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ABSTRACT
The folded-Yukawa model for the nuclear interaction potential
is generalized to diffuse density distributions which are generated by
folding a Yukawa function into sharp generating distributions. The
effect )f a finite density diffuseness or of a finite interaction range
is studied. The Proximity Formula corresponding to the generalized

model is derived and numerical comparison is made with the exact

results,
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1. INTRODUCTION

The study of the interaction between two nuclei has become of
increased interest in recent years. Several models have been suggested
for the calculation of the nuclear interaction potential. For example,
Krappe and Nixl have proposed a model in which the interaction energy
is calculated as the Yukawa interaction between two nuclear distributions
with sharply defined surfaces and uniform interior. The Yukawa inter-
action is supposed to contain the combined effect of two diffuse matter
distributions interacting via some short range interaction. This procedure
leads to a simple analytic potential.

A different approach is represented by the Proximity Formula,2
which expresses the force between two gently curved leptodermous surfaces
as a product of o geometrical factor proportional to the mean radius of
curvature of the gap between the surfaces and a universal function equal
to the interaction energy per unit area between two parallel surfaces.
This latter apy -oach is very general and has the advantage of being
simple to use, once the problem involving the parallel surfaces has
been solved.

In the present paper an analytical model is studied which enables
one to gain insight into the accuracy of some of the various approaches,
including the two mentioned above. In the model studied, each of the
two interacting objects has a diffuse surface which is generated by
folding a Yukawa function into a generating sharp-surface distribution.
The interaction energy is subsequently obtained on the basis of a two-

body Yukawa interaction.
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T:is model can be considered a generalization of the Krappe-Nixl
model. Hence it permits a test of the idea that the interaction can be
represented as a single effective Yukawa interaction acting between
sharp-surface distributions. Moreover, the model is sufficiently
realistic to present a good test case for the Proximity Formula.2 So
far, such tests have only been carried out for the extreme cases of
zero-diffuseness distributions (the Krappe-Nix model) or a zero-range
interaction between diffuse surfaces.2

The model is presented in Section 2 and the effects of the matter
density diffuseness and of the finite interaction ranpe are discussed.
In Section 3 the Proximity Formula is derived for the model studied and
nmumerical comparisons are made with the exact results, Section 4 contains

sone concluding remarks.

2. GENERALIZED FOLDED-YUKAWA MODEL

2.1 General Expressions

The interaction energy V between two matter distributionsp1 and
0, is given by
_ > > 39> 3>
v o= -Cffpl(rl] CRENCALER LS (2.1)

where the notation

T i

(2.2)

Y (1)
a awa® 1/a

has been introduced. The strength of the interaction is governed by the
constant C which is positive for an attractive interaction. The matter

density distribution 05 (i=1,2 ) is obtained by folding a Yukawa function
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of some range a; into a generating sharp distribution 6i’
) = Y, ) 8;,G )% 2.3
pitry a; 12 pjir,iar, (2.3)

The starting point for the analytical treatment of this model is
the observation that the interaction energy may be calculated as the
interaction between the two sharp generating demsities arising from a
composite two-body interaction -C¥. This composite interaction is given
as the folding product of the three entering Yukawa interactions,

Y=Y t'Yal Yy, (2.4)
{the symbol * denotes the folding).

It should be stressed at this point that the above observation
implies that the formulated generalized folded-Yukawa model is conceptu-
ally similar to the standard folded-Yukawa model due to Krappe and Nixl
in that it calculates the energy by folding some kernel into generating
sharp densities. The generalized model thus applies to all cases covered
by the Krappe-Nix model. In particular, the modified surface-cnergy
prescription suggested by Krappe and Nix1 can be generalized by employing

the composite kernel 3/ rather than a single Yukawa function.

2.1a  Evaluation of the kernel

The composite kernel %’/ is the folding product of three Yukawa
functions. It is elementary to derive the following relation for the

folding product of two Yukawa functions.
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(Ya‘Yb) (r“) = fYa(r”)Yb(r“)darz

p\1 a? -1
= ( --a—z-) Ya(l'lg) + (l °b—2) Yb(r13) (2.5)
This relation is valid in the general case of different ranges a and b.
For equal ranges the corresponding expression may be obtained by taking
the appropriate limit, b+a,

1 vl
T © 2 Ea(r) (2.6)

(Y, *Y )(r) =
a =8 8na

The expressions for products involving more than two Yukawas are easily

obtained by repeated use of Eq. (2.5). Thus,

2 a?\-! a’yl
k
= Y Y Y = - =) v (2.7
Y 3 a4 izo( ag) ( a;) 3

where if jEk¢i. Again, the formula is valid in the general case of
different Yukawa ranges, The special cases of two or three equal ranges
may be derived by taking the corresponding limit. For example, in the

case of a x2xa, we have

2
Ya 'Ya"‘ia = (1 - —a;)-z Ya * (l - iﬂ)-:l(l - g—:—)-l Ya
[} 80 [ a a,
. + ( - i).l E (2.8)
3 aZ a

{
/
where the function Ea is defined in Eq. (2.6). It should be noted that

the order in which the foldings are done is insignificant.
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2.1b The interaction between two spheres

The multiple integral (2.1) may be evaluated by the Fourier-
Transform Method. The Fourier transform of the Yukawa function (2.2

is given by

1 e-r/a
¥ ama? T/a ] SR @2

For a sphere, the generating density is given by p = O(r - R) where R is
the radius. The corresponding Fourier transform is

3, (kR)

FlOo(r-R)] = am? (2.10)

where j, is the spherical Bessel function of order one. For two inter-
acting spheres of radii R, and R,, the insertion of the Fourier transforms

into the basic formula (2.1) leads to the expressicn

T 5 kR (k) § (KR))

dk (2.11)
1+a2k® 1422k 1 alk?

V() = &R R:f
0
Here j° is the spherical Bessel function of order zero. The three-
dimensional I-integration. which results in the general case, has been
reduced to a one-dimensional k-integration due to the spherical symmetry
of the objects and the interaction. The subsequent evaluation of this
integral may be perforsed by employing the Residue Theorenm.
The result is a sum of three analogous contributions, one for

each of the three entering Yukawa functions. This is most easily under-
stood from the formula (2.7), which can be used to reduce the intepral

(2.1) to a sum of three integrals; each of these integrals is of the
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same form as the single integral entering in the Krappe-Nixl model. The

final formula may thus be written in the form

2 alylr o atyl
= - -1 -
v(d) cizo (1 a?) ( az) Fai(R’)rai(Rz)Yai(d) {2.12)
i i

This formula is valid in the case where the two generating spheres are
positioned outside each other (which is the case of interest in the
present study); otherwise more complicated expressions will result (they

may be obtained by the same method). Furthermore,

() = 4na® (% cosh & - sinh %) (2.13)

is a geometrical factor depending on the size of the sphere. It has the
limiting forms, T ~ %; R® for R<<a and T ~ 2ma®(R-a)exp(R/a) for
R>>a.

The above formula (2.12) applies to the case of different Yukawa
ranges, a, # a, # a, # a,. The various degenerate cases can be obtained
by taking the appropriate limit. This leads to relatively complicated
expressions. However, for most numerical purposes it is satisfactory to
use formula (2.12) with a small arbitrary splitting of the degenerate
ranges; this has been done in the present study.

It should be noted that if one of the Yukawa ranges tends to zero

the corresponding term simply drops out from the formula (2.12).

2.2 Discussion and Comparison of Special Cases

The general formulation given above covers a number of special
cases of interest, in particular the case of zero density differences

and the case of zero interaction range. In the following, these two
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particular models are discussed relative to a more realistic reference
case having diffuse densitics and a finite interaction range.
The reference case, which we shali henceforth denote as the
standard model, is characterized by the following parameter valucs,
. ?
y = 1 MeV/fm

a, = 1 fm (2.14)

-]
i

a, = 1/VZ fm

Here Yy is the nominal surface energy coefficient defined as minus half
the interaction energy per unit area for two parallel semi-infinite systems
at contact. It is more convenient to specify y than the interaction

strength C. With the above values for Yy and the ranges a a, and a,,

0?
the value of the interaction strength follows as C = 1/(1 - {% V7 IMeV.
The value of 1 MeV/fm® chosen for the nominal surface energy is realistic.2
Furthermore, it is noted that the surface diffuseness implied by the
values chosen for a, and a, is given by b=1 fn which is also a realistic

value.3 (The quantity b is the second surface mement.)

2.2a The density diffuseness

The effect of the density diffuseness may be studied by comparing
the case of zero density diffuseness to the standard case. In Fig. 1 is
shown the interaction potentiwzl given by the standard model and the
potential that results when the diffuseness ranges are put equal to
zero. The comparison is made for a selection of symmetric binary systems
ranging from two oxygen nuclei to two superheavy nuclei. As is seen,
the main effect of the disappearance of the surface diffuseness is a
reduction in the interaction potential by a factor of roughly three.

The overall range of the potential is not altered appreciably in the
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in the displayed interesting region,

The two models may be compared in an alternative way, namely by
prescribing that they repraduce the same value of the nominal surface
energy y and of the effective kernel diffuseness beff'+ The effective
kernel diffuseness is defired as the surface diffuseness of the density
distribution generated by folding the kermel into a sharp semi-infinite
distribution, 1t is given by the relation

hz

tep © b+ b: + b2 (2.15)

2

where b; = Za;. i=0,1,2, For the standard model the effective kernel
diffuseness is equal to beff = 2 fm. 1n the case of zero diffuseness,

the demand that y and beff remain the same as in the standard model

leads to the following set of parameter values:

Y = 1 MeV/fm?
a, = VZ fn (2.16)
a, = a, = 2

It should be noted that the value of the range parameter a, is close to
the value of 1.4 fm employed by Krappe and Nix.l

In Fig. 2 is shown a comparison of this zero-diffuseness model and
the standard model. In order to study the deg::ndence on the asymmetry,
the mass ratio of the binary systems has been varied. Results are

displayed for the four values 0, 0.25, 0.5, and 0.75 of the asymmetry

TIf the folding functions employed were Gaussians rather than Yukawas

the two constraints would be sufficient to make the two models identical.
This is because the folding of two Gaussians of ranges a ard b leads
to a third Gaussian of range ¢ given by the relation c? = a?+ b2.

Thus, in a folded-Gaussian model there would be total equivalence
between the different models discussed for the folded-Yukawa model.
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parameter o = (Az-Al)/(A2-+A\); this corresponds to mass ratics of
1/1, 3/5, 1/3, and 1/7.

It is seen that while agreeing on the whole cuite well when close
to contact (which is a consequence of the demand that the nominal surface
energies be the same) the zero-diffuseness model gives rise to a longer
tail. This is because the long-range behavior is governed by the largest

of the three Yukawa ranges entering in each model.

2.2b  The interaction range

A similar study has been carried through for the interaction range.
First, in Fig., 3, we show the effect of putting the interaction range
equal to zero in the standard model., As is seen, this results as well
in an overall reduction of the potential as a more rapid fall-off with
distance. This is because the long-range behavior in the standard case
is governed by the interaction range a, and in the zero-range case by
the remaining diffuseness parameters a, and a,, which are smaller.
In Fig. 4 is shown the comparison where y and beff are held
constant. This corresponds to the set of values
Yy = 1 MeV/fm2
a = 0 (2.17)

a, = a, = 1 fm .

As would be expected, not only the values at contact agree well but also
the siopes (the fall-off range).

For completeness, a corresponding comparison with the zero-diffuse-
ness model is included in Fig. 5. Tt might be added that a better agree-
ment concerning the slope would be obtained if the maximum value of the

range parameters were equal in the two models.
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3. PROXIMITY FORMULA

The Proximity I-‘ormula2 reads

Vp(s) = 2m ﬁf e(s')ds' = 2n R &(s) (3.1)
s

Here s is the separation between the effective surfaces which are located
at the radii C, and C,. The geometrical factor R is given in terms of
the effective radii by the relation R™! = C:' + C;l . Furthermore, the
function e(s) is the interaction energy per unit area between two parallel

semi-infinite surfaces with a separation equal to s.

3.1 Derivation of Formula

It is first noted that

-r/a -Ix|/a
1 e 3> 1 x
ﬂ—d-‘l-r—;- */a d’r = *2—a e (3.2)

Hence the semi-infinite density distributions are of the form

-1x,,]/a
p(x,) f'jl;e U bx, - dx,

-(x, ~X)/a
Le x, > X

f

eI < (3.3)

The separation s is related to the semi-infinite surface locations Xi
by s = xl - X,. Moreover, the interaction energy per unit area e(s) is

given by

172,

%,
p, (x,)dx, dx, (3.4}

e{s) = -Cffp,(xl) E;—o-e-

The exponentials may easily be folded together by repeated use of
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the formula

2y-1 -|x,,l/a 2y-1 -x,,|/b
- (1-b_) 1 +(1-:—2> fli.fe 18 (3.5)

which is valid for a¢b. Thus one obtains the following expression

2,-1 2.~1

2 aj a -s/a;
k 1
o = ¢l a§<1 "%) ( -—z) ae (5.6)
1= ai ai 1

The corresponding expression for the integrated function &(s) is

2 2 -1 2.-1
i i
As in the preceding section, the proper limit must be taken if some of
the Yukawa ranges a; are equal.

The geometrical factor R entering in the Proximity Formula is
given in terms of the effective radius Ci which is taken as the average
of the density profile location and the potential profile locat:icn:.2

For a leptodermous sphere the surface profile radius C is related
approximately to the equivalent sharp radius R by C = R-b%/R when b

3

is the second surface moment.~ For a distribution generated by folding

a Yukawa function of range a into a sharp semi-infinite distribution,

b and a are related by b2 = 2a%.

Hence, the approximate dersity profile
location is given by C ~R- 2a’/R.
The potential is generated from the density by folding with a

Yukawa function of range a. This merely increases b’ by 2a20.
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Consequently, the approximate potential profile location is given by

C, =R - (22" +2aQ)/R.

It thus follows that the effective surface locations Ci to be used

in the Proximity Formula (3.1) are given by

a§ + 2a;
Ci = Ri - ———}{———- (3.8)

The separation s between the effective surfaces is given by s =d-C, +C,

where d is the distance between the two centers,

3.2 Comparison with Exact Results

The derived Proximity Formula has been compared numerically with
the various exact models discussed in Section 2.

First, in Fig. 6, the comparison is made for the standard model.
On the whole the reproduction of the exact results is good, except for
systems containing very light nuclei. It should be stressed that the
absolute as well as the relative agreement is good, over the wide range of
nuclear combinations considered and over distances where the potential
changes by more than a factor of a hundred. This result provides a strong
support for the applicability of the Proximity Formula2 to the study of
heavy-ion interactions.

A similar comparison has been carried though for the I(rappe—Nix1
zero-diffuseness model (Fig. 7). For this model the Proximity Formula
provides a good approximation to the value of the interaction potential

at contact but gives rise to an appreciable overestimation for larger

separations; typically the proximity potential is 50% above the exact
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potential when the surfaces are separated by 5 fm.

At this point it may be added that the Proximity Formula will
generally underestimate the range of the interaction potential because
the function &(s) is calculated for semi-infinite surfaces. In the
simple case of a Yukawa interaction the emerging distance dependence
has a factor of d too much. Of course, a simple ad hoc correction for
this particular failure could be included for the special case of the
zero-diffuseness model.

The Proximity Formula has also been applied to the zero-range
model. Some results are displayed in Fig. 8. As would be expected,
the quality of agreement with the exact results lies in between that of

the standard model (Fig. 6) and the zero-diffuseness model (Fig. 7).

4. CONCLUDING REMARKS

The folded-Yukawa model1 has been generalized to the case where
the two interacting objects have a diffuse surface, generated by folding
a Yukawa function into a sharp generating distribution. While only
slightly more complicated to treat than the usual folded-Yukawa model,
the generalized model is conceptually more appealing. Furiaermore, it
includes the folded-Yukawa model as well as the S-interaction model as
special cases. This facilitates the analytical study of effects associated
with the dendity diffuseness and the interaction range.

Moreover, the generalized folded-Yukawa model provides a realistic
case for testing approximative representations of the interaction poten-
tial. In this paper the Proximity Formula2 was investigated; its quanti-

tative validity was generally supported.
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Finally, it should be recalled that the possible applicability
of the generalized folded-Yukawa model extends beyond the nuclear
interaction potential. For example, the modified-surface-energy
prescription suggested by Krappe and Nixl can be easily generalized

along the same lines.
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FIGURE CAPTIONS
The effect of the surface diffuseness. The full lines
indicate the interaction potentials obtained with the
standard model, (2.14), for a selection of symmetrical
binary systems (with mass nuambers A, and A, indicated at
the beginning of each curve). The abscissa is the distance
between centers d (in fermi) and the ordinate is the inter-
action potential V (in MeV), on a logarithmic scale, The
dashed lines indicate the potential resulting from putting
the surface diffuseness equal to zero.
The potential obtained by the standard model (2.14) (full
lines) and the zero-diffuseness (2.16) (dashed lines).
Figs. 2a-d show the results for four different values of
the mass ratio.
The effect of the interaction range. The standard wodel
(2.14) (full lines) and what results from putting the
interaction range equal to zero (dashed lines).
The standard model (2.14) (full lines) and the zero-range
model (2.17) (dashed lines), for two different mass ratios.
The zero-diffuseness wodel (2.16) (full lines) and the
zero-range model (2.17), for two different mass ratios.
Standard wodel (2.14). The exact interaction potential
is given by the full curves while the proximity expression
is indicated by the dashed curves. Results for four

different mass ratios are displayed.
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Zero-diffuseness model (2.16) for four mass ratios.
Full curves: exact potential, dashed curves: proximity
potential.

Zero-range model (2.17), for two mass ratios. Full
curves, exact potential; dashed curves, proximity

potential.
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