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I - INTRODUCTION

Invariants of unitary groups can be constructed in a number of

vays. For example, they can be constructed by generalizing the

concept of Casimir operators [ 1*] through an extensive use of the

estructure constants of the associated Lie algebras. In this paper,

ve shall consider two classes of invariants constructed in an easier

way. The first of the» has been used by physicists in connection vith

problems like those related to the labeling of states characterized

by a given irreducible representation (irrep) of some unitary group.

The other class of invariants ve shall discuss here was introduced

by the present authors in dealing with the problem of finding

relationships between invariants of complementary unitary groups [

Por reasons to be clear in the next section, ve shall denote

the invariants belonging to the first class by UD-invariants vhile

the second-class ones vill be named DU-invariants. There is no

fundamental distinction betveen DU-and UD-invariants. Any of them

can be used equally veil in the applications. However, the DU-inva-

riants lead to somewhat slightly simpler expressions for the

eigenvalues of the invariants of U(n) and SU(n) as will be seen

later on.

Although each class is formed by independent invariants, the

classes themselves are not mutually independent. There is, however,

no linear relation between UD- and DU-iinvariants. It is not yet
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known how to express an n-order DU-invariant is terms of (ID-inva-

riants, or vice-versa. Surely, this problem is soluble, but only

for lov order invariants the solution is explicitly known.

Next section is devoted to introduce the notation to be used

throughout this paper and to define the objects we shall deal with.

Some properties of the elementary symmetric functions are listed. In

Section III, we present recursive relations that allow us to obtain

the eigenvalues of DU-invariants of unitary groups in any irreducible

representation. These relations will also serve to prove the

validity of two closed formulas, presented in Section V, for getting

those eigenvalues. A clear advantage of this approach is that no

explicit reference to the basis supporting the considered irrep is

needed.

Section IV is dedicated to a brief discussion of the D

function associated with unitary groups. Three closed formulas for

obtaining the eigenvalues of invariants (DU and UD types) are

discussed in Section V. Finally, for the sake of completeness, the

connection between the invariants of U(n) and SU(n) is presented in

Section VI.

II. DEFINITIONS AND NOTATION

In the following, we shall introduce some standard definitions

and notation that will be necessary for our present purposes.
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The objects ». and f > £*I,2,..*j*lt are generally named

boson vector operators if their components satisfy the following

commutation relations

and

for Msl f2 1... yn and SJ^=4<,2).

Ift instead, they satisfy similar anti-commutation relations,

namely ,

f *>ti _ 4.J* fcü ,.* rt
(2.2a)

for i,Jsi,2,...,n «irf «,i«i,2,.—,á ,then they are named

fermion vector operators.
2

Consider nov the n operators defined by

• d
Z l l J ^ L i l ! , (2.3)

vhere n and ^ are the components of either boson or fermion
'is

vector operators. In any case, it is easy to verify that the

commutation rules for the ̂ 3 are given by
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The main property of the operators (2.3) we are interest in

here is that they generate the group U(n), i.e., the group of all

unitary transformations in the complex vector space of dimension n.

So, any operator that commutes with all the A's will be invariant

under unitary transformations. In other words, it will be an inva-

riant of U(n).

Ve can form a k-order invariant of U(n) by doing the following

contractions
ê

From now on, we shall adopt the usual convention of summing repeated

indices over all the values they can assume.

Let us refer to the class of invariants (2.5) as DU-invariants

C Cn)
= n •

Clearly, ve can contract the indices of A. in a different way.

Instead of contracting from "down" to "up" (DU) as we did in (2.5) ,

we can contract from "up" to "down" (UD) in the following way

CA *A£A**"A* ,1-1,2,.... <2.6)
These new operators L . are also scalars with respect to U(n)

since they also commute with all the generators (2.3). In analogy to

the previous notation, they will be referred to as UD-invariants of

U(n). It is also conventioned that Ç = r\
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From the definitions (2.5) and (2.6), it is easy to see that

y , and v* s V-, . For * > 2 , however, the UD- and

DU-invariants are connected through relations that get more and more

complicated. For example, if ks3 then we have that

C3 - S + r iS -LS J • (2.7,
The general relation betveen UD- and DU-invariants is not yet knovn.

From (2.7) it can be seen that that relation is non-linear.

Since there are at most n. independent invariants of U(n) £3] ,

each class of invariants discussed here has at most n independent

elements. They can be taken as being the l-,2-,..., n-order invariants

as defined in (2.5) or (?.6).

The eigenvalues of the invariants, in a given irrep of U(n) ,

depend only on the labels characterizing that representation. Such

irreps can be characterized by a partition of an integer. The

components of the partition are denoted fa. ,i*f,2 ..,9Ti »and are

such that

The partition components 4. are defined by the following
in.

simultaneous operational equations

AJ-0 fir
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The irrep of U(n) characterized by the partition (2.8) is

usually denoted by fh^sff^k -..h^l • We shall indicate by

' the corresponding

eigenvalues of the k-order DU- and UD-invariants, respectively.

The theory of the symmetric group f4J associates with the

partition (2.8) the concept of a hook. Por our purpose here» ve

shall only need the partial hook defined £sj by

We shall see, in Section Vf that the eigenvalues of the DÜ-

and UD-invariants can be given in terms of the particular partial

hooks A and S. , respectively.
l£i lift

Finally, for further reference, we recall here the definition

of the elementary symmetric functions C^J and some of their

properties.

The elementary symmetric functions fj 9*...,,f* of the

ordered set ^~(x ,zi9.t.fXn) are defined by

(2.12)
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In terms of them,we can define the function

i v, or. ~

s * — , • , j

1 • a.* " n'
where the sum is taken over all of. and the bar on the sum symbol

is to indicate that the ot£ are non-negative integers such that

«t«4 2ot, 4 3« a+ . .. + not s rv) .in addition _a s«tvi-ar + •.. + OL_

The elementary symmetric functions can be used to express a

Stevin product as
n n

FT(x +a) = ZL 9!(x)*~l. (2.i4)
i»1 i=0 *

We close this section presenting the following further

relations involving the elementary symmetric functions (2.12) and

the function (2.13) [5]

• (2.15)

m

B (x)~0 for m~ 1.2,...,n-i. (2.17)
'ffi—n

III - RECURSIVE RELATIONS FOR THE DU-INVARIANTS

Throughout the rest of this paper, we shall apply extensively

many of the ideas introduced in references 5,7 and 8, and prove

many results used in reference 7.

Tc obtain the eigenvalues of the DU-invariants defined in (2.5),

we can dispense with any explicit reference to the basis for the

irrep considered by noting that those eigenvalues can be obtained by
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aeans of a constructive procedure using, alternative and conveniently,

the following relations

(hj^ »

(bk h 0 ) Q

The relation (3.2) is contained in (3.1). However, we consider

it separately only for computational convenience. Both of them are

immediately proven by taking into account the operational equation

(2.8) and noting that, from the definition (2.5),

<h) A1 A2 y|n
C^ = r\1

 +x»2 "*"'** 't^n * (3.5)

and

The relation (3.4) follows as a trivial particular case

of a general relation between DU-invariants of unitary

groups found by the present authors [2J . All we have to do

is to consider the irreps Lv* <•"'"„ fl •> ar>d L h ^ j ••• *>nn+j J of

and U v V , respectively, and take these groups as
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complementary in the chain

U(Hn+1)) 3U(n)xU(n+i). (3.7)

To prove (3.3), consider the identity

t

* (3.8)

Now, by repeated use of (2.10) and the commutation relation

(2.4) , ve can reduce the LHS of (3.8) to the form

r lAjtAj/l+A,. .*,/l*Aj . The same reducing steps lead us to the

operational relation

A ^ A ' " ' ^ ^ *-fc * (3.9)

Finally, relation (3.3) is obtained from (2.9) by replacing h.
«it

by h. and putting \ s. h .

The set of recursive relations (3.1) to (3.4) allows us to

obtain the eigenvalues of the DU-invariants of U(n) in any given

irreducible representation. They are alsc useful to prove the

validity of some closed formulas for getting those eigenvalues as

we shall see in the following.

IV - THE FUNCTION D'"'

Consider the integers Q defined by
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(4.1)

which are partial hooks of the partition L r L ^ . . . A 3 >°£ tne

type j>i4 . Define the D -function by

(4.2)

where

j * m!(m-i)!(rn-2)!..2j (4'3)

Since Q - Q s h.-h. + 1-1 t we see that the D*ni
»*» 7/1 *« J* *

function gives the dimension of the irrep £ h ] of U(n) when its

arguments define the corresponding Young diagram.

In the following, we shall prov? some properties of the

D -function which are similar to, but different from those derived

by Louck and Biedenharn

From the relation

firo.. = fro,
j «4 1=1 ín+1 u j M (4-4)

and the recursiv» character of n] , by taking Q -q - Q t
 l

I '*ft+1 Tmn+1
we can obtain a first property of the D -function, namely,

(4.5)

from which it follows easily that
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h.
x \i+—i—. 1TT (o - ? ), /-1.2,....».

(4.6)

After some simple manipulations of the product symbol | f , ve

can also see that

* ten Vn (4#7)

Finally, we note a clear translation invariance of the D -rune-

tion, i.e.,

V - CLOSED FORMULAS FOR THE EIGENVALUES

In this section, we shall present three closed formulas for

getting the eigenvalues of the DU and UD-invariants of U(n) in any

given irrep.

Firstly, we shall prove that

It is sufficient to show that (5.1) satisfies the recursive

relations (3.1) to (3.4), which, as we already saw, give the
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eigenvalue V—# \njm

If h^1 , the RHS of (5.1) reads

n n I* "I n

j frfy ftl (5.2)
where use was made of (4.7). The equality in (5.2) follows from

techniques discussed in the appendix.

Substituting the definition (4.1) of Q in (5.2), we prove
'in

that (5.1) satisfies the first recursive relation (3.1).

If n= 1 , the RHS of (5.1) becomes

where we used (4.8). Thus, (5.1) satisfies (3.2) also.

Now, we notice that

(5.4)

where we used again (4.8). As discussed in section 3, the relation

(5,4) is equivalent to (3.3).

The proof that (5.1) satisfies (3.4) is somewhat laborious.
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Fro» (5.1) ve have that

(5.5)

Taking apart the last term of the sum, noticing that

- = — n , since n •= 0 , and using the properties
fttt n+1 n+t fir I

(4.5) and (4.6), the RHS of (5.5) becomes

k

(5.6)

vhere use was also made of the identity
k k ** A-/-' I

x+n jmo (5.7)

Finally, all ve have to do nov is to prove that the square

brackets in (5.6) vanish. It is true and the demonstration envolve

Stevin products and known properties of the elementary symmetric

functions (2.12). Again, the reader is referred to the appendix for

the details.

So, ve have demonstrated that (5*1) gives the eigenvalues of >
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the DU-invariants of u(n) in terms of the D-function (4.2) and the

quantities Q defined in (4.1). These eigenvalues can also be
'in

obtained in terms of the elementary symmetric functions (2.12)

through the following closed formula

(5*8/

where x stands for the ordered n-tuple (y fg >«">2, ) formed of the

quantities (4.1), and B (x) was defined in (2.13).

The expression (5.8) is similar to the corresponding one for

UD-invariants derived by Louck and Biedenham [5J . The present

formula, connected with the DU character of the invariants, admits

of factorization of y facilitating the evaluation of the

eigenvalue.

Let us now prove that (5.6) is true. Putting x = Q and
i 'in

using (4.7) we can write (5.1) as
71

C (h A ,..;h )= - Ü.X. M LI (5.9)

For evaluating the sum above, we first develop the Stevin

product (see Appendix) and then make use oc the relation (2.15) and

(2.17) to obtain

M. -_•_• * — / n , L

(5.10)
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Several terms of the sums above can be eliminated. Taking apart

the term / « « • / and then the contributions from m*A-£+f ve obtain

(n) A ( L-l v j i+f /

From (2.16), ve see hovever that the last sum vanishes, completing

the proof since the remaining expression coincides vith (5.8).

f

Another representation of the eigenvalues of V-, can be

obtained by means of a matrix, an idea developed by Perelomov and

Popov [sj . In their paper, these authors use the UD convention.

For the DU-invariants, let us introduce the fixn matrix

CLxCL ("m>h 9.10,^ ) whose elements are given by

vith

(5.13)

otherwise •

In these conditions, ve have simply that

i.e., the eigenvalue of Q.. in the irrep Ln J of U(n) is given by
k k

the sum of all matrix elements of d . For the proof, ve shall

follow the same steps as ve did to prove the formula (5.1), i.e..
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we shall show that the RHS of (5.14) satisfies the recursive relations

First of all, it is easy to see that

'"""' (5.15)

and
n

y-f *j *n (5.16)

Hence, summing (5.15) on the index j , or (5.16) on / , we get

tn i in' 2n' * nn

and the relation (3.1) is verified.

(0
Prom the definition, we have that Q = Q = ^ , so

that C (hn)=. h which is relation (3.2) .

It is also easy to see that

vhere I is the nxn identity. As a scalar matrix commutes with any

matrix (of same dimensions, obviously), we have from (5.18) that

vi- {5
or, equally well,
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and summing up all matrix elements of both sides of (5.20), in view

of (5.14) we obtain (3.3).

As before, to verify (3.4) ve have to work a bit more. Let us

consider an irrep of Ufn+1) vith r) s O . In this case, ve

have explicitly that

a (L4,....,/Lllffo;as

0

0

i

1

o
0

o

o
o
o

-n

(5.21)

and ve see that this matrix can be conveniently decomposed as a sum

of two matrices in the folloving vay

vhere b is the direct sum of CL vith the nun matrix 1x1 ,i.e.,

& & ' (5.23)

and C is also an (h+1)X(P+1) matrix vhose only non-vanishing

rov is the last one. Explicitly, ve have then that
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o o ... o o
0 0 > — O O

Now, we notice that the matrices b and C are such that

k
C =(-n) c ,

GO, k=t,Z,....

0 , ;=

The property (5.25) allows us to write

L k

(5.25)

(5.26)

(5.27)

(5.28)

k-1

Â-f .i y k-1-1 ./
C* * 1.1 C ' (5.29)

vhere (5.26) was used in the last step.

Summing up all matrix elements of both sides of (5.29) it

results that
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(5.30)

where we have isolated the last terms with i « j * n+f , and

used (5.27) and (5.28). The delta symbol allows an easy sum over

leading us, finally,to the relation (3.4). completing the proof of

the validity of (5.14).

Ve have thus obtained three closed formulas for getting the

eigenvalues of the DU-invariants in any irrep of U(n) in terms of

the partial hooks (4.1). In the case of UD-invariants, similar

formulas were derived by Louck and Biedenharn [ 5 J , and Perelomov

and Popov [8] . Ve give in the following their results.

For the UD-invariants ve must consider the partial hooks h. ,

i.e.,

*" i = tr> + n~'t (5.31)

and the formula corresponding to (5.1) reads

D ( h h ^ } / D

where D^n' was defined in (4.2) [note that fc-feSQ.-<ji 3»

The UD-eigenvalues can also be obtained in terms of the

elementary symmetric functions (2.12), and (2.13) jf5J , i.e.,
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where now *=(*>„,&,,..., f^ ) .

Finally, the matricial procedure to obtain the UD-eigenvalues

is the same as before, i.e., £8J

A

where

and

r £ ;r ÍK: (5.36)

J t 0 otherwise >

VI - INVARIANTS OF UNIMODULAR UNITARY GROUPS

The unimodular unitary group SU(n) playyan important role in

modern physics. The eigenvalues of the invariants O of that

group can be obtained from those of U(n) in the irrep characterized

by the same Young diagram of SU(n) through the known relation

* (6.1)

This relation holds irrespectively of the DU or UD criterion
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considered. It however preserves the character of the invariants. So,

for instance, DU invariants of U(n) provide DU invariants of SU(n).

It also gives ç? =(/ , i.e., the first order invariant of

SU(n) DU or UD is identically zero[its eigenvalue vanishes

in any irrep of SU(n).3

As an example, we give explicitly the eigenvalues of the first-,

second- and third order invariants of U(3) and SU(3) in the irrep

•ft, V>].
DU criterion

UD criterion

Notice the more symmetrical expressions for the DU eigenvalues.
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Appendix

Let us prove that the square brackets in (5.6) vanishes.

Let x. -Q +n • From the definition (4.2) and the usual

< TitHt
convention that C* = n . in any irrep, we see that we have to prove

o '
that

Uf x£ f*i X-x.

where use was made of (4.7). Multiplying both sides of (A.I) by

» we are left with

n £ fr [ L ] f M ( A . 2 )
1=1 i ui Hi lL *£xt

The first term in the LHS of (A.2) is a Stevin product (2.14)

with CL^-i so that it reads

flk-O- l

The second term can be treated in the following way

X X . x. jí J

The square brackets contain a Stevin product (2.14) with & s — 1 — ^

so that

y kti k l (A.5)

Separating the -term <*n and taking into account that



(A.6)

«-O
•n-l

f j-n

it* is easy to see that

ti (A.7)

which summed to (A.3) gives exactly (A.2), and the proof that (A.I)

is true is completed.

The same technique can be used» vith X = Q , to help in the

C Tin
derivation of (5.2) and (5.10).
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