The $^{185-187}$Pt nuclei have been studied simultaneously by

1) $^{176-178}$Yb (160,5n) reactions on the Orsay variable energy cyclotron (1) and tandem Van de Graaf accelerator (excitation functions, $\gamma-\gamma$ coincidences, angular distributions, decay periods)

2) radioactivity of gold on the Orsay on-line separator ISOCELE (γ and e^- spectra, $\gamma-\gamma$ coincidences, $e^-\gamma$ coincidences using a double lens β spectrometer) and on the CERN on-line separator ISOLDE (coincidences $e^-\gamma$ using a Si(Li) detector, lifetime measurements, e^- spectra using a 180° flat spectrograph).

The results previously obtained with (HI,xn) reactions have shown the transition from the oblate shape in the 187Pt to the prolate one in the 185Pt (1).

The decay period of the 185Pt nuclei produced with (HI,xn) reactions is $1/2 = 70$ ms. The decay properties (2) of this state to the 185Ir agree with the $9/2$ spin for the ground state of the normal band observed (1) in the 185Pt and thus confirm the prolate shape for this nucleus.

The transition probabilities between low lying states of the 187Pt are being determined from lifetime measurements and transition multipolarities and compared with those given by an asymmetric rotor-plus-particle model (3).

(1) M.A. Deleplanque et al. C.R. Acad. Sc. 280 (1975) 515
(2) C. Sebille-Schück private communication
[1] radioactivity studies
[2] (HI,xn) reaction studies
\[C.S.N.S.M. ORSAY France \]
\[Institute of Physics, University of Stockholm, Sweden \]
\[C.R.K. Strasbourg France \]
\[Institute of Nuclear Study, Tokyo, Japan \]