WOLFSTEIN, L. Tests for parity conservation in the electromagnetic interaction of hadrons
Nucl Phys B72, 111-116, 1974

YAHLE, D., ABRAMOVICH, M., CHALOUSKA, V., FERRANDO, A., KORKA-AHO, M., LOSIN, M J., MONTANET, L., PAUL, E., ZATZ, J., ZIEMINSKI, Z. A study of the reactions \(\kappa^+ p \rightarrow K^0 \pi^0 \) and \(K^+ \pi (1385) \) at 3.93 GeV/c
Nucl Phys B75, 365-387, 1974

YAMAGAMI, N. Prism plot analysis of the reaction \(K^+ p \rightarrow K^0 \pi^+ \)
Fourth international symposium on multiparticle hadrodynamics, Pavia, 31 August-4 September 1973 Proceedings, ed by LUMIO, F. GIOVANNINI, A and RATTI, S. Pavia, INFIN, 1974, p 388-396

ZACEK, J. (CERN-Prague Collaboration) The four-pion final state in \(\bar{p} p \) annihilations at 5.7 GeV/c

ZAHN, C T An algorithm for noisy template matching
ZAIN, C T Using the minimum spanning tree to recognize dotted and dashed curves
International computing symposium, 1973 Davos, 4-7 September 1973. Proceedings, ed. by

ZICHIRI, A A detailed study of exclusive and inclusive (e+e-) induced processes in the energy
range 1 2-3 0 GeV

ZIELVIESCHON, C J Some aspects of the realization of high-energy projects in CERN

ZUMINO, B Fermi-Bose supersymmetry (supergauge symmetry in four dimensions)

ZUMINO, B Relativistic strings and supergauges
Renormalization and invariance in quantum field theory, ed by CANNIEN F R New York
Plenum Publishing Corp, 1974. p 367-381

216
ANNEXE B

*CONFÉRENCES ET SÉMINAIRES

COLLOQUES ET SÉMINAIRES DU CERN

RFINS, F (University of California) (22 1) The status of reactor studies of $\bar{\nu}_e + e^-$ scattering

THOM, R (Institut des hautes Etudes scientifiques. Bures sur Yvette) (23 1) Mathématiques modernes et mathématiques de toujours

COLLEN, D C (University of Birmingham) (29 1) Particle production in the Argonne-NAL p-p experiment at 205 GeV

COCCHI, G (CERN) (5 2) Hadron fireball dimensions from Hanbury-Brown and Twiss measurements

SCHNEIDER, J. (Observatoire de Paris, Meudon) (12 2) Observational paradoxes in extragalactic astronomy

PLESS, I (MIT) (14 2) Test results from the NAL proportional wire chamber hybrid bubble chamber system

TRILLING, G (CERN/University of California) (19 2) Studies of 200 GeV$^+$p interactions

HEX, G (Universite de Louvain) (26 2) Some reactions of macromolecules in the solid state

GOLDHABER, G (LBL Berkeley) (28 2) Results on electron-positron annihilation from the LBL-SLAC SPEAR magnetic detector experiment

YUAN, C L (CERN/Brookhaven) (5 3) Some impressions on the scientific and technological developments in China

SALAM, A (ICTP, Trieste) (12 3) Lepton number as the fourth colour - A unified gauge theory of hadrons and leptons

DIEHL, H (CERN) (19 3) New results on A_2 production

RUFTINI, R (Princeton University) (26 3) Black holes in our own galaxy

SCHMIDT-ROHR, R (MPI Heidelberg) (6 6) Light particle accelerators of a few hundred MeV for medicine and nuclear physics

ROGERS, A (SLAC) (11 6) A search for exotic mesons using the SLAC rapid-cycling bubble chamber

GOLD, T (Cornell University) (13 6) The origin of the cosmic radiation

AMATI, D (CERN) (18 6) Scaling

RICHARD, B (SLAC) (24 6) Hadron production in electron-positron annihilation

PESTEL, E (Technische Universitat Hannover) (25 6) A new world model structure and first results

GOULIANOS, K (The Rockefeller University) (30 7) Diffraction dissociation of protons on a deuterium gas jet target at NAL

LEE, T D (Columbia University) (16 7) Abnormal nuclear states and vacuum excitations

LADDIES, A N (CERN) (23 7) A survey of high-energy, low-multiplicity, hadronic reactions (London talk)

CUNDY, D. (CERN) (30 7) Neutrino physics (London talk)

* Non publiés
Warn, R C (University of California) (6 8) ISR measurements of \(\pi \pi \rightarrow (\pi \pi \pi) + \gamma \), scaling and evidence for double excitation

McMillan, E M (Lawrence Berkeley Laboratory, CERN) (27 8) The Banks engine

Larin, S (CERN) (3 9) Recent trends in particle physics

Bander, M (CEN-Saclay) (10 9) Observation of high transverse momentum electrons at the CERN ISR

Blazza, W (MIT) (17 9) Multiplicity in \(\pi \)-nucleus interactions at 100 and 175 GeV and models of the spacetime development of particle production.

Barish, B (Caltech) (24 9) Recent results from the Caltech-Fermilab neutrino experiment

Hsu, C (University of California, Santa Cruz, CERN) (1 10) Charm search at SLAC - a progress report

Yovanovitch, D D (FNAL-Batavia) (3 10) Hadron elastic scattering at 100 and 200 GeV at Fermilab

Lidzietman, L (Columbia University, New York) (10 10) Direct leptons at NAL

Stenzinger, J (CERN) (15 10) Results of the CERN-Heidelberg K* experiment and present status of CP violation

Liddle, J (CERN) (22 10) Models for \(e^+ e^- \) annihilation

McCusak, C B A (University of Sydney) (31 10) The extension of particle physics into the 1,000,000 GeV region

Bohr, A (Niels Bohr Institute) (6 11) What angular momentum can do to the nucleus

Marinelli, G (Universita degli studi di Pisa) (12 11) Nouvelles perspectives dans l'utilisation de l'énergie géothermique

Wilson, R (Harvard University) (18 11) Our energy options for this century and their environmental problems

Holden, M (CERN) (19 11) A streamer chamber detector at the ISR, results on angular correlations

Ting, S C C (MIT) (21 11) Experimental observation of a new particle

Broglia, R A (Niels Bohr Institute) (26 11) Heavy ion nuclear reactions

Jacob, M (CERN) (19 11) The particle nobody wanted as such

Murphied, H (Oliver Lodge Laboratory) (3 12) Do \(\bar{p} p \) annihilations to hadrons really look like \(pp \) annihilations?

Rubbia, C (CERN-Harvard) (10 12) New results of the neutrino experiment IA at Fermilab

Schenck, A (Eidgenössische Technische Hochschule, Zürich) (17 12) The muon - a new tool in solid state physics

Felicetti, F (Istituto Nazionale di Fisica Nucleare, Pisa) (19 12) Results from ADONE on the 3.1 GeV resonance

SÉMINAIRE DE PHYSIQUE APPLIQUÉE DU CERN

RAICHMAN, J A (RCA Laboratory, Princeton) (13 9) Holographic computer memories

SÉMINAIRES DE L'INFORMATIQUE DU CERN

Wils, M V (University of Cambridge) (7 1) Past, present and future in the computer world

Bolliet, L (Université scientifique et medicale de Grenoble) (31 1) An interactive system for program validation

Hills, M T (Dept of Electrical Engineering Science, University of Essex) (21 2) Software for computer-controlled telecommunications switching systems

Lawson, H W (Datsasub, Linkoping) (21 3) The evolution of micro-programming

Weil, J P (President, American Health Corporation, New York) (25 4) Multiphasic health testing

Schick, P (ETH, Zurich) (16 5) European informatics network

Abbott, R P (Computer Research Projects Group, Lawrence Livermore Laboratory, Livermore) (12 9) Investigating the security of operating systems in large time-shared computers

Collatz, L (Institute of Applied Mathematics, University of Hamburg) (24 11) Applications of approximation theory in several variables

Iliffe, J (ICL Research and Development Centre, Stevenage) (5 12) The ICL distributed array processor
ENSEIGNEMENT ACADÉMIQUE

Réunion d'information concernant les activités du CERN (23 conférences)

Séries de conférences (15 séries de conférences, 58 leçons)

- Dual theories, par D. Amati (4 leçons)
- Quarks, par J. Weyers (4 leçons)
- Introduction to basic astronomy, par A. Behr (ESO) (6 leçons)
- Non-destructive material testing, par P. de Meester (Université de Louvain) (3 leçons)
- Neutrino physics, par D. C. Cundy (4 leçons)
- What can optical models tell us about hadrons?, par N. Byers (Oxford University) (2 leçons)
- Beams of molecules, atoms and nucleons, par N. F. Ramsey (Harvard University and Eastman Professor, Oxford University) (4 leçons)
- Fact and fancy in neutrino physics, par A. de Rujula (Harvard University) (2 leçons)
- Introduction to reliability theory, par B. Schorr (5 leçons)
- Deep inelastic processes, par C. H. Llewellyn-Smith (5 leçons)
- Particle beams and plasmas, par J. D. Lawson (Rutherford Laboratory) (6 leçons)
- Hadron physics at ISR energies, par M. Jacob (4 leçons)
- CAMAC systems revisited, par B. Zacharov (Daresbury Laboratory) (4 leçons)
- Cluster analysis using graphs, par C. Zahn (2 leçons)
- Physical problems about the arrow of time (or How do physical phenomena depend on the direction of time flow?) par L. Van Hove (3 leçons)

(Existance à chaque leçon maximum 172 – minimum 24)

ENSEIGNEMENT TECHNIQUE

Cours

(317 élèves se sont inscrits aux cours ci-dessous)

Mathématiques générales

- Mathématiques (1re année), par F. Louis/PE (28 leçons – 49 heures)
- Mathématiques (2e année), par F. Louis/PE (29 leçons – 50 ¾ heures)
- Mathématiques (3e année), par F. Louis/PE (28 leçons – 49 heures)
- Mathématiques (4e année), par F. Louis/PE (28 leçons – 49 heures)
- Mathématiques (5e année), par F. Louis/PE (21 leçons – 36 ¼ heures)
- Mathématiques (6e année), par F. Louis/PE (28 leçons – 49 heures)

Informatique

- Initiation à l'informatique appliquée, par T. Lingjaerde/DD et H. Slettenhaar/DD (20 leçons – 60 heures)
- FORTRAN IV, par F. Louis/PE (32 leçons – 64 heures)
- Technologie des ordinateurs, par G. Cavallan/TC et J. Nuttall/Société lannionnaise d'électronique, Lannion (France) (21 leçons – 84 heures)
- Systèmes d'exploitation de mini-ordinateurs, par H. Davies/DD et S. Lauper/DD (20 leçons – 80 heures)

*Les titres des cours et séminaires sont indiqués dans la langue originale
Electronique

Initiation à l'électronique (1ère année), par Ph Rochat/ISR (22 leçons - 88 heures).
Constructions électroniques, par A Gandi/SB, M Mary/MPS, R Weber/TC et H Schrotter/DD
(23 leçons - 92 heures)
Saisie des données analogiques, par P Strubin/ISR (10 leçons - 40 heures)

Mécanique

Initiation aux techniques d'atelier (1ère année), par A Menetrey/PE (19 leçons - 76 heures)
Techniques spéciales, par J Brabeau/SB et R Samuel/SB (17 leçons - 68 heures)
Mécanique appliquée, par M Feldmann/SB (20 leçons - 80 heures)

Physique

Physique fondamentale (1ère année), par J-P Lagnaux/NP (21 leçons - 84 heures)
Physique générale : Électricité par Cl Gaille/Cycle d'orientation de l'enseignement secondaire
Genève (20 leçons - 80 heures)

Séminaire

(environ 150 participants ont assisté à ce séminaire de 1½ jour)

Séminaire d'électronique analogique

1ère partie
Les paramètres d'amplification, par M Olesen/EPFL
Preamplificateurs à très faible bruit – exemples d'applications, par M Bord/National Semicon­ductor
New generation of complex linear integrated circuits, par M Jones/Harris
Instrumentation amplifiers - Non-linear functions and RMS amplifiers, par M Pouliot/Analog
Devices Inc

2ème partie
Représentation digitale de signaux analogiques, par le Professeur F de Coulon/EPFL
Conversion digitale/analogique, par le Professeur R. Dessoulay/EPFL

COURS DE LANGUES

<table>
<thead>
<tr>
<th>Niveaux</th>
<th>Nombre de cours</th>
<th>Nombre d'heures par an (pour chaque cours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Cours de type audio-visuel/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>audio-oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglais</td>
<td>1-2-3-4</td>
<td>Niveaux 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Niveaux 2-3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Français</td>
<td>1-2-3</td>
<td>Niveaux 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Niveaux 2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Allemand</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>II. Cours de conversation/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entraînement grammatical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglais</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Français</td>
<td>3-4-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Allemand</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>III Cours spéciaux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cours intensif audio-visuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Division SB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>245</td>
</tr>
<tr>
<td>Français</td>
<td></td>
<td></td>
</tr>
<tr>
<td>audio-visuel</td>
<td>1</td>
<td>(dès janvier)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>traditionnel</td>
<td>4</td>
<td>(dès novembre)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

(Les 28 cours ci-dessus représentent environ 2500 heures d'enseignement. 360 élèves les ont suivis.)
ENSEIGNEMENT GÉNÉRAL

Exposés par R. Carreras

1. Spécial comètes
2. Les lymphocytes
3. Le deutérium
4. La tectonique des plaques et l’Islande
5. Stimulateurs cardiaques à plutonium 238
6. Avoir chaud quand il fait froid
7. Variations sur le thème de l’ellipse
8. Les marées
9. Un cerveau, deux individualités
10. Accumulateurs d’énergie
11. Un voyage imaginaire du centre de la terre au centre du soleil
12. Le système nerveux de la sangsue
13. Jupiter et Pioneer 10 premiers résultats
14. L’évolution de la bicyclette
15. Les virus de l’herpès
16. L’âge de l’univers
17. Aspects de la physique atomique vus à travers quelques dessins de Georges Gamow
18. L’hydrogène un combustible d’avenir
19. Les algues bleues
20. Serpents, infrarouge et laser
21. Le centre de notre galaxie
22. Les câbles optiques
23. La planète Mercure vue de près
24. Problèmes de l’utilisation pratique de l’énergie solaire
25. Le rêve

Cours «Connaissance du CERN» par R. Carreras

Ce cours, qui comportait six leçons, était destiné au personnel non scientifique et avait pour but de le familiariser avec les diverses activités de l’Organisation. Il a été donné trois fois durant l’année académique 1973-1974.

APPRENTISSAGES

Nombre d’apprentis de septembre 1973 à août 1974

<table>
<thead>
<tr>
<th>Profession</th>
<th>1re année</th>
<th>2e année</th>
<th>3e année</th>
<th>4e année</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employés de laboratoire C (physique)</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>Mécaniciens-electromécaniciens</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Les quatre apprentis (deux employés de laboratoire C et deux mécaniciens-electromécaniciens) qui ont terminé leur apprentissage en 1974 ont obtenu le Certificat Fédéral de Capacité.
Au cours de 1974, le Secrétariat des Conférences scientifiques a présidé à l'organisation de deux Écoles du CERN. L'École de Physique, qui s'est tenue à Cartmel Fell, Windermere, Angleterre, du 16 au 29 juin 1974, a réuni 55 physiciens venant de 32 laboratoires. Le programme de conférences a été le suivant:

- Unified theories, par J S Bell (CERN)
- The use of quantum field theory in problems in chemical and solid-state physics, par S F Edwards (Conseil de la Recherche scientifique, Royaume-Uni)
- e + e -, par R Gatto (Université de Rome)
- Phenomenology of weak interactions, par C Jarlskog (CERN)
- The CERN research programme, par W Jenischke (CERN)
- Deep inelastic processes, par P V Landshoff (Université de Cambridge)
- The experimental programme at Dubna and Serpukhov, par K Lanius (JURN, Dubna)
- Neutrino interactions, par D H Perkins (Université d'Oxford)

L'École de Calcul électronique s'est tenue à Godoylund, près de Bergen, Norvège, du 11 au 24 août 1974 et a réuni 62 étudiants venant de 41 laboratoires. Le programme de conférences a été le suivant:

- Initiation to Hydra, par R K Böck (CERN)
- Software engineering, par J N Buxton (Université de Warwick)
- Programming discipline, par O J Dahl (Université d'Oslo)
- Data analysis techniques for high-energy particle physics, par J H Friedman (SLAC)
- Introduction to computer systems architecture — software, par S H Guiboud-Ribaud (CIL, Grenoble)
- Time-sharing use of the ARPA network, par C Hewitt (MIT)
- Erasme — automatic processing of bubble chamber photographs, par W Jank (CERN)
- Multiprocessor systems, par G Mazare (CIL, Grenoble)
- Future developments in computer architecture as a result of impact of the microcomputer technology, par L Monrad-Krohn (Norsk Data Industri, Oslo)
- Introduction to computer systems architecture — hardware, par F H Summer (Université de Manchester)
- Special purpose processors, par C Verkerk (CERN)

Le Secrétariat des Conférences scientifiques a en outre participé à l'organisation des réunions suivantes :

- Meeting on Medium-Energy Physics connected with the CERN SC, à Villars, Suisse, 4-5 mars 1974 (19 participants)
- Meeting on Technology Arising from High-Energy Physics, au CERN, Genève, Suisse, 24-26 avril 1974 (237 participants venant de l'extérieur du CERN)
- ESO/SRC/CERN Conference on Research Programmes for the New Large Telescopes, au CERN, Genève, Suisse, 27-31 mai 1974 (175 participants)
- Safety Conference, au CERN, Genève, Suisse, 24-26 septembre 1974 (12 participants)
- Performance Study on Proton-Proton Storage Rings at Several Hundred GeV/c, au CERN, Genève, Suisse, 30 septembre-11 octobre 1974 (18 participants venant de l'extérieur du CERN)
II VINGTIIEME RAPPORT ANNUEL DE L'ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLEAI RE GÉNÉRALE À LAIII
ACHAI D'IMPRIMER LE 29 JUIN
MIL NEUF CENT SOIXANTE-QUINZI PAR L'IMPRIMERIE RÉUNIONNA LAUSANNE