UCLA = 12/1159 UC-48 Biology and Nedicine

LABORATURY OF NUCLEAR MEDICINE AND RADIATION BIOLOGY 900 VETERAN AVENUE

UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

August 1978

These studies were supported by Contract EY-76-C-03-0012 between the U.S. Department of Energy and the University of California.

Prepared for U. S. Department of Energy under Contract EY-76-C-03-0012

SOIL COMPONENTS THAT INFLUENCE THE CHEMICAL BEHAVIOR OF $^{239}\mbox{Pu}$

H. Nishita and M. Hamilton

Notice that the property of the second of work, sponsed by the index Stars Goerman's 1 Norther the Unord Stars now the Unord Stars Typement of Teres, on any of the employers, or for a replayer, of the units that the second stars and the second stars is searble, replayers are replayed, or second stars any legal labeling a replayers are under a unitarial second star and second stars are replayers and the second of the mean second stars are replayers and the second stars are replayers and the second of the process decided of represent that the workd net unitarge proceed and the second star is the workd net and the process and second stars are set and the second stars are set and the second stars are set and the second stars and the process and second stars are set and the second stars are proceed and the second stars are set and the second stars are set and the second stars are set and the second stars are proceed and the second stars are set and the second stars are proceed and the second stars are set and the second stars are provided and the second stars are set and the second stars are set and the second stars are provided and the second stars are set at the second stars are second stars are set at the second stars are set at the

. N

ABSTRACT

Soil components that influence the extractability of ²³⁹Pu from an artificially contaminated kaolinitic soil in relation to pH have been examined. This was done by using an equilibrium batch technique with $CH_3COOH-NH_4UH$ and HNO_3-NaOH extracting systems. Soil organic matter and free iron oxides had an appreciable effect depending on the pH and the extracting system. The free silica and alumina and amorphous alumino-silicates had lesser influence. With the untreated soil (control), the $CH_3COOH-NH_4OH$ system generally extracted more $^{\rm 239}{\rm Pu}$ than did the ${\rm HNO}_{\rm 3}{\rm -NaOH}$ system in the acidic pH range, whereas the latter system extracted markedly greater amounts of it in the alkaline pH range. With the soil from which the organic matter was removed, the $CH_3COOH-NH_4OH$ system extracted appreciably greater amounts of $^{\rm 239}{\rm Pu}$ than the ${\rm HNO}_{3}{\rm -NaOH}$ system in the acidic pH range, but there was only little, if any difference between the two extracting systems in the alkaline pH range. The causes and the implications of these results are discussed.

The increasing use of Pu as an energy source intensifies its potentialities as a biological hazard. This, in turn, intensifies the need to obtain information regarding its form and physical and chemical reactions in various natural environments. As part of this effort, an appreciable amount of work has been done to determine the concentration of Pu in soils and the extent of its movement in soils (Krey and Hardy, 1970; Romney, Mork and Larson, 1970; Bliss and Dunn, 1971; Hardy, Krey, and Volchok, 1973; Essington et al, 1976; Nevissi, Schell, and Nelson, 1976; Krey et al, 1976; Nyhan, Miera, Jr., and Neher, 1976; and others). However, very little is known about the changes that occur in the chemical and physical forms of Pu after it enters the soil.

This paper deals with the influence of several soil components (organic matter, free iron oxides, and free silica, alumina, and amorphous alumino-silicates) on the chemical behavior of 239 Pu in an artificially contaminated kaolinitic soil. The influence of the soil components was determined over a pH range from 1.5 to 12.7 using an equilibrium batch extraction technique. Extractability rather than sorption is emphasized in this paper, because it is indicative of the Pu fraction that is transferred in soils and has implications on biological availability.

MATERIAL AND METHODS

The soil studied was Aiken clay loam, which is a slightly acidic (pH 6.6), kaolinitic soil. Its chemical properties together with those of the soil treated as described below have been reported previously (Nishita, Hamilton, and Steen, 1978).

4

The influences of the various soil components on the extractability of 239 Pu were determined by selectively removing certain soil components and interpreting the effect of their removal. The procedure was given in detail previously (Nishita, 1977; Nishita and Hamilton, 1977). Briefly, treatment I was the CaCl, treatment of the virgin soil. This removed the water soluble organic matter and salts and kept Ca as the dominant cation on the soil exchange complex while the other exchangeable cations were reduced. This treatment was also applied after each of the following treatments, which were done in sequential manner. Treatment II removed the HCl-soluble organic matter and salts including the carbonates. Treatment III was the H_2O_2 treatment to remove organic matter and dissolved Mn oxides and some residual carbonates, if originally present. Treatment IV, which was the digestion of samples in $Na_3C_6P_5O_7 - NaHCO_3 - Na_2S_2O_4$ mixture, removed the free iron oxides. Treatment V (lia_2CO_3 digestion) partially removed the free silica and alumina, amorphous alumino-silicates, and residual organic matter.

1 M. S. M. L. H. MALLING MARKED (2014) 11 (1997).

1

10.1

The extraction of the soil was done by the equilibrium batch method. Two g of soil material (oven dry basis) were placed in 50-ml polyethylene centrifuge tubes (Oak Ridge type) in duplicate, moistened by 5 ml of distilled water, contaminated with 50 µl of stock solution of 239 Pu in 3 M HNO₃, mixed by swirling, and allowed to stand for about 1 hr. Twenty ml of extracting solution were then added. Each suspension was equilibrated for 48 hr with continuous mixing on a mechanical shaker and then centrifuged at 18,800 gravity for 10 min to obtain the equilibrium extract. The concentration of 239 Pu in the extract is considered the extractable fraction.

The pH of the equilibrium extract was measured by the use of a glass electrode. Two extracting systems were used, e.g. HNO_3 - NaOH system and CH_3COOH - NH_4OH system. In the former system, the pH was adjusted to the desired level by adding appropriate amounts of either HNO_3 or NaOH. In the latter system, CH_3COOH was titrated with NH_4OH to obtain the desired pH. Thus, the acetate moiety was constant (0.8 M) for all the pH levels studied. The dose of 239 pu applied is indicated in the figures. The 239 Pu was applied in the IV oxidation state. It was prepared by digesting the 239 Pu stock solution in 8 <u>M</u> HNO₂ (Rydberg and Sillen, 1955).

For radioassay, 10-ml aliquots of the equilibrium extracts were prepared for counting according to the method devised by Wood, et al (1976) with slight modification. In the method, organic matter and silica were eliminated with HNO_3 and HF, respectively. The ²³⁹Pu was separated by coprecipitation with iron hydroxide and purified by using ion exchange techniques. The final eluate was evaporated to dryness on stainless steel planchets and counted using an alpha spectrometer system equipped with silicon surface barrier detector (2.54 cm dia. Ortec Model BR-028-450-100). In determining the alpha activities of the evaporated eluates, sufficient counts were collected to assure that the error of measurement did not exceed 5 percent at the 5 percent significance level.

RESULTS AND DISCUSSION

CH_COOH-NH_OH System

Figure 1 shows the effects of CH_3COOH -NH₄OH system on the extractability of ^{239}Pu from treated and untreated Aiken c.1. With the untreated soil (Fig. 1A), the extractability of 239 Pu increased from pH 2.3 to a peak between pH 3.6 to 4.7. Above pH 4.7, the 239 Pu extractability decreased progressively to a minimum (0.17 percent of dose) at pH ~9, and increased slightly from pH ~9 to pH ~10.2 and sharply above pH ~10.2. The maximum extractability was 6.9 percent of dose in the acidic pH range and 16.1 percent of dose in the alkaline range.

The second second

The second s

The second se

14

Treatment I, which removed the H_2O -soluble organic matter and salts, caused a small increase of 239 Pu extractability relative to that of the control up to pH ~7.8 (Fig. 1B). The increase was significant at the 5 percent level of significance using the Students' t-test (Alder and Roessler, 1977). Above pH ~7.8, treatment I was not significantly different from the control.

Treatment II, which removed the HCl-colubie organic matter and salts, generally increased the 239 Pu extractability relative to that of the control over the entire pH range studied. The amount of increase, however, varied with the pH. The removal of the HCl-soluble substances had a greater effect on the extractability of 239 Pu than the removal of water-soluble substances.

Although treatments I and II had some effect on the magnitude of the extractable fraction, the general pattern of the 239 Fu extractability curves remained similar to that for the control. The initial increase of 239 Pu is ascribed to increasing complexation of 239 Pu by the CH₃COO⁻ ions resulting from increasing addition of NH₄OH to increase the pH. The neutralization of CH₃COOH by NH₄OH produces NH₄⁺ and CH₃COO⁻ ions. The NH₄⁺ ions can then exchange off a fraction of the adsorbed 239 Pu ions from

the soil exchange complex, while the $CH_{3}COO^{-1}$ ions form complexes with them. Plutonium is known to complex with CH_COO ions (Gel'man et al, 1962; Taube, 1964; Cleveland, 1970; Moskvin, 1971). A peak is attained between pH 3.6 to 4.7. At the peak, the sorption of the hydrolysis products of 239 Pu is believed to become the dominant factor, and thereafter there is a progressive increase of sorption (decrease of extractability) with increasing hydrolysis, polymerization, and colloid formation with increasing pH. Polyvalent radionuclides may pass from ionic to the colloidal form via their hydrolysis, precipitation, coprecipitation, or adsorption under various conditions (Schubert and Conn, 1949; Kepák, 1971). The hydrolysis, polymerization, and colloid formation have been shown with Pu solutions by a number of investigators (Connick, 1954; Ockenden and Welch, 1956; Brunstad, 1957, 1959; Samartseva, 1962a, 1962b, 1963; Grebenshchikova and Davydov, 1965; Lloyd and Haire, 1973; Costanzo, Biggers, and Bell, 1973; and others). The more ready sorption of hydrolysis products of hydrolyzable ions compared to their nonhydrolyzed ions has also been shown by many investigators (Matijevic et al, 1960, 1961; Stumm, Huang, and Jenkins, 1970; James and Healy, 1972; Tewari et al. 1972, 1975; Loganathan, Burau, and Fuerstenau, 1977; and others). The sharp increase of ²³⁹Pu extractability above pH 10.3 was due to the extraction of alkali-soluble organic matter with which the ²³⁹Pu was associated. This is shown clearly by treatment III.

Treatment III, which removed the organic matter and Mn oxides, significantly increased the extractability of ²³⁹Pu in the pH range below pH ~9 relative to treatment II and drastically reduced the extractability above pH 10.3 (Fig. 1D). The effects observed were considered to be due

8

đ

primarily to soil organic matter since its concentration (2.3) percent organic-C) was much greater than that of the HNO_2 -extractable Mn (0.15 percent). The marked reduction of ²³⁹Pu extractability in the pH range above pH 10.3 after treatment III indicates that the high extractability under treatment II was due to the presence of alkali-soluble organic matter with which part of the ²³⁹Pu was associated. This is supported by the fact that the soil extract above pH 10.3 was dark brown in color for treatment II (as well as for the control and treatment I), but was colorless for treatment III. The high extractability of soil organic matter in alkaline solutions is well-known (Mortensen, 1965; Kononova, 1966). The enhanced 239 Pu extractability in the pH range below pH $^{-9}$ after the removal of soil organic matter shows that a fraction of 239 Pu (up to about 1) percent of dose) was strongly fixed on the organic matter before its removal even against the complexing action of the CH_2COO^{-1} ions. The ^{239}Pu extractability in the pH range above pH ~9 was from 0.3 - 0.5 percent of dose, indicating that its extractability from the inorganic fraction of the soil is low under strongly alkaline condition.

a a su an anna a tha anna (1911) is 1999) ann 1912 a bhailte an 1912 ann 1912 a bhaile an 1912 anna an 1912 a su anna ann

h

Treatment IV, which removed the free iron exides, significantly reduced the ²³⁹Pu extractability relative to that after treatment III in the pH range below pH ⁻⁹ (Fig. 1E). Above pH ⁻⁹, there was no significant difference between the two treatments. The effect observed perhaps occurred as a result of the exposure of additional ion accorption sites with the removal of iron exides. One evidence for this is indicated by the increase of the cation exchange capacity of the soil from 16.53 meq/100 g before the removal of iron exides to 17.98 meq/100 g after their removal. The

blocking action of iron oxides may be surmised from the fact that iron oxides occur as cementing materials and partial coatings on the surface of soil clays (Carroll, 1958; Mehra and Jackson, 1960; Jenne, 1963; Anderson and Jenne, 1970; and others).

Treatment V, which partially removed free silica and alumina, amorphous alumino-silicate, and residual organic matter, did not appreciably affect the extractability of 239 Pu relative to treatment IV (Fig. 1F). The 239 Pu extractability ranged from 0.53 to 4.26 percent of dose over the whole pH range studied. Assuming that the residual soil material after treatment.V is mainly kaolinite, the results indicate that 239 Pu is strongly associated with kaolinite even in the presence of CH₃COO⁻ ions, which form complexes with 239 Pu.

HNO₂-NaOH System

Figure 2 shows the extractability of 239 Pu with HNO₃-NaOH extraction system. Except for a slight peak at pH ~3.6, the 239 Pu extractability from the untreated soil (control) generally decreased with increasing pH to a minimum (0.63 percent of dose) at pH ~6.9 (Fig. 2A). Above pH ~6.9, it increased progressively to a maximum (47.52 percent of dose) at pH ~11.5 and then decreased.

Relative to the control, creatment I had only slight effect on the extractability of 239 Pu between pH 1.5 and pH -6.9 (Fig. 2E). Between pH -6.9 to pH -11.8, there was a small reduction of its extractability, indicating perhaps that a small amount of 239 Pu was associated with water soluble organic component before its removal. Treatment II had only

slight, if any, effect on ²³⁹Pu extractability relative to that of the control, except between pH ~9.5 and pH ~11.8 (Fig. 1C). The minimum extractability (0.29 percent of dose) occurred at pH 6.5. The small reduction between the latter pH range probably indicated again that a small amount of ²³⁹Pu was associated with soluble organic component before its removal.

1

A REAL PROPERTY AND A REAL

As with the CH_COOH-NH_OH system, the general pattern of the extractability curve after treatment I or II was similar to that for the control. The general tendency of decrease of extractability with increasing pH to pH 6.9 may be ascribed, as above, to increasing extent of hydrolysis, polymerization, and colloid formation. The procressive increase of 239 Pu extractability between pH ~6.9 and pH ~11.8 is ascribed again to the extraction of alkali-soluble organic matter. The cause of the decrease of extractability above pH ~11.8 is not well-understood, but as explained before (Hishita and Hamilton, 1977), it might be explained in several ways. With increasing concentration of the potential determining OH ion, the sorbent and the sorbed ²³⁹Pu hydroxide probably became increasingly negative in charge. This then may cause less sorption of ²³⁹Pu hydroxide due to mutual repulsion of like charges. The repulsed ²³⁹Pu hydroxide being highly insoluble under alkaline condition was then less extracted even though complex-forming, alkali-soluble organic ratter was present. The values of solubility product of Pu (OH), found by various investigators range between 7 x 10^{-48} and 7.2 x 10^{-56} (Perez-Bustamente, 1970). Another mechanism might be the increase of sorption of ²³⁹Pu due to interfacial hydroxide precipitation as proposed by Loganathan, Burau, and Fuerstenau

(1977) for the sorption of Co and Zn by hydrous manganese oxide.

Relative to treatment II, treatment III enhanced the extractability of ²³⁹Pu between pH ~3.3 and pH ~6.6 and drastically reduced it above pH ~6.6 (Fig. 2D). Depending on the pH above ~6.6, the ²³⁹Pu extractability ranged from 0.03 to 0.73 percent of dose after treatment III, whereas it ranged up to a maximum of 38 percent of dose before this treatment. Thus, a very marked effect of alkali-soluble organic matter was demonstrated again. The cause of the increased 239 Pu extractability between pH ~3.3 and pH ~6.6 is not known. This effect appears to be related to the presence of iron oxides, since their removal (treatment IV) eliminated the effect (Fig. IE). The effect observed perhaps suggests the involvement of electrical charges on these components. The hydrolysis and polymerization products of tetravalent Pu are positively charged in the pH range below the isoelectric points, which occur at pH 8 - 8.5 (Grebenshchikova and Davydov, 1965). The magnitude of the positive charge of Pu decreases as hydrolysis and polymerization progress with increasing pH. According to Summer (1963), the precipitated iron oxides have isoelectric points in the region pH 6 - 7 and are positively charged below pH 6. Furthermore, below pH 6, the negative charge on the clay (kaolinite was used) was reduced by the mutual neutralization of the positive charges on the iron oxide and the negative charges on the clay and/or the negative charges on the clay being physically blocked by iron oxide coating. From these facts, it follows that the enhanced extractability of ²³⁹Pu (reduced sorption) observed between pH ~3.3 and pH ~6.6 may be a result of both mutual repulsion of like charges and reduced attraction between unlike charges. These effects are masked in

the presence of soil organic matter (Fig. 2D).

CONTRACTOR DESCRIPTION OF THE OWNER

A comparison of treatment IV and V (Fig. 2F) shows that the partial removal of free silica and alumina, amorphous alumino-silicate, and residual organic matter increased the extractability of 239 Pu below pH ^3.5. Above pH ~3.5, there was no appreciable difference between the two treatments. Within the latter pH range, the 239 Pu extractability ranged from 0.04 to 1.16 percent of dose. Thus, the residual soil material, presumably predominantly kaolinite, strongly sorbed 239 Pu over a wide pH range.

Comparison of Extracting Systems

Comparison of $CH_3COOH-NH_4OH$ (Fig. 1) and HNO_3-NaOH (Fig. 2) extracting systems shows several notable differences. Before the reroval of organic matter (treatment III), ²³⁹Pu extractability by $CH_3COOH-NH_4OH$ system was greater than by HNO_3-NaOH system roughly between pH 3.6 and p4 6.5. On the alkaline side, the relative extractability was reversed. The HNO_3-NaOH system extracted markedly greater amounts of ²³⁹Pu than the $CH_3COOH-NH_4OH$ system. The threshold for the sharp increase of ²³⁹Pu extractability with the HHO_3-NaOH system was at pH 7, whereas that with the $CH_3COOH-NH_4OH$ system was at pH 10.2. After the removal of organic matter, the ²³⁹Pu extractability by $CH_3COOH-NH_4OH$ system was increased relative to that by the HNO_3-NaOH system in the acidic pH range, whereas there was only slight, if any, difference in the alkaline range roughly above pH 8.

The greater effectiveness of $CH_3COOH-NH_4OH$ system in extracting ^{239}Pu in the lower pH ranges is due to the fact that CH_3COO^- ion is a stronger complexing agent than NO_3^- ion (Taube, 1964) and that the CH_3COO^- ion

concentration was relatively high. The CH_3COO^- ion concentration of the $CH_3COOH-NH_4OH$ system was constant at 0.8 <u>M</u> for all pH levels, whereas the NO_3^- ion concentration of the HNO_3-NaOH system was 0.128 <u>M</u> or lower depending on the adjusted pH. The much higher extractability of 239 Pu by the HNO_3 -NaOH system in the alkaline pH range is due to the greater efficiency of NaOH in extracting alkali-soluble soil organic matter than NH_4OH .

Extractability of ²³⁹Pu in Relation to Several Other Transuranics

Figure 3 shows the extractability of 239 Pu in relation to those of 237 Np, 241 Am, and 242 Cm from the untreated Aiken c.1. The extractability of the latter transuranics was determined previously in the same manner as the present experiments. The data for 241 Am and 242 Ca were reported previously (Nishita, 1977; Nishita and Hamilton, 1977; Nishita, Hamilton, and Steen, 1978). The 237 Np results are from unpublished data. The predominant oxidation state of 239 Pu after the 48 hr equilibration period in the present experiment is considered to be the tetravalent state. This is inferred from the fact that not only was Pu (IV) the form applied, the Pu (III) may be oxidized to Pu (IV) by O₂ in the air (Newton and Baker, 1956; Anonymous, 1974). The Pu (V) and (VI) are reduced to Pu (IV) by soil organic matter and clays (Bondietti, Reynolds, and Shanks, 1976). Neptunium 237 was applied in the V oxidation state, whereas 241 Am and 242 Cm were applied in the III state.

With the $CH_3COOH-NH_4OH$ system, the differences, if any, among ^{239}Pu , ^{241}Am , and ^{242}Cm were small in the pH range below 10. The extractability of ^{237}Np , however, was drastically greater than these transurances in this

pH range. Above pH 10, the relative extractability was $^{242}{\rm Cm}$ > $^{239}{\rm Pu}$, $^{237}{\rm Np}$ > $^{241}{\rm Am}$

with the HNO₃-NaOH system, the differences between 241 Am and 242 Cm extractabilities were generally small, if at all, in the pH range roughly below pH 7. Below pH 2.5, the 239 Pu extractability was appreciably less than 241 Am or 242 Cm, but between pH 2.5 and pH 7, 239 Pu tended to be greater than 241 Am or 242 Cm. The 237 Np extractability was drastically greater than 239 Pu, 241 Am, or 242 Cm below pH 7. Above pH 7, the relative extractability of these transuranics varied somewhat with pH. Perhaps, notable is the fact that between pH 7 and pH 11.5, the extractability of 239 Pu was the greatest. indicating relatively strong association of this radionuclide with alkali-soluble organic matter. The extractability of 241 Am was the least over the entire alkaline pH range, indicating that this radionuclide was least strongly associated with alkali-soluble organic matter.

GENERAL DISCUSSION

The results show that several soil components may influence the extractability of 239 Pu. Soil organic matter and free iron oxides had an appreciable effect depending on the pH and the extracting system. The free silica and alumina and amorphous alumino-silicate had lesser influence. The minimum extractability of 239 Pu in the untreated soil with the CH₃COOH-NH₄OH system was 0.17 percent of dose at pH ~9, while that w. h HNO₃-HaOH system was 0.63 percent at pH ~7. In the organic matter-deficient soil, the minimum extraction was 0.27 percent of dose at pH ~10 and 0.03 - 0.05 percent of dose between pH 7.0 and pH 8.2 for the CH₃COOH-NH₄OH and HNO₃-NaOH systems, respectively.

Some practical implications may be drawn from the present results in the event of real contamination of soils of the type studied. Under soil pH condition below the pH of the minimum extractability, the ²³⁹Pu movement in the soil under the leaching action of water is likely to be greater the lower the soil pH. In the soil pH condition above that of minimum extractability. the ²³⁹Pu movement is likely to be relatively high in the untreated soil containing organic matter, but very low in the soil containing practically no organic matter. The ²³⁹Pu extractability after the removal of soil organic matter was 0.03 to 0.73 percent of dose in the pH range above 7.0 using the HNO2-NaOH system, which as pointed out above, contained no added complexing agent on the alkaline side except the OH[®] ion. It is evident that the extractability was in general very low, but not zero. Thus, however small, some movement of ²³⁹Pu is likely to occur under alkaline conditions even in the soil containing no organic matter. The significance of this probable small movement from the standpoint of radiological hazard remains to be determined.

The pH values of most soils range from about 3.0 to 10.5 (Cole, 1949). The range for good plant growth is generally narrower, since certain plant nutritional and/or soil structural problems usually occur at both extremities of the range. The pH range within which the lowest 239 Pu extractability in the present soil appeared to be from pH 7 to pH 10. This suggests that raising the soil pH to the alkaline side, perhaps by liming, might reduce the availability of 239 Pu to plants.

REFERENCES

- Alder, H. L. and E. B. Roessler. 1977. Introduction to probability and statistics. W.H. Freeman and Co., San Francisco.
- Anderson, B. J. and E. A. Jenne. 1970. Free-iron and -mançanese oxide content of reference clays. Soil Sci. 109: 163-169.
- Anonymous. 1974. Safe handling of plutonium. A panel report. IAEA Safety Series No. 39. International Atomic Energy Agency, Vienna.
- Bliss, W. and L. Dunn. 1971. Measurement of plutonium in soil around the Nevada Test Site. Proc. of the Symposium on Safety in Plutonium Handling Facilities. USAEC Report CONF-710401. pp. 320-327.
- Bondietti, E. A., S. A. Reynolds, and M. H. Shanks. 1976. Interaction of plutonium with complexing substances in spils and natural waters. In Proc. of Symposium on Transuranium Nuclides in the Environment, San Francisco, 17-21 November 1975. International Atomic Energy Agency, Vienna. pp. 273-287.
- Brunstad, A. 1957. The polymerization and precipitation of plytonium (IV) in nitric acid. USAEC Report HW-54203. 20 p.
- Brunstad, A. 1959. Polymerization and precipitation of plutonium (IV) in nitric acid. Ind. Eng. Chem. 51: 38-40.
- Carroll, D. 1958. Role of clay minerals in the transportation of iron. Geochim. Cosmochim. Acta 14: 1-28.
- Cleveland, J. M. 1970. The chemistry of plutonium. Gordon and Breach Science Publishers, New York. 653 p.
- Cole, R. C. 1949. Reactions of California soils. Calif. Egr. Exp. Sta. Bull. 712. University of California, Berkeley.

- Connick, R. E. 1954. Oxidation states, potentials, equilibria, and oxidationreduction reactions of plutonium. In G. T. Seaborg and J. J. Katz, eds., The Actinide Elements, McGraw-Hill Book Co., New York, Vol. IV-14A, p. 225.
- Costanzo, D. A., R. E. Biggers, and J. T. Bell. 1973. Plutonium polymerization - I. A spectrophotometric study of the polymerization of plutonium (IV). J. Inorg. Nucl. Chem. 35:609-622.
- Essington, E. H., E. B. Fowler, R. O. Gilbert and L. L. Eberhardt. 1976. Plutonium, americium and uranium concentrations in Nevada Test Site soil profiles. In Proc. of Symposium on Transuranium Nuclides in the Environment, San Francisco, 17-21 November 1975. International Atomic Energy Agency, Vienna. pp. 157-173
- Foti, S. C., and E. C. Freiling. 1964. The determination of the oxidation states of tracer uranium, neptunium and plutonium in aqueous media. Talanta 11: 385-392.
- Gel'man, A. D., A. I. Hoskvin, L. M. Zaitsev, and M. P. Hefod'eva. 1962. Complex compounds of transuranium elements. Consultants Bureau, New York. 195 p.
- Grebenshchikova, V. I. and Y. P. Davydov. 1965. State of Pu (IV) in the region of pH = 1.0 - 12.0 at a plutonium concentration of 2.10⁻⁵ M. Soviet Radiochem. 7: 190-193. Translated from Radiokhimiya 7: 191-195 (1965).

Hardy, E. P., P. W. Krey, and H. L. Volchok. 1973. Global inventory and distribution of fallout plutonium. Nature 241: 444-445.

ţ

ţ

James, R. O. and T. W. Healy. 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface. III. A thermodynamic model of adsorption. J. Coll. Interface Sci. 40: 42-52.

The second se

Ì

al a su as a la la

The second s

ŀ

- Jenne, E. A. 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Un and Fe oxides. Adv. Chem. Series No. 73: 337-387.
- Kepák, F. 1971. Adsorption and colloidal properties of radioactive elements in trace concentrations. Chem. Rev. 71: 357-369.
- Kononova, M. M. 1966. Soil organic matter. 2nd English Ed., Pergamon Press, New York. 544 p.
- Krey, P. W. and E. P. Hardy. 1970. Plutonium in soil around the Rocky Flats Plant. USAEC Report HASL-235. 44 p.
- Krey, P. W., E. P. Hardy, C. Pachucki, F. Rourke, J. Coluzza, and W. K. Benson. 1976. Nass isotopic composition of global fallout plutonium in scil. In Proc. of Symposium on Transuranium Nuclides in the Environment, San Francisco, 17-21 November 1975. International Atomic Energy Agency, Vienna. pp. 671-678.
- Lloyd, M. H. and R. G. Haire. 1973. Studies on the chemical and colloidal nature of Pu (IV) polymer. USAEC Report CONF-730927-2. 9 p.
- Loganathan, P., R. G. Burau, and D. W. Fuerstenau. 1977. Influence of pH on the sorption of Co^{2+} , Zn^{2+} , and Ca^{2+} by a hydrous manganese oxide. Soil Sci. Soc. Am. J. 41: 57-62.
- Matijević, E., M. B. Abramson, R. H. Ottewill, K. F. Schulz, and M. Kerker. 1961. Adsorption of thorium ions on silver iodide soils. J. Phys. Chem. 65: 1724-1729.

Matijević, E., M. B. Abramson, K. F. Schulz, and M. Kerker. 1960. Detection

of metal ion hydrolysis by coagulation. II. Thorium. J. Phys. Chem. 64: 1157-1167.

- Mehra, O. P. and M. L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Min. 5: 317-327.
- Moskvin, A. I. 1971. The complex formation of uranium (IV), neptunium (IV, VI), and plutonium (IV, VI) in acetate solutions. Soviet Radiochem. 13: 587-591. Translated from Radiokhimiya 13: 570-575.
- Mortensen, J. L. 1965. Partial extraction of organic matter. In C. A. Black et al, Methods of Soil Analysis, Agronomy No. 9, Part 2. American Society of Agronomy, Inc., Madison, Wisconsin. pp. 1401-1408.
- Nevissi, A., W. R. Schell, and V. A. Nelson. 1976. Plutonium and americium in soils of Bikini Atoll. In Proc. of Symposium on Transuranium Nuclides in the Environment, San Francisco, 17-21 November 1975. International Atomic Energy Agency, Vienna. pp. 591-701.

Newton, T. W. and F. B. Baker. 1956. The reaction between Pu (III) and cxygen in aqueous sulfate solutions. J. Phys. Chem. 60: 1417-1421.
Nishita, H. 1977. Extractability of ²³⁸Pu and ²⁴²Cm from a contaminated soil as a function of pH and certain soil components. CH₃COOH-NH₄DH system. In D. C. Addriano and I. L. Brisbin, Jr., eds., Environmental Chemistry and Cycling Processes. Mineral Cycling Symposium, 28-30 April 1976, Augusta. In press.

20

and the second secon

- Nishita, H. and M. Hamilton. 1977. Factors influencing the chemical extractabaility of ²⁴¹Am from a contaminated soil. In M. G. White and P. B. Dunaway, eds., Symposium on the Dynamics of Transuranics in Terrestrial and Aquatic Environments, Gatlinburg, Tennessee, 5-7 October 1976. Nevada Applied Ecology Group, U.S. Energy Pesearch and Development Administration Report NVO-178. pp. 77-96.
- Nishita, H., M. Hamilton and A. J. Steen. 1978. Extractability of 238 Pu and 242 Cm from a contaminated soil as a function of pH end certain soil components. HNO₃-NaOH system. Soil Sci. Soc. Am. J. 42: 51-56.
- Nyhan, J. W., F. R. Miera, Jr., and R. E. Neher. 1976. Distribution of plutonium in Trinity soils after 28 years. J. Environ. Quality 5: 431-437.
- Ockenden, D. W. and G. A. Welch. 1956. The preparation and properties of some plutonium compounds. Part V: Colloidal quadrivalent plutonium. J. Cnem. Soc. 1956: 3358-3363.
- Perez-Bustamente, J. A. 1970. II Oxidation states of the element. USAEC Report NLM-1747 (TR). 59 p. Translated from Energia Nuclear (Madrid) 13: 57, 23-45 (1969).
- Romney, E. H., H. M. Nork and K. H. Larson. 1970. Persistence of plutonium in soil, plants, and small mammals. Health Phys. 19: 487-491.
- Rydberg, J. and L. G. Sillen. 1955. Combination of unit processes for isolating plutonium. Acta Chem. Scand. 9: 1241-1251.
- Samartseva, A. G. 1982:. Adsorption of Pu (IV) on polished platinum. Soviet Radiochem. 4: 463-467. Translated from Radiokhimiya 4: 526-531 (1962).

Samartseva, A. G. 1962b. Adsorption of Pu (IV) on glass and quartz. Soviet Radiochem. 4: 572-578. Translated from Radiokhimiya 4: 647-655 (1962).

Samartseva, A. G. 1963. Adsorption of Pu (VI) on polished platinum. Soviet Radiochem. 5: 23-26. Translated from Radiokhimiya 5: 28-32 (1963).

- Schubert, J. and E. C. Conn. 1949. Radiocolloidal behavior of some Fission products. Nucleonics 4: 2-11.
- Stumm, W., C. P. Huang and S. R. Jenkins. 1970. Specific chemical interaction affecting the stability of dispensed systems. Croat. Chem. Acta 42: 223-245.
- Summer, M. E. 1963. Effect of iron oxides on positive and negative charges in clays and soils. Clay Minerals Bull. 5: 218-226.

Taube, M. 1964. Plutonium. The Macmillan Co., New York.

- Tewari, P. H., A. B. Campbell and W. Lee. 1972. Adsorption of Co²⁺ by oxides from aqueous solution. Can. J. Chem. 50: 1642-1648.
- Tewari, P. H. and W. Lee. 1975. Adsorption of Co (II) at the oxide-water interface. J. Coll. Interface Sci. 52: 77-88.
- Wood, R. A., H. Nishita, M. Hamilton and S. Wakakuwa. 1976. The determination of ²³⁸Pu and ²⁴²Cm in aqueous soil extracts. US ERDA Report UCLA 12-1047. 9 p.

FIG. 1. Effect of pH on the extractability of 239_{Pu} from Aiken clay loam chemically treated to remove various components. $CH_3COCH-JH_4OH$ system.

FIG. 2. Effect of pH on the extractability of ²³⁹Pu from Aiken clay loam chemically treated to remove various components. HNO₃-NaOH system.

FIG. 3. Relative extractability of ²³⁷Np, ²³⁹Pu, ²⁴¹Am and ²⁴²Cm from untreated Aiken clay loam. (Vertical lines represent standard deviations of duplicate samples. When < 1% of dose, they are not shown).