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Abstract

Wave trajectories propagating obliquely to magnetic field

in toroidal plasmas are studied theoretically. Results show

that the ordinary wave at appropriate incident angle is mode-

converted to. the extraordinary wave at first turning point

and is further converted to the electron Bernstein wave during

passing a loop or a hooked nail curve rusar second turning

point and is cyclotron-damped away, resulting in local electron

heating, before arriving at cyclotron resonance layer.
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Recently the experiments on the electron cyclotron heating

1 2 3 4

(ECH) in tokamaks, ' Octupole and the Elmo bumpy torus have

recieved considerable attentions in connection with possibility

of further heating and modification of current profile, which

may be possible by development of the gyrotron. In toroidal

devices, plasma parameters such as electron density and magnetic

field are strongly nonuniform, so that such studies as wave

propagation, mode conversion and absorption are very important

in order to succeed in these ECH experiments. It is suggested

theoretically that by injecting microwave in the direction of

decreasing major radius in the toroidal plasma the extraordinary

(X) mode is excited, then, after penetrating the evanescent region

due to the cyclotron cutoff, the X-mode reaches the upper hybrid

resonance (UHR) layer (<0 = U) =J(j) +Q, ), where the X-mode is
7 8 9

converted into the electron Bernstein wave. ' ' Further, the

wave propagates to the electron cyclotron resonance (ECR) layer

(CO=£l ) , where the wave is cyclotron-damped. In order to avoid

the wave reflection ascribed to the cyclotron cutoff, it is

planned to inject the microwave in the direction of increasing
2 5

major radius. ' On the contrary, it was suggested by Preinhaelter

et al. that in a plasma with varying density in an uniform

magnetic field, the ordinaly (0) mode propagating at an appropriate

angle to the field is transformed into the X-mode near the plasma

cutoff (CO = CO e) .

In this report, we first' present the wave trajectries (group

velocity trajectories) of the wave propagating in toroidal plasmas,

where the obliquely propagating 0-mode is converted into the
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X-mode and then into the electron Bernstein mode, and finally

is cyclotron-damped in front of ECR layer. The studies of

these trajectories are essentially important not only for the

ECH experiments, but also for measurements on the electron
11

cyclotron emission from tokamak plasmas and the cyclotron

emission loss in a reacter.

At first, we shall study the dispersion of electromagnetic

waves in a plasma slab model with a density gradient along

the x-direction in a magnetic field B along z-direction.

Assuming that non-uniformities of plasma parameters are weak

and the geometrical optics is valid, the dispersion equation

of wave with a constant refractive index N =ck /co along z-
z z

direction at a local position (x,z) is given by

6 (Co, ~k) = aN^ - bN^ + c = 0 (1)

2
in the cold plasma approximation, where a=S, b=RL+PS-(P+S)N

z
2 4 12

and c=P(RL-2SN +N ) (R, L, P and S are the Stix's notations
z z

and only electron terms should be retained).
In Fig. 1 are plotted the refractive index N. perpendicular

~* 2 2
to B as functions of CO /(JJ for the various values of N at

pe z

a fixed value of £1 /to. While, 0- and X-modes do not inter-

sect in the case of N =0, their dispersion curves are connected
z

in the imaginary region for a small value of N (excluding
z

2 2
the point at CO /a) =0). As N increases, this evanescent

Jpfci Z

region decreases and at last disappears at N =N =[ Q /
Z Z;Opt €

(<JO+Sie)]
1/2, or at the incident angle 0 =arccos Ng o p t*

1 0

For N > N ^^4./ there appears the evanescent region in a low
Z Z/Opu



density side ( (A) /U)<^1) . In a rather wide range of N around
pe z

N =N . , the transmission coefficient of O-mode through this

evanescent layer is shown to be nearly unity, since the layer

is narrow and shallow (|N 1 <$Cl) . It is also shown that
z

the transmitted O-mode are fully transformed into the X-mode

at the first turning point,10 (U> /co) 2=l+[ ( 0- Vu» (1-N2)/2N ] 2 .
P© € Z Z

The converted X-mode propagates back in the low density side

and reaches UHR layer, where the cold plasma approximation is

invalid and the thermal effects of electrons must be taken

into account.

Assuming the maxwellian velocity distribution, we can

write the exact dispersion equation for the hot plasma wave

as follows:
(2)6 (Oi;,~k) = det |*K - K2(I - NN/N2) j = 0,

where K is the dielectric tensor at the local position and

it is written as follows,

where

n.
j

and
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the first derivative of the plasma dispersion function.

2 2 2
If N =Nj_+N is large considerably, the electrostatic

approximation is valid and the following electron Bernstein

wave is obtained by the equation, £=~k>-^-k/ k2:

£{co,k) = 1-

In Fig. 2 are plotted the three kinds of N, as functions

2 2
of CO '/<j> calculated from eqs.(1), (2) and (3), respectively,

v/ith the various values of T for N =N . . It is reasonable
e z z,opt

that the exact dispersion curve (ABCDJK for T =1.6 keV) is
G

well approximated that of the cold X-mode if N <£ 1, while it

is by that of Bernstein mode if N.^>5. In the intermediate

range of N., the exact dispersion curve should be calculated,

since the discrepancy between both solutions becomes large

with the increasing T
In accordance with the variation of N, in Fig. 2, we

, "r*(t) ,
12,14

calculate the wave trajectory, r(t), determined from the following

set of differential equations.

= V

v/here £(<y,k)=0 is the local dispersion equation given by

eqs.(1), (2) or (3), assuming that Co is constant along the

trajectory. When the plasma is homogeneous along the z-direction,

it is shown from eq.(4) that k is a constant along the trajectory,
Z

which is the reason why we take N = const, in the calculation

of dispersion curves.
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For the computer calculations of the wave trajectories in

the equatorial plane of torus, the plasma is simulated by the

plasma slab model, where the electron density and the magnetic

field are varied as follows:

(0)
n x2, $•<*> ^e<°> R

U ) 2 CO2 a2\' « " W R" x

where, R (a) is the major (minor) radius of the torus, and

U) (0) and &ti (0) are the respective values at the magnetic axis

(x=0) [Fig. 3(a)]. Though the magnetic field as well as the

density are varied, the variation of N,(x) is rather similar to

that in an uniform B (Fig. 2), except in the vicinity of ECR

layer.

In Figs. 3(b) and (c) are plotted the wave trajectories

calculated from eqs.(2) and (4) in the case of N =N ^ . at
Z ZOpt

the plasma cutoff. Being injected at the plasma boundary

(point A) at the incident angle u ., the O-mode propagates

to the plasma cutoff point (B), where N,=0 and k//B, then the

O-mode propagates in a backward wave for the X-directior to

the first turning point (C), where the group velocity perpen-

dicular to B, v =0, and the O-mode is converted to the X-mode.

At the point D, the group velocity parallel to B, v _ is
gz

inverted, and the X-mode propagates in a backward wave for the

z-direction toward the second turning points (E,M,J), where

the wave trajectories show the interesting, but complicated

behaviours, that is, the trajectory passes the loop, DEI, in



a low T plasma, while it does the hooked nail curve, DJK, in

a high T plasma. As CO m(0)/a> increases, the transmitted
e P®

distances AC and AE become short. On the other hand, if the

density is low (for example, Co (0)/(o= 1.1223), there is no

mode-conversion point after penetrating the plasma cutoff and

the O-mode is reflected back toward the boundary.

In a cold plasma approximation, the X-mode propagates to

the UHR layer, F, where N ^ o o and "v j_ v\=(O)/|k| 2)lf and the

trajectory is parallel to B, while in an electrostatic approx-

imation the Bernstein wave propagates along the trajectory GHI,

and the exact trajectory is given by the loop DEI in the low T

plasma (T =10 eV). In contrast with the above case, in the

high T plasma (T =1.6 keV) the trajectory of X-mode, DJ,

deviates a little from that of cold one and the Bernstein wave

propagates along the curve, GLK, and the exact trajectory is

given by the hooked nail curve DJK. It is noted that points

A, B, C, ... on the trajectories in Pigs. 3(b) and (c) correspond

to those A, B, C, ..t respectively, on the dispersion curves

in Fig. 2.

Solving eq. (3) and its derivative 36/5^= 0 simultaneously,
o o

the approximate equations for (Q n/(u and k, P at the turning
pe J-' e

points of the Bernstein modes (H, O, L) are derived as functions

of & /otf and k P . Then the direction of group velocity,

v _ ^ 0 , at these points is determined by the following relation:

with 2. = [l+3(«£/cy)2] [l-(£/0))2]~3. While RHS of eq. (6) is
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nearly constant, k P increases with T , therefore v becomes

positive in high T plasmas. In fact, eq.(6) shows that v > 0e cf z

if T > 1 . 6 keV for the plasma parameters in Fig. 3(a). It is

noted, however, that in an intermediate T plasma (T = 0.8 keV),
& e

the trajectory is the hooked nail curve, DMN, though that of

Bernstein wave is given by the curve GON, which has a negative

v at the turning point o.

Passing a loop or a hooked nail curve near the second

turning point, the X-mode is converted to the Bernstein wave,

which propagates in a backward wave for the x-direction toward

the ECR layer. As T changes, their trajectories are varied

and in the limit of T = 0, the trajectory becomes a perpendic-

ular line, which is the same as that in the case of T ^ 0, but

k = 0 (perpendicularly propagating Bernstein wave). When the

cyclotron damping becomes appreciable, the wave trajectory is

roughly parallel to B. The hatched hill is the absorbed power

rate per unit length along the trajectory RQ, which is given by

dP/dJ2.= -2(Im k)P with Im k= ImS/(9Re 8 /9<u) | v* \. Here Im£ is

the imaginary part of eq.(3), where the term of n= 1 is dominant.

On the trajectory, RQ, for T = 400 keV, the cyclotron damping

becomes effective at the point R and the wave is darned away at

Q, where the ratio of rf power at Q, P , to that at R, Pn, is

taken as P /P = 5x10 . In addition to this cyclotron damping,

the collisional damping is included, then Im £ is given by the
Q

imaginary part of the following dispersion equation:

wher V is the electron-ion collision frequency.
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Numerical calculations show that the cyclotron damping is

dominated in high temperature plasmas of T > 100 eV in Pig.

3(b). Further, the absorbed power rate becomes the maximum

at the position, where the inverse cyclotron frequency is given

by C0/J2e*»l + 2.6 kzPe, independently of kzfe> Thus, the

wave is damped away and electrons are heated locally before the

wave is transmitted to ECR layer, which is in contrast with the

ressult that most energy of the wave absorbed at ECR layer

(60= SI ). On the other hand, the Bernstein wave is damped

away near UHR layer (CU=COr,rT) by the collisional damping in
On

low temperature plasmas of T <,100 eV. The above saying seems

to correspond to the experimental results that the wave absorp-

tion is effective at UHR layer in low T (^10 eV) plasma in

Tuman-2, where the collisional damping may be dominant, while
the cyclotron damping near CO = SI• , 2^lQ is effective in high

Te(~400 eV) plasma in TM-3.
1

On the calculation of wave trajectory, described above,

it remains to be questionable that WKB approximation may be

broken near the plasma cutoff and the first and the second

turning points. However, it has been shown that the transmis-

sion efficiency at the plasma cutoff and also the mode-conversion

efficiency at the first turning point are quite high.

Further, it was reported by Schuss et al. that an X-mode,

propagating perpendicularly to B in the direction of decreasing

magnetic field, almost completely converts into a backward

Bernstein mode near the UHR layer.

The results are summarized as follows: In a toroidal

plasma the 0-mode injected at the incident angle # o p t can
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propagate into a dense plasma (GO /W^>1) » where the wave is

converted to the X-mode. This mode propagates back to the

UHR layer, where the wave is converted to the backward Bernstein

mode during passing a loop or a hooked nail curve. At last,

the wave is cyclotron or collision damped away and the local

electron heating occurs in front of ECR layer. Using the

above-described wave trajectories and cyclotron damping,

experiments on E C are now under study.

The authors wish to express their thanks to Professors

H. Ikegami, K. Matsuura,K. Miyamoto and to members of ECH Study

Group of JIPP T-II at Institute of Plasma Physics, Nagoya

University, for their discussions.
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Figure Captions

Fig. 1 Refractive index N. perpendicular to magnetic field

2 2as function of plasma density (0) /co ) for various values of

N at a fixed value of magnetic field (Q /co = 2/3). Solidz e

and dotted curves show the extraordinary (X) and the ordinary

(0) modes, respectively.

Fig. 2 Refractive index N, versus plasma density (0) /co ) for

the optimum Nz opt
=0-6325 (^pt= 51 deg) at the fixed value

of be fj}=2/2. For T = 1.6 keV, the exact dispersion curve

calculated from eq.(2) is plotted by the solid one (ABCDJK),

while the dispersion of cold X-mode calculated from eq.(1)

is the dotted one (ABCDF) and that of Bernstein mode calculated

from eq.(3) is the thin one (BGLK).

Fig. 3 (a) Electron density and field intensity variations in

toroidal plasma. O ) 2
e (0)/(u

2= 1.21, ̂  (0)/0) = 0.87 and

R/a = 91/17 (for example47 (0)/27C= 35 GHz, k = 5.63 cm"1,

a = 17 cm and electron-ion collision frequency V/u) (0) = 5.2

10"5, 2.1 10~6, 3.0 10~7, 4.2 10~8 for T e = 0.01, 0.1, 0.4,

0.8 and 1.6 keV, respectively).

(b) and (c) Wave trajectories for H, ^ . =* 0.668 in
Li t O p C

toroidal plasma with T as a parameter. For T = 10 eV,

the exact trajectory calculated from eq&(2) and (4) is plotted

by the curve (ABCDEI), while the trajectory of cold X-mode

calculated from eq.(1) is the curve (ABCDF) and that of Bernstein

mode calculated from eq.(3) is the curve (GHI). The exact

trajectories are plotted by curves (ABCDMN) and (ABCDJK) for

T = 0.8 and 1.6 keV, respectively.
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