В работе [1] сообщалось об открытии нового изотопа 107Sn с периодом полураспада $T_{1/2} = 1,3 \pm 0,3$ мин. К распаду 107Sn были отнесены γ-линии с энергиями 678,6 \pm 0,4 (100 \pm 17) кэВ; (1002,0 \pm 0,8 (29 \pm 5)) кэВ; 1128,3 \pm 0,4 (100) кэВ.

Нами исследовался γ-спектр 107Sn в области энергий от 560 до 4000 кэВ с использованием Ge(Li)-детектора объёмом 40 см3. Источники получались по реакциям 106Cd (α, 3He, 2n) 107Sn и 106Cd (α, 2n) 107Sn. Измеренный период полураспада 107Sn оказался равным $T_{1/2} = 3,0 \pm 0,2$ мин. Вслед за этим стало известно сообщение [2], в котором указывается значение периода полураспада 107Sn равное 3 мин, однако отсутствуют сведения об энергиях и интенсивностях γ-лучей.

Полученные нами данные об энергиях и относительных интенсивностях γ-лучей 107Sn приведены в таблице. Измеренный γ-спектр, кроме 3-х переходов, приведённых выше из работы [1], публикуется, таким образом, впервые.

<table>
<thead>
<tr>
<th>E_{γ}, кэВ</th>
<th>I_{γ}, отн.ед</th>
<th>E_{γ}, кэВ</th>
<th>I_{γ}, отн.ед</th>
<th>E_{γ}, кэВ</th>
<th>I_{γ}, отн.ед</th>
</tr>
</thead>
<tbody>
<tr>
<td>571</td>
<td>2,7</td>
<td>1172</td>
<td>4,4</td>
<td>1911</td>
<td>4,9</td>
</tr>
<tr>
<td>596</td>
<td>1,8</td>
<td>1186</td>
<td>12,5</td>
<td>1936</td>
<td>1,5</td>
</tr>
<tr>
<td>610</td>
<td>2,7</td>
<td>1217</td>
<td>2,2</td>
<td>(1944)</td>
<td>0,9</td>
</tr>
<tr>
<td>679</td>
<td>100</td>
<td>1310</td>
<td>1,6</td>
<td>1963</td>
<td>2,8</td>
</tr>
<tr>
<td>736</td>
<td>3,9</td>
<td>1335</td>
<td>1,7</td>
<td>2004</td>
<td>8,0</td>
</tr>
<tr>
<td>758</td>
<td>3,0</td>
<td>1358</td>
<td>6,5</td>
<td>2041</td>
<td>0,8</td>
</tr>
<tr>
<td>803</td>
<td>6,3</td>
<td>1383</td>
<td>1,3</td>
<td>2063</td>
<td>7,5</td>
</tr>
<tr>
<td>917</td>
<td>2,7</td>
<td>1396</td>
<td>20,7</td>
<td>2094</td>
<td>8,8</td>
</tr>
<tr>
<td>(977)</td>
<td>3,0</td>
<td>1424</td>
<td>9,6</td>
<td>2116</td>
<td>9,9</td>
</tr>
<tr>
<td>1002</td>
<td>22</td>
<td>1445</td>
<td>2,6</td>
<td>2186</td>
<td>1,9</td>
</tr>
<tr>
<td>(1048)</td>
<td>2,3</td>
<td>1473</td>
<td>4,8</td>
<td>2216</td>
<td>7,6</td>
</tr>
<tr>
<td>1071</td>
<td>3,2</td>
<td>1542</td>
<td>30</td>
<td>2302</td>
<td>4,1</td>
</tr>
<tr>
<td>1085</td>
<td>1,2</td>
<td>(1581)</td>
<td>1,5</td>
<td>2316</td>
<td>5,7</td>
</tr>
<tr>
<td>1110</td>
<td>1,9</td>
<td>1704</td>
<td>6,1</td>
<td>2379</td>
<td>0,9</td>
</tr>
<tr>
<td>1128</td>
<td>100</td>
<td>1732</td>
<td>2,9</td>
<td>2448</td>
<td>1,0</td>
</tr>
<tr>
<td>1167</td>
<td>1,8</td>
<td>1808</td>
<td>25</td>
<td>(2465)</td>
<td>1,0</td>
</tr>
</tbody>
</table>
Погрешности в значениях энергий γ - переходов находятся в пределах $0,5 \pm 2$ кэВ, а относительных интенсивностей $10 \pm 30 \%$.

Литература