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CHEMICAL STABILITY OF SALT CAKE 
IN THE PRESENCE OF ORGANIC MATERIALS 

INTRODUCTION 

The Hanford waste-solidification program utilizes an evaporation and 
crystallization process to reduce high-level liquid waste to a product 
known as salt cake. Salt cake is predominantly a water slurry of sodium 
nitrate (NaNOa) with lesser amounts of sodium nitrite (NaNOa)^ sodium 
metaaluminate (NaAlOals and sodium hydroxide (NaOH)J^-^ Although the salt 
cake presently contains 30 - 50 percent moisture, the present goal is to 
remove as much water as possible. In additions trace amounts of all the 
fission products and transuranics are present, as well as a broad spectrum 
of organic materials in small but unknown amounts. 

Under certain pressure and temperature conditions, almost any organic 
material can be exothermically oxidized by NaNOa- The release of large 
amounts of heat along with the generation of gaseous products can result 
in explosive reactions. Under certain conditions organic material can 
become nitrated. Nitrated organics form the largest class of detonable 
high explosives. 

The consequences of a detonation or even a deflagration within a high-level 
salt cake demand that the salt cake storage system be thoroughly understood 
and that steps be taken to insure that such reactions never occur. This 
report addresses itself to the problem of sodium nitrate - organic material 
mixtures in light of the realities of salt cake management. 

SUMMARY 

High-level waste stored as salt cake is principally NaNOa- Some organic 
material is known to have been added to the waste tanks. The present 
state cf this organic material is unknown. It has been suggested that 
some of this organic material may have become nitrated and transformed to 
a detonable state. Eight nitrate-related explosions in the nuclear sepa­
rations industry have lent credence to these fears. 

This report presents arguments to discount the presence of nitrated 
organics in the waste tanks--nitration is accomplished in concentrated 
nitric acid (7N_ or greater) whereas the high-level waste was neutralized 
prior to transfer to the tanks. Nitrated organics generated accidentally 
usually explode at the time of formation; it is unreasonable to expect 
accidentally generated explosives to survive for a sufficient time to be 
transported to the waste tanks. Additionally^ supportive detonation tests 
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The flame temperature, T (°K), is then computed from the equation: 

T = 300 +AE.. 

Sn Cp(i) 

The values of n̂  (number of moles of products and reactants) are fixed by 
the arbitrarily selected mixture, and the values of specific heats at 
constant pressure, Cp(i), have been obtained from Tables in "The Science of 
High Explosives", by Melvin A. Cook, American Chemical Society Monograph 
Series, Reinhold Publishing Corp., New York (1958), and are shown in 
Table B-II, 

TABLE B-II 

AVERAGE IDEAL MOLAL HEAT CAPACITIES (From 300°K to T°K) 
(cal/mol/K°) 

T°{K) n. CO, CO H2O NO NagCOâ  H, 

700 
1000 

1200 

1500 

2000 

2500 

7.0 
7.3 

7.5 

7.7 

7.9 

8.1 

10.7 

11.4 

11.8 

12,3 

12.8 

13.3 

7.0 
7.4 

7.5 

7.7 

8.0 

8.2 

8.2 
8.7 

9.2 

9.6 

10.2 

10.6 

7.3 
7,6 

7,7 

7.9 

8.1 

8.3 

27.1 3 

4 

4.5 

4.5 

4.5 

4.5 

6.9 

7.0 

7.1 

7.2 

7.4 

7.6 

*Oata only available for T <700°K 

Several additional assumptions were made: 

1. Initial temperature of reactants is 25''C. 

2. The reaction occurs adiabatically, 

3. No NaNOs or C10H22 remains after the reaction. 

4. H2O is driven off at the maximum flame temperature. 

5. No molecular dissociation occurs in the products, 

6. No ions or radicals are formed. 
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These assumptions influence the calculated flame temperature to varying 
amounts, almost always in the direction of making the calculated 
temperature Tc, higher than the actual flame temperature Tm. Five 
specific variations are shown below: 

1. If the initial temperature is higher than 25°C, Tc will also be 
higher. However, since specific heats generally Increase with 
temperature, the change in T̂ , will be less than the change in 
initial temperature. 

2. If combustion is incomplete (as is generally the case) Tm will be 
lower tnan T^. c 

3. If H2O is driven off at a lower temperature, Tff, could be much higher. 
However, the effect is not large since most of the energy in H2O 
vapor is associated with the latent heat of vaporization. 

4. Any decomposition, including formation of radicals and ions, decreases 
the energy available for temperature Increases and severely limits 
1^. Also, should actual temperatures approach 2000°C, nitrogen 
oxides will be formed in greater abundance and further limit peak 
temperatures. 

5. The specific heat used for NaaCOs is lower than actual for all 
temperatures above 700°K; however, better values were not available. 
The use of lower values of specific heat has Increased T_. 
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