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The paper presents a summary of the research in competing risk
theory during the last decade and applies some new statistical pro-
cedures to estimate cumulative distribution functions (c.d.f.), force
of mortality, and latent period for radiation-induced malignancies.
It is demonstrated that correction for competing risks influences the
shape of dose-response curves, estimates of the latent period, and of
the risk from ionizing radiations. We show the equivalence of the
following concepts: force of mortality, hazard rate, and age or time
specific incidence. This equivalence makes it possible to use pro-
cedures from reliability analysis and demography for radiation risk
assessment. Two methods used by reliability analysts — hazard plot-
ting and total time on test plots — are discussed in some detail and
are applied to characterize the hazard rate in radiation carcino-
genesis. C.d.f.'s with increasing, decreasing, or constant hazard
rate have different shapes and are shown to yield different dose-
response curves for continuous irradiation. We point out that the
absolute risk is a sound estimator only if the force of mortality is
constant for the exposed and the control group. Dose-response rela-
tionships that use the absolute risk as a measure for the effect turn
out to be special cases of dose-response relationships that measure
the effect with cumulative incidence. We explain how life tables —
a popular demographic tool — should be used to calculate the risk to
a population from a risk estimate obtained from another exposed:-popu-
lation.

INTRODUCTION

The basic idea of competing risk theory was first outlined by
Daniel Bernoulli in his 'Memoir' published in 1760 (1). In this
publication he attempted to answer the question: |Is mandatory vac-
cination against smallpox beneficial, and what are the quantitative
effects of vaccinations on the survival experience of a population
(1)?7 Each individual was considered as exposed to two risks: death
from smallpox and death from other causes. The analogous ''modern'
question is: Is exposure to a certain dose of ionizing radiation
detrimental, and what are the quantitative effects of a radiation
exposure on the survival experience of a population? Each indidivual
is again subject to two competing risks: death from radiation-
induced cancer and death from other causes not related to the radia-
tion exposure. During the tast few decades competing risk theory
developed rapidly because of the need to answer very similar questions
in reliability analysis. There a device can fail due to different
failure modes, and it is desired, for example, to estimate the prob-
ability that the device will fail due to one particular failure mode
not later than a certain time t. The life of a person or a device is
therefore a non-negative random variable T [P(T <0) = 0]. In the



field of radiation risk assessment, we are interested in the estima-
tion and comparison of Fy(t,D), the cumulative distribution function
of T for a control population radiation dose (D = 0) and an exposed
population (D > 0). T is the life length from exposure to death or
diagnosis of a radiation-induced malignancy. In the following sec~
tion we will introduce some concepts related to Fy and discuss their
estimation and connection with dose-response curves.

CUMULAT!VE HAZARD, DISTRIBUTION FUNCTIONS, AND DOSE-RESPONSE CURVES

lf Fp(t,D) or, for short, F is the c.d.f. for the life or in our
context synonymously the tumor appearance time (latent period) after
exposure then

1 - F = survival function

dF/dt = F' = probability density function

f/F = hazard function or age (time) specific tumor rate
of t dt'h(t') = cumulative hazard

T T -h T
[

The arguments t,D have been suppressed for brevity. One easily sees
that

"F =1 - exp (-H) (1

intuitively h(t,D)At can be interpreted as the conditional prob-~
ability that an individual will die from a tumor in the interval
(t,t+At) having survived to age t. For this reason h is sometimes
also called the force of mortality. Every c.d.f. of tumor appearance
times has a corresponding force of mortality h(t). If F = 1-exp(-At),
the force of mortality is A = constant. This is a unique characteri-
zation of the exponential c.d.f. These probabilistic concepts and
the different relationships among them are well known and very simple.
The difficult aspect is the estimation of F, F, or H from observed
quantities. To understand why this is so, consider the following
situation: Groups of N; individuals are exposed to doses Dj

(i =0,1,2...; Do = 0). The exposure is instantaneous and takes
place at t = 0. As t increases, we observe for each dose group D; a
sequence of Ni indicators like

0,o0,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0

A ‘""" means in our context that the individual died from cancer pos-
sibly induced by radiation. A '"0'" means that the individual died
from another cause, was lost from the study, or is still alive. Each
0 or ] has associated with it the time when the event occurred. All
the times where a 0 occurred can be considered as observations of a
random time variable L. ''L" stands for loss to indicate that the
0 — events represent lost information for the estimation of Fy(t).
The problem of estimating F if losses (0 — events) occur was solved
by Kaplan and Meier (2) undér the assumption that T and L are sta-
tistically independent. An estimator for H is also available in the
‘iterature (3 4).

A dose-r.:sponse curve at a fixed time to for instantaneously
exposed individuals (e.g., atomic bomb survivors) can be defined as a
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plot of Fr(to,D;) versus Dj on linear graph paper (5). This replaces
the plotting of the ratio, number of tumors, nj/number of individuals
exposed, N;. The magnitude of nj/Nj is clearly influenced by the
number of 0 — events (e.g., accidents) and does not measure solely
the effect of the radiation exposure. The same dose D; can therefore
produce different effects — measured by n;/N;j — depending on how many
other deaths occur. Since FT(tosDi) differs from this ratio, the
shape of FT(tO,D;) versus D; will differ in most cases from n;/Ni
versus Dj [see (5) for more details]. Most of the time the ratio
n;/N; is used to measure the effect of D; in exposed animals. In
human epidemiological studies the fraction, nj/total number of person-
years, is used instead, and sometimes the difference AA or ratio p of
these fractions for an exposed and an unexposed group are plotted
versus Di [see e.g. (6)]. The fraction o = AA/D; is the absolute
risk, and the ratio p is the relative risk (6). Both are incorrect
measures of the radiation risk because of hidden and unwarranted

assumptions. To see the mistake, consider Equation 1. For H << 1,
one cbtains

~

—_— (1)

For the exponential distribution — cf. the earlier remark — H = At,
where A, the force of mortality, is constant. |IT F is exponential,

A can be estimated by nj/total number of person-years (7), but the
assumption of exponentiality (i.e., A\ = constant) is incorrect for
both the unexposed and the exposed group for time periods longer than
two to three years [see e.g. (8)]. For spontaneous and radiation-
induced cancer h = h(t). This fact can be demonstrated by graphical
techniques-hazard plotting (3,4) and total time on test (TTT) plots
(9). If Equation 1' holds and the force of mortality is time de-
pendent, then only AH = H(ty,D;) - H(t,,Dg) and H(ty,D;)/H(ts,D,) are
meaningful measures of the radiation effect at tg. The net radiation

risk Ry(tgy,D;) at time t, due to an instantaneous dose D; should be
defined as the difference of the cumulative incidences:

. RN(tO’Di) = FT(to,D;) - FT(tO,DO) (2)
This definition assumes that cancer is the only risk acting. |If

Equation 1' holds, hT(t,Di) = A; = constant and hT(t,Do) = 1, = con-
stant, then Equation 2 becomes

Ry(tosDi) = Hylto,D;) - Hy(tg,Dy)

(3)
= (Aj-Ao) to = DAty
If in addition AX = aD;, then
Ry(tosDi) = aDjty (4)

The derivation of Equation 4 shows that the absolute risk concept and

linear dose~response curves based on this concept are valid only under
very special circumstances.

For continuous radiation exbOSure, the dose D(t) is an increasing
function of time. If Fy(t) has been estimated, Gp(d), the c.d.f. for
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the random variable D,can be obtained by a simple transformation (10).
For D = 8T — the simplest case with constant dose rate & — one ob-
tains Gp(d) = Pr {tumor for D < d} = Fy(d/8). If Fy = Hy, then Gp
increases like Hy. A plot of Gy versus d is a possible definition of
the dose-response curve for continuous irradiation. The shape of Gp
depends on the behavior of Hy(t) and will be different for increasing '
(decreasing) hazard rate hy(t). A serious problem with this defini-
tion stems from the fact that one does not know up to what time after
first exposure dose effectively induces cancer. The dose delivered
after this time is ‘'wasted.” A deeper understanding of radiation
carcinogenesis is necessary to_solve the 'wasted' radiation problem.

The general relationship F = exp(-H) can be used to calculate
the potential crude radiation risk from D; at tg to a so far unex-
posed population, if AH has been estimated from data on an exposed
population. The survival function S(t) for the actual life of the
population can be found in a life table. The crude radiation risk
can then be defined as

Rc(tg,Dj) = S(to) [1-exp(-aH)] (5)

The crude radiation risk in Equation 5 is the additional risk from
radiation exposure in the presence of all other competing risks.
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