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A B S T R A C T

It is shown that spontaneous generation of

invariant mass is possible in infra-red stable theories with more

than one coupling constant. If relations anong the coupling

constants are permitted the effect can be made compatible with

perturbation theory.
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1 - Introduction

Spontaneous mass generation is the appearance, through

spontaneous breakdown of synmetry , induced by renornalization ,

of massive particles, in a theory described by a massless lagrangean.

In this work we study the problem of spontaneous mass generation

in theories with more than one coupling constant. The attention of

physicists has, up to now, been directed mainly to theories with a

single coupling constant: in this case some rather strong results
(1>,(2)

have been proved ,showing that the generated masses are, first,

nonperturbative effects, and, second, only possible for asymptotically

free theories. The extension of these results to theories with several

coupling constants was attempted in ref.(l),but the argument is

unreliable. In fact, when more than one coupling constant exist ,

spontaneous mass generation can appear even at a perturbative level,

a result contained in a celebrated paper by S.Coleman and E.Weinberg .

What we do here is to show that theories with two coupling constants,

as, for instance ref. (3), escape the criticism of Gross and Neveu ,

based on the requirement of renonnalization invariance of the alleged

spontaneously generated mass, and to give a simple criterion to

decide whether such an effect may be understood at the level of

perturbative calculations.

The paper is organized as follows: in section 2, we review the

main results on mass generation in theories with one coupling

constant and discuss the attempt, by Gross and Neveu , of

extending these results to the general case. Section 3 considers

a theory with two coupling constants. To be concrete, we discuss

the Coleman-Weinberg lagrangean, solve the pertinent renormalization-

-group equations and explicitly exhibit a (nonperturbative) invariant

mass. Section 4 shows how a perturbative invariant mass can be

obtained.

This turns out to be the very mass computed by Coleman and



Weinberg, following a different route. A general prescription for

this kind of effect is abstracted.

2 - Theories with one coupling constant.

Suppose A is the coupling constant and m is the spontaneously

generated mass. To renormalize the massless theory, a parameter u. >

with the dimension of mass must be introduced and we have, on

dimensional grounds,

f being an arbitrary function. If m is the mass of a particle,

its value should not depend on the renormalization, that is, on u .

We must, therefore, have 2^H - 0 ,or , equivalently,

d

where

= li. .

The general solution of (2) is

C being an arbitrary constant. It must be required that m vanish

as A goes to zero. It is easily seen from (3) that this is the case

only if the theory is asymptotically free . If, for instance,

S (4)
= -a A



we will have

>-0L Lr-t) X J
(5)

Because of the A behavior, this is a nonperturbative result.

Accordingly, the known examples are some rather unrealistic two-

-dimensional models studied in the N-* CO approximation, as in

refs.(l) and (2) .

Gross and Neveu attempted to extend these results to theories

with more coupling constants in the following way:

For an infrared-stable ( n) O )theory, in the case of

many coupling constants, the physical masses must satisfy

where

it

If the theory is infrared-stable, then A^t) ^ - -—— when t -> - oo

Therefore, as ju •* o , p(^i) must diverge as exp(-^-J when all

the coupling constants vanish at the same rate.

Against this argument we will explicitly solve the renormalization-

-group equation for m in the next section, and show that it is,

instead, possible to obtain a solution which vanishes as the coupling

constants go to zero. The limit u-rQ in eq. (6) is a singular one , as

the basic property of the parameter/t is being different from zero.

Besides that, what really matters is the limit A, -» Q with fixed ju ,

which is the limit discussed in the case of one coupling constant.

3 - Theories with several coupling constants.

To be specific, let us consider the Coleman-Weinberg lagrangean



containing mass less hermit ian scalar fields <px
 anc^ $*, • W e work

in the Landau gauge and renormalize the Green functions at an

auxiliary mass n • We say that a field (b acquires mass m if

the effective potential V((p) has an absolute minimum at ^ = v

and if, in terms of the new field <p'-(p - v , the 2-point vertex

obeys

(I)

and

(9)

i—i (2)From (9) and from the renormalization-group equation for j 1 * "

it follows that

(10)

This is the renormalization-group equation for the mass, and its

content is that the mass of a physical particle must be independent

of renormalization.

To repeat the analysis of the one-ccupling-constant case let

us write

w. = f'Ce, A )

and then



here ,

cV
(13)

and

(14)

in the one-loop approximation. The equation (12) becomes

(is)

and its general solution can be easily found by the method of the

characteristics . The invariant mass is

where f,, is an arbitrary function. The last factor of eq.(16)

explodes as & •* 0 .To get a reasonable invariant mass we must

then exhibit some pc that cancels this singularity. An example is

(17)

Taking

we have

and

W. -=

which vanishes as é -*0 . As it is, the dependence on & is

clearly non perturbative, so that, unfortunately, we have no way to

verify whether the theory actually takes profit of this possibility.



4 - Perturbative solutions.

A solution of eq.(10) which is compatible with perturbation

theory may be obtained with a convenient relation between ) and « .

Coleman and Weinberg themselves needed such a relation. We think we

are able to strengthen its necessity by arguing for it in a different,

more easily generalizable way. Our treatment is inspired in the

beatiful paper of Iliopoulos and Papanicolau on the gauge invariance

of Coleman-Weinberg's results.

Assume that A is of the same order as e .Explicitly, let us

take A - p e , p being a new parameter of order 1 .In terms of e

and O , equation (15) reads

^ i ^ f f p 0 (18J
I f f * de lKb âP

We look now for solutions which not only vanish, but are analytic

for e-0 .In this case —• is also analytic, and the first

term of the left-hand side of eq.(18) vanishes with e . For small

C , then ,

JL li- = -{. (19)

The general solution gives tha mass

(20)

where f0 is an arbitrary analytic function of e that vanishes

for e*0 • This is an important result, as it gives, for L =

the vector meson mass computed in ref.(3). it is therefore

inequivocally shown that the results of Coleman and Weinberg are

renormalization-invariant, and that the masses they compute can

be masses of physical particles.

Technically, this is due to the fact that the coefficient of



dfi in eq.(18) has a constant term. This simulates a negative
dp
n in equation (10) , giving the exponent the correct sign. To

find the convenient combination between the coupling constants,

we must therefore look for those which originate constant terms

in the coefficients of the renormalization group equation for

the mass. In this way not only does one get mass generation in an

infra-red stable theory, but this is done in a way consistent

with perturbation theory.

We thank J.Frenkel for discussions and suggestions.
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