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ABSTRACT 

Two computational procedures and one optical experimental procedure 
for studying enclosed natural convection are described. The finite-
difference and finite-element numerical methods are developed and 
several sample problems are solved. Results obtained from the two 
computational approaches are compared. A temperature-visualization 
scheme using laser holographic interferometry is described, and 
results from this experimental procedure are compared with results 
from both numerical methods. 
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I 
NOMENCLATURE 

c 
p 

heat capacity 

g gravitational constant 

k . . thermal conductivity tensor 

n . 
3 

outward unit norma) 

p pressure 

^ i 
heat-flux vector 

R residual or e r ro r 

s coordinate along boundary 

S volumetric heat source 

T temperature 

r e f reference temperature 

u . i 
velocity component 

X. 
i 

coordinate direction 

0 coefficient of volume expansion 

r boundary 

6 . . unit tensor 

p density 

V kinematic viscosity 

H viscosity 

s t ress tensor 

*> *, e shape function 

* stream function 

QJ vorticity 



COMPUTATIONAL AND EXPERIMENTAL METHODS FOE 
ENCLOSED NATURAL CONVECTION 

Introduction 

Recent years have seen considerable progress in efforts to develop computational procedures 
for solving the coupled conservation equations of motion (Navier-Stokes) and energy for an incom
pressible fluid. A large number of applied problems involving nonisothermal forced and/or free 
convection have stimulated the development of the numerical methods. Thermo^line storage of 
solar-heated fluids, energy extraction from magma bodies, in-situ coal gasification, cooling of 
spent-fuel shipping casks, reactor core-meltdown accidents, radioactive waste disposal in the 
ocean, and numerous combustion problems are just a few of the many problems of current interest 
that need improved understanding. 

A large measure of the needed insight for these systems could be provided by the numerical 
simulation of the appropriate fluid and thermal processes involved in a particular problem. Before 
engineering judgments can be confidently based on a numerical simulation, however, some form of 
validation of the numerical method must be obtained. The complexity of most coupled fluid/thermal 
problems precludes the possibility of obtaining closed-form analytic solutions for verification pur
poses. Therefore, quantitative experimental methods for investigating these flow fields are neces
sary to demonstrate the validity of the solutions to these complex but fundamental problems. 

This report describes two computational procedures and one experimental procedure developed 
to investigate the problem of thermally driven enclosed natural convection. The numerical techni
ques include a finite-difference method (FDM) and a finite-element method (FEM). These methods 
are used to solve the coupled conservation equations resulting in determination of the temperature 
and velocity fields for the problem of interest. 

The experimental technique is an optical procedure (laser holographic interferometry) that 
yields the temperature field of the thermal-convection problem. 

Several sample problems are examined to demonstrate the capabilities and limitations of the 
numerical methods. Results obtained from the finite-difference and finite-element methods are 
compared. In addition, experimental results are compared with results from both computational 
procedures. The difficulties associated with accurate control of the boundary conditions during 
the experiments using early test sections prevent a detaile i quantitative comparieoit of the numeri
cal solutions with the experimental resul ts . Nevertheless, the overall temperature field agreement 
obtained is remarkable. 

9 



Survey of Existing Methods 

A large body of existing literature deals with various numerical methods and experimental 
techniques for investigating various problems in fluid mechanics. Therefore, a comprehensive 
review of the literature i s neither necessary nor desirable and only a few references of particular 
interest will be mentioied here . Several surveys of the field of computational fluid mechanics are 

1 2 
excellent, most notably the monograph by Roache and his survey of the more recent l i terature. 
A review of the early theoretical and experimental investigations of enclosed natural convection 

3 4 
is given by Elder and (n an article by Ostrach. 

One of the first successful attempts at a numerical solution of a natural convection problem 
5 

was conducted by Heliums and Churchill. By developing a transient, explicit finite difference 
method, they obtained transient and steady-etate solutions to the problem of natural convection on 
an isothermal vertical surface, a problem for which an exact solution exists- Their work also 
considered natural convection In a long horizontal cylinder having one vertical end heated and the 
other cooled. Wilkes and Churchill extended the FDM of Heliums and Churchill to investigate 
the problem of thermally driven convection in a rectangular enclosure. In the ensuing 11 yea r s , 
numerous investigators used the FDM to study similar internal free-convection problems for 

7 
various geometries and parameters ranges. Notable among these is the work of Aziz and Heliums, 
who first reported resul ts on three-dimensional convection in a cubical cavity. Davis and Rubel 

g 
and Landis formulated the enclosed rectangular problem in terms of a nonlinear fourth-order 
equation for the stream "unction without the explicit appearance of vorticity. Torrance compared 
several FDMs that had been developed for examining natural convection flows and pointed out that 
the finite difference forms of the equations used by most previous investigators had not conserved 
energy or vorticity. Finally, Newell and Schmidt examined the problem o; enclosed, laminar 
natural convection over a range of parameters sufficient to determAne a power-law correlation of 

12 the Nusselt number as a function of the Grashof number and aspect ratio. Larson and Viskanta 
included the effects of radiation heat transfer on the enclosed convection problem. 

The application of the finite-element method to the field of fluid mechanics is a fairly recent 
development, but has already produced an impressive body of l i terature. The recent survey 

13 article by Gartling concerning the application of the FEM to viscous incompressible flow fields 
provides an overview of mis area of current research. The general subject of the FEM is con-

14 15 
tained in the texts by Zienklewicz and Oden, and a general review of applications to various 
fluid flow problems is discussed in Huebner. 

A sampling of the reported applications of the FEM to fluid mechanics indicates that much 
of the early work was directed primarily toward the problems of slow, viscous flow (creeping or 
Stokes flow). Atkinson et &\ and Tong and Fung achieved excellent results by employing the 
PEM and a fourth-order stream-function formulation to solv^ a number of channel flow problems. 

19 Thompson et al formulated the problem in term3 of primitive variables to solve creeping flows 

10 



both for Newtonian and for non-Newtonian fluids. The extension of the FEM to the more complex 
20 21 

flow problems described by the Navier Stokes equations soon followed. Baker, Cheng, and 
22 

Smith and Brebbia used a stream-function/vorticity formulation of the governing equations to 
present successful solutions for isothermal flow problems involving a variety of geometries, 
including channel flows and flows over obstacles. A primitive variable approach was used by Oden 

23 and Wellford to solve both transient and steady-state flows at low Reynolds numbers. Gartling 24 and Becker examined the steady-flow solution of both internal and external geometries. The 
addition of the energy equation to the FEM for determining the temperature field when the velocity 
and temperature fields a r i weakly coupled (e. g., forced convection) was demonstrated by the work 
of Hsu and Nickell, Taj and Davis, and G.irtling, among others. 

When the flow and temperature fields are strongly coupled,, a^ they are in natural convection, 
the FEM solution procedure necessarily changes. Most of the work reported to date has considered 

28 the time-independent form of the momentum and energy equations. Skiba, Unny, and Weaver 
presented the first finite element solution to a free-convection problem (flow in a vertical slot). 

29 30 27 
Since that time, Bedford and Liggett, Young et al, and Gartlin^ have demonstrated success
ful finite-element solutions for a variety of free-convection problems. 

Optical methods of studying heat and mass transfer have been widely used for many years . 
The three main types of optical systems in common use are the shadowgraph, the Schlieren, and 
the interferometer. The visible indications of density variation for these methods depends, 
respectively, on the second derivative, on the first derivative, and directly on the index of refrac
tion. The index of refraction of s gas is related to the density, and the density is related to the 
temperature through an equation of state (often the ideal gas law). Descriptions of the principles 
jf operation of the above devices can be found in numerous texts (e.g., 31, 32). 

In 1947 the English physicist Dennis Gabor introduced a radically new concept in photographic 
optics for which he later received the Nobel Prizs in Physics (1971). This process, which can be 
called photography by wave-front reconstruction, is commonly known as holography. Holography 
does not record an image of the object being photographed but rather records the reflected light 
waves and an interfering reference beam. The resulting interference pattern form3 a diffraction 
grating which, when illuminated by a similar monochromatic light beam, reproduces a three-
dimensional image of the object. Extensive use of the procedure had to await the development of 

33 an intense monochromatic coherent light source, which l^ith and Upatneiks demonstrated in 
1963 utilizing the newly developed laser . Following these developments, work in the field virtually 

34 e^-ploded, resulting in over 800 papers by some 500 authors appearing in less than 10 years . 
Holographic interferometry was one of the results of this widespread effort. A brief discussion of 
the basic principles involved can be found in References 35 and 36. Interpreting the data resulting 

37 from hologram interferon! etry (holometry) has proved to be reasonably difficult. Witte and Wuerker 
appear to have been the first to demonstrate holometry as a quantitative measurement technique by 
determining (from an interpietation of the fringe pattern) the density profile through the gases 

11 



surrounding a high-speed projectile. Later, Matulka and Collins were also successful in inter
preting -esults both of axisymmetric and of asymmetric flow fields. More recent quantitative work 

39 36 
includes that of Mayinger -ind Pankin and Schimrael. 

It appears that, to date, no attempts to take advantage of the combined advances of various 
computational and experimental methods have beer reported. This report is an effort to compare 
the results obtained from recently developed procedures for the problem of enclosed natural 
convection in several specified test geometries. With such a comparison we are then able to infer 
the validity of the respective techniques for this class of problems. 

Computational Methods 

The starting point for any numerical approach to the general problem of free convection is 
the mathematical description of the fluid motion through use of the basic conservation laws. If the 

40 fluid of Interest is assumed to be incompressible within the Boussinesq approximation, the basic 
field equations may be expressed as 

3u 
Mass: — 1 = 0 . (1) 

au. au. jr.. 
Momentum: p _ + p u - _ - p s . + Pep (T - T ) + ^ = 0 . (2) 

J 3 j 

»T ST 8 t * i 
Energy: p C f f • DC , | ± - + j ± - S . 0 . <3! 

The conBtib - ; ^'.'..'ois for the fluid consist of a Newtonian s t ress / ra te-of-s t ra in law, 

/au . 3 u \ 

and Fourier 's law for the heat flux, 

q, - -kg I I ; . (5) 

In Eqs. (I) through (5), u, is the velocity component in the X, coordinate direction, P is the pres 
sure, T is the temperature, p is the density, T,- is the s t r ess tensor, q. is the heat flux vector, 
S is the volumetric heat source, u is the viscosity, C is the heat capacity, k.. is the thermal 

12 



perature for which buoyancy forces are negligible, 6.. is the unit tensor, and g is the gravitational 
constant. The above equations are expressed in terms of Cartesian coordinates; an analogous set 
of equations is available for axisymmetric geometries. 

To complete tn- formulation of the boundary-value problem for convection, a suitable set of 
boundary and initial conditions is required. The hydrodynamic part of the problem requires that 
either the velocity components or the total surface s t ress <or traction) be specified on the boundary 
of the fluid domain. The thermal part of the problem requires that n temperature o: heat flux be 
specified on the boundary of the energy transfer region. Symbolically, these conditions may be 
expressed by 

(6) 

t. = T..(s)n.(s) on T. 

for the flow pi oblem anc1 

T = g(s) on T T 

(7) 
q.(s)n.<s) = Ms) on T 

for the heat-transfer problem. In Eqs. (B) and (7) the designation s is the coordinate along the 
boundary, n. is the outward unit normal to the boundary, T. = T + T is the boundary enclosing 
the fluid, and T\ = T— + T is the boundary enclosing the energy-transfer region. For the t ran
sient problem, a set of initial conditions in the form of imtial velocity and temperature distributions 
is also required. 

Equations (1) through (5) along with the boundary conditions in (6) and (7) form a complete 
set for the determination of the velocity, pressure, and temperature fields in the fluid. A wide 
variety of numerical methods, already developed, allows this complex continuum problem to be 
reduced to a more manageable problem through some type of Discretization procedure. In the 
following sections, descriptions of two such methods allow an approximate solution to the convection 
problem to be obtained. 

Finite-Element Method 

Oie of the approximate numerical methods being developed to treat general problems in con
vection is the finite-element method (FEM). Because, as noted, this very general approximation 
procedure has been thoroughly described by several authors, it is outlined only briefly here . A 
detailed description of the application of the method to free convection problems may be found in 
Reference 13. 

13 



The derivation of the finite-element equations begins with the division of the continuum region 
of interest into a number of simply shaped regions called finite elements. Within each element, a 
set of nodal points is identified at which the dependent variables (u,, F, and T> are evaluated. 
Furthermore, the dependent variables are assumed to be expressable in the following form within 
each element: 

u.<X.,t>= # T (X . ) • u.<t> 

P ( X r t ) = ^ ( X p • P(t) (8) 

T(Xj, t) = 9 T (X i ) . T(t> . 

hi Eq. (8) the designations u., P, and T are vectors of unknown nodal point variables, and £ , ;£, 
and © are vectors of interpolation or shape functions. The number of functions in a particular 
shape -function vector is equal to the number of nodes in an element at which the particular unknown 
is to be defined. 

The approximations in Eq. (8) may be substituted into the field Eqs. (1) through (5) to yield 
a set of equations of the form 

fi ($* % & V £* X* = R i 

* 2<$, uA) = R 2 (9) 

*3<g, * , T, u.) = R 3 

where R. is the residual, or e r ror , resulting from the use of the approximate forms for u., P, 
15 l 

and T. A Galerkin procedure may be used to reduce the e r ro r s , R., to zero in an average sense 
over each element by making the residuals orthogonal to the interpolation functions in Eq. 8. 
That is, 

<f r *> = < R r *> = 0 

<f2, *> = <R 2, *> - 0 (10) 

<f3, S> = <R 3, ©> = 0 , 

14 



where < , > denotes the inner product defined by 

• / 

<a, b> = / a • b dv , 
Jv 

with v being the volume of the element. 

When the procedure outlined above is carried out explicitly for the equations describing 
convection, the result is a set of coupled matrix equations of the form 

Mi + Qte'Y + gX = E<P • <i * > 

NT + D(u)T + L T = G , (12) 

T T T (T T\ 

„ T / T T „ T \ 

The matrix equations in (11) and (12) represent the discrete analogs of the conservation equations 
for an individual finite element. The C and D matrices represent the advection (convection) of 
momentum and energy, respectively; the K and L matrices represent the diffusion of momentum 
and energy. The terms MV and NT represent the temporal acceleration and the heat capacity of 
the fluid; the F and G vectors provide the forcing functions for the system in terms of volume 
forces (body force, volumetric heating) and surface forces (stress, heat flux). 

The discrete representation of the entire fluid region of interest is obtained through an 
assemblage of elements in such a way that interelement continuity of the approximate velocity, 
pressure, and temperature is enforced. This continuity requirement is met through the appro
priate summation of equations for nodes common to adjacent elements. 

Once the matrix equations for the finite element model have been assembled for the problem 
of interest, the task of solving this large set of strongly coupled, nonlinear equations still remains. 
In the present report only the case of steady-state flows will be addressed for +he FEM. The 
matrix equations can, therefore, be reduced to 

(13) 

(14) 



The solution algorithm chosen for Eqs (13) and (1<> consists of the following alternating procedure: 

C ( u n ) V n + 1 + K V n + 1 = F ( T n + 1 ) (15) 

D ( u n + 1 ) T n > 2

+ L T n f 2 = G 

etc . . 

where the superscript indicates the iteration number. During observation of the behavior of this 
alternating solution scheme, it was apparent that most of the problems exhibited an oscillatory 
convergence. Therefore, an averaging scheme was used for the temperature field to speed con
vergence of the overall algorithm. 

The finite element methodology developed in the previous sections has been incorporated 
into a Fortran coded computer program called JNTACHOS. This code is a highly modified and 

41 extended version of the fluid mechanics code TEXFLAP. 

The NACHOS code is organized in overlay form as shown in Figure 1. Communication 
between overlays is currently through low-speed disc files as noted in the figure. Input for the 
coc*?# designed with the user in mind, has been kept to a minimum. An isoparametric mesh 
generator allows complex boundaries to be modeled easily and accurately. The present version 
of NACHOS requires approximately 160K words of storage on the Sandia Laboratories CDC 6600. 

Overlay 

Figure 1. Organization of NACHOS Computer Code 



The elemcr*i library for NACHOS consists of an eight-node isoparametric quadrilateral and 
a six-node isoparametric triangle, as shown in Figure 2. Within each element, the velocity com
ponents and the temperature are approximated quadratic ally; the pressure is approximated linearly. 

42 
The interpolation functions are from the "serendipity" family proposed by Erqatcudis et al . The 
actual processing of the matrix equations is accomplished through a modified version of the frontal 

43 method developed by Irons. 

Figure 2. Isoparametric Finite Elements 

Finite-Difference Method 

The finite-difference method (FDM> to solving partial differential equations is to approximate 
the PDEs by suitable difference equations on a network of grid points, resulting in a set of alge-

44 braic equations. This traditional method is well established and documented in numerous texts. 

The major concerns of the methods are accuracy, stability, convergence, r.nd computational speed. 
The finite-difference methods that have been generally used in fluid mechanics problems are well 
documented in the treatise by Roache. In general, the basic-difference methods may be convenient
ly divided into two classes: explicit and implicit. 

The explicit schemes allow for the direct solution of the variable of interest by generating 
one algebraic equation and one unknown at each nodal point. Therefore, explicit methods are 
usually simpler and computationally faster than the implicit methods for a given step. However, 
explicit schemes usually have stringent grid size and time-step restrictions in order to obtain 
stable solutions. Most implicit schemes are unconditionally stable but computationally more 
complex, requiring the simultaneous solution of a system of equations. Both methods must satisfy 

certain conditions for the solution of the difference equation to also be a solution of the differential 
44, 45 equation. 
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Equations (1) through (5) are coupled nonlinear partial differential equations, and consider
able care must be used in their finite-difference representation if reasonably accurate results are 
to be obtained. For example, in writing Eq. (3), continuity has been used to simplify the equation. 
However, it can readily be shown that the standard forward, backward, or central difference 
representation of Eq. (3) does not conserve energy over the field. It is necessary to write the 
advection terms in the nonexpanded form, 

a(u.T) 
D C ^— . 
" P 3 X j 

to obtain a conservative difference representation; i . e . , to conserve energy over the grid. 

It is also very difficult to satisfy the finite-difference continuity equation when primary vari
ables <u., P) are used. An alternative approach is to cross-differentiate and combine the x and y 
momentum equations to eliminate the pressure term and to introduce the stream function, jjj, which 
automatically satisfies continuity. This procedure replaces the continuity and momentum equations 
(1) and (2) with the vorticity (UJ) and stream-function equations shown here: 

a * +

 a ( u i " * A*a + a 2

w \ + „ a T 

\sx. a * . / 

- /life 

(16) 

V-*f * *-*i) . U7) 

1 8x. 

-r% (18b) 

and 

3u. 3u. 

» ^ " *t • ( 1 9 > 
to difference form, it is frequently easier to solve Eqs. (3), (5), (16), and (17) than Eqs. (1) 
through (5); however, when these are properly formulated, the solutions will be identical. 



For convective- and buoyancy-dominated situations, "upwind" differencing has been shown to 
10 46 

enhance stability and improve accuracy. Accuracy is also improved for rapidly changing 
flow-field problems by allowing for an iterative procedure for the nonlinear (advection) t e rms , 
since during any one time step the terms are necessarily considered to be linear. Computational 
speed is frequently improved by solving for the temperature or the velocity field less frequently 
than for the other, depending upon the nature of the problem. For example, if the temperature 
field is chaining rapidly while the flow field is changing relatively slowly, the flow field can be 
updated (solved) less frequently than the temperature field (energy equation) for a corresponding 
savings in computational t ime. 

The solution procedure for the equations follows directly from the difference procedure used. 
AT explicit formulation allows for the determination of the variable of interest at every point in 
terms of known quantities at the previous time step. A fully implicit .ormulation requires the 
simultaneous solution of the entire field. The resulting equations lead to a fully nonsymmetric 
matrix system with a bandwidth that depends on the geometry of the problem. The nonlinear terms 
and allowance of variable properties require the formation and inversion (or reduction) of the full 
matrix for every time step. This procedure is nearly always the most stable of the alternatives; 
however, it requires the largest amount of computer storage and is very involved computationally. 
Several methods are available for solving this full matrix system of equations. 

The alternating-direction implicit (ADD formulation requires two iterative sweeps for each 
time step, but the resulting system of equations leads (at least for regular geometries) to a t r i -
diagonal matrix system that requires little storage and is computationally very efficient. 

The finite difference codes of this study use a stream function/vorticity formulation to solve 
for the coupled time-dependent velocity and temperature fields for a viscous, incompressible fluid 
flow. The codes are limited to the analysis of plane rectangular geometries or right cylinders of 
circular cross section. Equations (3), <t6>. nrrf 0.7) C7" tr "'ritt-T. ir. n^.r,.-jh"en.sir-^?.l f^rrr* l»y 
defining the following set of dimension less variables: 

U, ffi u. /u t i o 

X. • x . /L 
l l 

T • l u 0 / L 

U Q

2 • g/SATL, 

and by introducing the dimensionless parameters 

3 2 Grashof number, Gr = g/SATL Iv 

Prandtl number, P r = via , 

19 

A = T / T H 

*= tjllu L 

tl = toL/u o 

Q = sin. ref 



where the variables are the same as those described previously and q . i s a reference volumetric 
heating; TV,, is a reference (boundary) temperature, and for an internally generating medium 

H 2 
T „ = q . L /k . . ; f is kinematic viscosity; a is thermal diffusivity; and L i s a characteristic 
dimension. 

Using the above definitions, we obtain the set of equations for the Cartesian geometry 
referred to as the dimensionless energy equation: 

ae , u , v t " ' i / a 2 e . a2e 
ar ax. „ ^ ^ 2 a x _2 

the dimensionless vorticity transport equation 

* 3 X i / S T \ 8 x . 2

 a x . 2 / 3 X i 

the dimensionless stream function equation 

(20) 

(21) 

(22) 

and the dimensionless velocity equations 

V ^ - V " ^ " ( 23 ) 

The temperature boundary conditions are the same as those discussed previously, Eq. (7)f expressed 
in dimensionless form. The stream-function boundary conditions are a zero (or constant) condition 
and a zero normal gradient condition at the wall. The initial velocity, temperature, vorticity, and 
stream-function conditions must also be prescribed; usually they are initialized in natural convection 
problems as a zero condition. The boundary condition on vorticity is obtained indirectly during the 
problem solution. Using a Taylor ser ies expansion of the stream function in the vicinity of the wall 

2 2 
and noting from the stream-function equation (22) with its boundary conditions that n 0 = 3 VaX , 
we obtain a second-order approximation for-tbe wall vorticity from the interior function, 

flo= " < 8 * i ' * 2 > ' 2 < A X ) 2 > (24) 

where subscripts 1 and 2 represent values removed one and two grid points from the wall and Ax is 
the grid spacing. 

20 



The codes use an ADI solution scheme with conservative upstream differencing- The rect
angular geometry also allows for finite-thickness heat-conducting walls and radiative transfer 

12 
within the enclosure. The solution scheme consists of advancing the temperature through a 
time step by solving Eq. (20). The vorticity transport equation (21) is then solved for all interior 
(nonboundary) nodal points. Next, the stream-function equation (22) is solved by converting it to 
n time-dependent (parabolic) equation and using an ADI scheme until the time-dependent term is 
equal to zero. From the solution of the stream-function equation, the wall (boundary) vorticities 
are then updated by using Eq. (24), and the velocity field, Eq. (23), at the end of the time step is 
determined. 

The two finite difference codes (rectangular and cylindrical) are time efficient, and typical 
run times for small problems are less than 400 seconds on a CDC 8600 computer for a full tran
sient solution of an enclosed natural convection problem. The efficiency of the code, however, 
also extracts a penalty in generality. The geometry limitations with regular mesh spacing appears 
to be the most restrictive condition for solving many problems of interest. 

Experimental Method 

For the purpose of this paper, holography can be considered a technique for reproducing in 
Us entirety a visual image of an object or of a region in space. This image preserves all the 
optical features of the object or space including its three dimensionality. It is primarily a method 
of reconstructing a virtual image by recording the radiated coherent light reflecting from an opaque 
object or the transmitted light that passes through a transparent medium. This coherent radiation 
which contains important phase and amplitude information, is referred to as the object beam 
(Figure 3). At the hologram, which is usually a high-re solution photographic plate, the object 
beam is combined with the off-axis coherent radiation referred to in the figure as the "reference 
beam." The photographic emulsion records the complex interference pattern, formed as a result 
of the coherent superposition of the two wavefronts. In this regard, holography is similar to 
classical interferometry except that, because of the spatial coherence of the laser, the two beam 
lengths need not be exactly equal. After the hologram is photographically processed, it will, when 
viewed with incoherent light, bear no resemblance to the original objects. It will contain a high-
frequency (microscopic) interference pattern that can be considered a generalized diffraction 
grating. When this grating is reilluminated with the reference beam {or any other expanded beam 
produced by the same type of laser), it will refract the light in a systematic manner that recon
structs all the phase and amplitude information of the original object beam. This reconstructed 
wavefront can then be processed by an image-forming system, such as a camera, to make a per 
manent record of the virtual image. 
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Figure 3- Laser Holometric Setup, Schematic 

Holometry, or hologram interferometry, is a simple extension of the reconstruction process 
described above. Because the hologram permits reconstruction of an object wavefront at some 
later time, it is possible to have the reconstructed wavefront interfere with another real-object 
wavefront. In this process, known as "real - t ime" holometry> fringes will form whenever the 
instantaneous object beam deviates in phase from its original state by an appropriate amount. 
Original state, of course, refers to the condition under which the hologram was initially exposed. 
One point that should be made about this technique is that the hologram must be very carefully 
repositioned after photographic processing; otherwise, displacement fringes will result . Attempts 
to prevent faulty positioning have i^d to a host of hologram holders, including some that process 
"in situ" to avoid moving the plate. Actually, because the photographic emulsion can shift with 
respect to the plate, some of these devices use a fluid gate to precondition the emulsion. 

Alternatively, it is possible to record the object twice during different states and to recon
struct the two object wavefronts simultaneously at a later time. Again, all that is required for 
viewing the interference pattern is that the beam be produced by the same type of laser . This is 
the so-called double-exposure method, because the hologram is exposed twice before processing. 
A direct analog exists in classical interferometry, provided that the instrument is adjusted for the 
"infinite-fringe, " or uniformly bright screen. One of the disadvantages of this double-exposure 
method is that fringes correspond to quantum shifts in index of refraction and are therefore widely 
spaced. It would be better to have a pattern of tightly spaced fringes so that the density gradients 
could be deduced from fringe gradients. This can be accomplished in real- t ime holometry by 



deliberately introducing a series of displacement fringes in such a way that they form the desired 
tightly spaced pattern. No such capability exists in the double-expo*;ure method. 

The components of the present holometric system are shown in schematic form in Figure 3. 
The entire arrangement is isolated from building vibrations by a Modern Optics V-12 stable-table 
system with viscous mechanical dampening. Dimensions of the table top are 122 x 213 cm, and 
flatness is certified to ±0.04 mm overall. Resonant frequency of the air-mount system is less 
than 1.25 Hz. Illumination of the system Is provided by a Spectra~Phys:c3 Model 125-A helium/ 

neon laser with RF excitation. The laser is claimed to be a 50-mW TEM at 632.8 nm, but care-
x 

ful alignment of the cavity has resulted in an output of approximately 80-90 mW at the exit mi r ro r . 

A typical mi r ro r mount consists of a magnetic stand, mirror , and positioning holder. The 
mi r rors are all X/10 at 632. 8 nm with spectral reflectances of 95 percent or better (45° incidence). 
The variable beam splitter is a Jodon Model VBA-200, capable of continuously varying the t rans
mitted beam from 0. 7 to 90 percent and the reflected beam from 8. 5 to 85 percent. Expansion of 
the object and reference beams is accomplished by a pair of Tropel Model 280-100A laser beam 
collimators with 100-mm exit optics and 1.5-mm entrance apertures. The collimator holders 
were assembled from standard optical table hardware. 

The electronic shutter system is a Jodon Model ES-100, used in the integrating exposure 
mode with the power density detector located behind the hologram plate (Figure 3). Because 
Agfa-Gaevert 10E75 4 x 5 glass plates were the only plates used in this preliminary work, the 

2 
shutter system was calibrated to permit an exposure of approximately 50 ergs /cm . In the double-
exposure runs, each exposure was one -half this amount. The camera used to record the resulting 
interferograms is a Rolleiflex SL-66, 6 x 6 cm single-lens reflex, usually used with a 150-mm 
f4. 0 lens. Except for preliminary work, all photographs were taken with Polaroid Type 105 black 
and white P-N film. The negatives were then analyzed on a Gaertner toolmaker's microscope 
with substage illumination. Translation of the negative in the x and y directions (fringe spacing) 
can be measured to about 2. 5 fan. 

The various test sections used in this preliminary study were mounted on an interferometri-
cally stable laboratory jack. To monitor surface and ambient temperatures, we read a ser ies of 
chromel/alumel thermocouples on an Ohmega Model 415 digital temperature indicator. The device 
uses an internal cold junction, and a temperature resolution of the order of 0.1 K is claimed by 
the manufacturer. A photograph of the complete holometric setup is presented in Figure 4. 



Figure 4. Laser Holometric Setup, Photograph 

Results and Comparisons 

A large number of problems have been examined by means of the PDM and FEM codes, and 
only a small sampling of the problems is included here . The example problems have been chosen 
either to demonstrate a unique analysis capability (e .g . , computation of combined radiation and 
convection) or to provide a focal point for the comparison of the different techniques. The first 
two examples illustrate resul ts from the numerical analysis; the latter two show results from both 
the experimental work and the numerical procedures. 

Free Convection Due to a Local Heat Source 

As a first example, the finite-difference code was used to examine the transient thermal 
response of a rectangular enclosure to a local hot spot centered on the bottom. Figure 5 shows 
the development of the isotherms, including radiative heat transfer, at four dimensionless times 
for a Grashof number of 10 . The alternate light and dark fields represent 10-percent increments 
of temperature from Q , to 6 , where Q » 1 at the hot spot. The external surfaces of the r min max max 
horizontal walls are assumed to be insulated, and the vertical walls a re assumed to have convective 
transfer to ambient a i r . Figure 6 shows the same problem but with radiative heat transfer neglected. 
For this problem, the effect of radiation is very pronounced (as seen also in Figure 1, which shows 
the temperature profile at enclosure midheight for the two conditions at near steady-state condi
tions). 
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Free Convection Due to s/olumetric Heating 

To obtain 3 quantitative comparison between the two numerical methods, we considered the 
conceptually simple problem of a volumetrically heated fluid in a vertical cylindrical enclosure. 
The cylindrical container was assumed to be insulated along the top and bottom surfaces; the 
vertical surface was maintained at a constant temperature. The enclosed fluid was assumed to be 
producing heat volumetrically so that the modified Grashof number {Gr* = gSSL Iv k> was i x 10 . 
The Prandtl number was 0 .71 . 

The finite-difference code used a uniformly spaced 21 x 21 grid and followed the transient 
behavior of the fluid until a steady state was reached. The finite-element code, which employed 
a nonuniform 1 0 x 1 0 element grid, solved for the steady state directly. The results of these 
computations are shown in Figures 8 through 11. 

Figures a and 9 illustrate the streamlines and isotherms computed by the two methods. The 
qualitative agreement is seen to be excellent (the maximum difference between the codes for any 
variable was less than 5 percent). This quantitative agreement can be easily seen in Figures 10 
and 11, where vertical velocity and temperature are plotted versus enclosure radius at a midheight 
position in ;he cylinder. The finite-difference code used 192 seconds of CPU computer time, and 
the finite-element code used 43 3 seconds. 
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Figure 8. Streamlines in a Volumetrically Heated Vertical Cylinder 



a. FDM 

Figure 9. Isotherms in a Volumetrically Heated Vertical Cylinder 
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Free Convection in Rectangular Enclosures 

This section presents the results for two geometric configurations that were analyzed both 
experimentally and numerically. 

The first configuration examined was a heated horizontal right circular cylinder in an 
isothermal rectangular cross-section box, as shown in Figure 12. A transparent glass plate 
covered the entrance end of the box (with respect to the laser beam) and a ground-glass plate 
formed the exit-end boundary. Note that the 2. 8-cm-diameter cylinder is affixed to a phenolic 
stand, which provides stability to the cylinder and acts as a thermal insulator between the cylinder 
and box. Thermocouples were mounted on the inside of the cylinder next to the electrical heating 
coil and on the outer surface between the cylinder and the stand. The heater and thermocouple 
leads were routed to the rear of the cylinder as shown in the figure. The surrounding box was 
constructed of 1. 9-cm-thick aluminum plate. Cross hairs on the entrace and exit planes helped 
in the alignment process. The opening in the box was 6.4 x 8.9 cm, and the inside was painted 
flat black to minimize reflection. A second configuration, in which the right circular cylinder 
was replaced by a heated hexagonal cross-section cylinder, was also examined. The components 
for this test section are shown in Figure 13. 

Figure 12. Test Section 1, Heated Horizontal Cylinder in an 
Isotherm?: Rectangular Box 
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Figure 13. Test Section 2, Heated Hexagonal Cylinder in an 
Isothermal Rectangular Box 

The two experimental configurations were also analyzed by mean of the finite-element code; 
furthermore the finite-difference code was employed on the hexagonal cross-section cylinder 
geometry. Typical computational meshea for both geometries are shown in Figures 14 and 15. 

The configuration of the heated circular cylinder in the isothermal rectangular cross-section 
box produced the double-exposure holometrogram (holoznetric interferogram) presented in Figure 
16. The cylinder surface temperature was determined to be 3 51. 5 K, and the box temperature 
was 294.3 K. Use of the data-reduction technique outlined in Reference 36 indicates that there 
should be six fringes. The photograph clearly coniirms this prediction. Temperatures corre
sponding to the fringes are as follows: 

T (K) T - T <K> 

Cold Surface 294.3 0 
1 302.4 8.1 
2 311.0 16.7 
3 320.0 25.7 
4 329.6 35.3 
5 339.8 45.5 
6 350.7 56.4 

Hot Surface 351.5 57.2 

Because of the prel iminary nature of this study, no attempt was made to deduce heat-transfer 
coefficients for this configuration. 



T = T(y) 

Figure 14. Finite Element Mesh for Configuration 
of Test Section 1 

^ 0 = 0 

Figure 15. Finite Element Mesh for Configuration 
of Test Section 2 



Figure 16. Holometrogram of Test 
Section 1 

The results of the finite-element computation for this configuration are shown in Figures 17 
and 18, where the computed streamlines and isotherms are plottcJ. The values for the plotted 
isotherms have been chosen to correspond to the values for the experimentally determined fringes 
so that a direct comparison of Figures 16 and 18 can be made; the qualitative comparison between 
experiment and computation is fairly good. 

The final test, case run in the present study was the heated hexagonal cross-section cylinder 
in the isothermal box. Aside from providing an additional check on the measurement capability 
of the laboratory, this model provides a check case for the finite-difference computer codes being 
developed. Figure 19 is the holometrogram for the case of the cylinder at 358.1 K and the box at 
292.0 K. Fringe and temperature data from the photo are given below: 

e T (K) 
292.0 

T - Tj (K) 

Cold Surface 
T (K) 
292.0 0 

1 297.4 5 . 4 
2 303.1 11.1 
3 308.9 16.9 
4 315.1 23.1 
5 321.4 29.4 
6 328.0 36.0 
7 334.9 42.9 
8 342.1 50.1 
9 349.6 57.6 

10 357.4 65.4 
Hot Surface 358.1 66.1 
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Figure 19. Holometrogram of Test 
Section 2 

The numerical solutions to this problem, in the form of streamline and isotherm plots, ar> 
shown ill Figures 20 through 23. Both the finite-element and finite-difference results show good 
qualitative agreement with the experimental results (Figure 19). A plot of the measured and pre
dicted temperature along the centerline of the plume (from the top of the hexagon to the top of the 
enclosure) i s shown in Figure 24. In general, the agreement is within 10 percent. Some of the 
discrepancy near the two boundaries is due to the parallax effect of the photograph (made from the 
illuminated hologram) from which the measured data are taken. Another source of e r ro r is that 
in theBe simple test sections the boundary temperatures were not truly isothermal, as was assumed 
in the finite-element and the finite-difference models; however, the temperature was not monitored 
in enough positions to warrant applying a nonisothermal boundary to the models. Further dis, -ities 
result from the use of constant properties in the models and from variations between the FEM a > 
the FDM grids. 

More sophisticated test cells are currently being designed and assembled so that the boundary 
conditions can be carefully controlled and monitored. This will allow a more detailed quantitative 
comparison of the measured and predicted temperature distribution (and resulting heat-transfer 
coefficient distribution) on the heated element and surrounding enclosure, to addition, a laser / 
Doppler velocimeter is being developed for measuring the velocity field to compare it with the 
computational resul t s . 
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Figure 20. Predicted Streamlines for 
Test Section 2, FEM 

Figure 21. Predicted Streamlines for 
Test Section 2, FDM 
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Figure 23. Predicted Isotherms for 
Test Section 2, FDM 

Figure 22. Predicted Isotherms for 
Test Section 2, FEM 
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Conclusions 

The two computational methods for the general class of problems of enclosed thermally 
driven convection yield similar qualitative and quantitative results . Results from both methods 
compare favorably with the measurements of the temperature field made with a laser holographic 
interferometer. This optical measurement technique is shown to be a very powerful tool, yielding 
simultaneous temperature information over the entire flow field. 

The finite-difference method is computationally more efficient than the Finite-element method; 
nevertheless, the latter is capable of handling completely arbitrary two-dimensional geometries. 
The favorable comparisons shown herein lend confidence to the ability of the computational methods 
to produce physically realistic results for various configurations where experimental data a-e not 
available. 
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