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FLOW DYNAMICS OF VOLUME-HEATED BOILING POOLS
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Safety analyses of -fast breeder,reactors require understanding of the
two-phise fiuid dynimfc ahd*heat transfer characteristics of volume~heated
boiling pool systems. Design of direct contact three-phase boilers, of
practical interest in the chemical industries, also requires understanding
of the fundamental two-phase flow and heat transfer behavior of volume
bo%]ing systems. Severa1,experiments have been recently reported relevant
to the bouhdary heat-1oss mechanisms of boiling pool systems. Considerably
less is known about the two-phase fluid dynamic behavior of such systems.
“This paper describes an experimental invesfigation of the steady-state flow
dyhamics df,volume-heated boiling pool systems.
| B Thé experimenta] system contains two copper electrodes which penetrate
thé entire»1ength the container. The flow crosssection is 8.89 cm by
'6;55‘cm. The e1éctrica11y conducting fluid used was a 14 weight solution of
, z%nc sulfaté.in:wﬁter.- The system was filled to a specified Tiquid level
(Ho), a-c‘powér_waé appIied. and feed water was supplied to makeup for 4
eVaporatiye 1d$sés.‘3wfthin-a few seconds from boiling initiation, photo-

* graphic observations of the two-phase flow field were initiated, In addi-

tion, the power supplied and boiled-up Tiquid Tevel were recorded. From
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’these data. the pool-average void fraction, o and the dimen51on1ess super-
- ficial vapor ve]ocity. j /U - were computed, (j 1s the superf1c1a1 vapor

Avelocity at the top of. the pool, and U is the bubb]e rise velocity Yy

Figure 1 presents visual observations of the two-phase fiow fie]ds. At

liow vapor velocity(jgu/u genera]ly less than 1) a bubbly flow regime

i <h(represented by Run 402) was observed. At velocities greater than j _/ =4,

;-the literature.

A churn-turbuient regime was ‘observed, whose turbulent, chugg1ng charac-

,teristics became more intense as jgu/u°° was increased to approximately 19.

This behavior is apparent in the photographs of Fig. 1. Figure 2 shows the
measured pbolQaverage void fractionias a function of jgm/uo. for two sets of
runs. Also shown are predictions based upon solution of the steady-state
one-dimensicnal drift flux formulation of the continuity equations for.
1iquid and vapor. Figure 2 indicates that the Zuber-Find]ay(1; churn-
turbulent drift flux model with distribution parameter C between 1.2-1.35
agrees reasonably weii with the data for jg-/U beyond approximately 4. This

supports the v1sua1 observations cited above. For smaller vapor velocities,

~ the bubbly flow model provides a better description of the void-fraction

behavior.'a}so consistent with the visual observations. Figure 2, moreover,
suggests that the bubbiy flow regime was stable to relatively large void
fract-ons. con51derab1y 1arger than the 30 percent void content suggested in

Figure 3 summarizes the flow regime observations recorded in the .

’f'experiments and compares them with avaiiab]e predictions. The slug flow '
_”'regime was not. observed. probabiy because of the entry length required for '
Vgestablishment of this flow regime. . The bubbly flow regime. observed to.

| ‘. g._/U = 1 was stab]e considerabiy beyond the Nai]is(Z) transition criterion ,
: for»bubbly,flow. For j‘/U between 1 and 4 the churn-turbuient regime was



| »zusualijfobserved Sometimes, however. a high void fraction fbam regime was
‘ obserued It is be]ieved that particulate contaminants were present under
foaming conditions.‘ Beyond j w/ 4 a churn flow regime was a]ways ob-,v"
served. The stability of this regime is consistent with ‘the Duk]erca)
- dispersed flow transition criterion. '
The characteristic features of vo]ume?heated boiling pooi systems
observed in this experiment are: . S - |
(i) The churn-turbulent regime is dominant for j m/
beyond 4. Under these circumstances, the pool-average
void fraction is well-characterized by the Zuber-Findlay
drift flux model.
(ii) At low vapor generation rates, corresponding to jg,/u, < 4,
the bubbly flow regime was observed at void fractions
. and vapor velocities in excess of those suggested in the
lTiterature. This suggests that bubble coalescence was
retarded, perhaps due,to the characteristics of the zinc
su]fate'sait solution. |
- (i1i) System contamination by particulate impurities may have
-stabi]ized the bubb]esvagainst'coalescence,»resu]ting
~ inthe sometimes-observed foam behavior,
The above observations p01nt to the need for an improved understanding
of the. impact of system constituents and possible system. impurities on tfe

behavior of the bubb]y flow regime in vo]ume-heated boi]ing pools.
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Figure 1 - Photographic Observations of Boiling Pool Flow Behavior.
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Figure 2 - Pool-Average Void Fraction Predicted and Observed
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Figure 3 - Summary of Flow Regime Observations




