SHAPE CHANGE IN THE ODD-A NEODYMIUM ISOTOPES

J. Gizon, A. Gizon and H. Yoshihara
Institut des Sciences Nucléaires, Grenoble, France

R.M. Diamond and F.S. Stephens
Lawrence Berkeley Laboratory, University of California, Berkeley, CA, USA

Presented at the International Conference on Nuclear Structure, Tokyo, Japan, September 5-10, 1977

Laboratoire associé à l’Institut National de Physique Nucléaire et de Physique des Particules
Shape change in the odd-A neodymium isotopes

J. Gizon, A. Gizon and N. Yoshikawa
Institut des Sciences Nucléaires (USMG)
BP 257, 38044 - GRENOBLE-CEDEX, France

and

R.M. Diamond and F.S. Stephens
Lawrence Berkeley Laboratory, University of California
BERKELEY, CALIFORNIA 94720, USA

In studies of high-spin levels in odd-A transitional nuclei, band structures have been observed and explained by the coupling of a quasiparticle to a nonaxially symmetric even-even core. However, the softness of this core toward changes in the symmetry is not well determined. In the transitional region between heavy rare earths and lead, it is well known that a shape change from prolate to oblate occurs. From our previous results, it appears that the odd-mass $^{133-137}$Nd nuclei have a prolate shape and that the β-deformation associated with the $h_{11/2}$ structure decreases rapidly when going towards heavier masses (fig.1). The γ-parameter varies in an opposite way (fig.3) from $\gamma=20^\circ$ (133Nd) to $\gamma=28^\circ$ (137Nd). From this trend, we might expect a shape change in the vicinity of $N=79$.

In order to look for this shape transition, studies of the levels of 139Nd have been performed. Previously, only partial information from the 140Ce($a,5n$) reaction were available. In the reaction 128Te(16O,5n)139Nd, we observed a group of levels based on the $11/2^-$ isomer. It is apparent that the first $I=j+2=15/2^-$ level is lower than the first $I=j+1=13/2^-$ level (fig.1). This level ordering is opposite to the one found in the $A=133$, 135, 137 Nd isotopes. Such a level structure in 139Nd can be reproduced by the coupling of an oblate-type core($\gamma=36^\circ$) to an $h_{11/2}$ neutron-hole with the Fermi surface on the $11/2^-$ orbital (fig.2). Thus, a change across $\gamma=30^\circ$ occurs between the $N=77$ and $N=79$ Nd isotopes, though it is not clear whether these γ values correspond to rigid shapes or are the rms values of oscillations.

*Work done with support from U.S.E.R.D.A. and IN2P3 (France).

Fig. 1

Fig. 3