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The paper presents a summary of the research in competing risk
theory during the last decade and applies some new statistical pro-
cedures to estimate cumulative distribution functions (c.d.f.), force
of mortality, and latent period for radiation-induced malignancies.
It is demonstrated that correction for competing risks influences the
shape of dose-response curves, estimates of the latent period, and of
the risk from ionizing radiations. We show the equivalence of the
following concepts: force of mortality, hazard rate, and age or time
specific incidence. This equivalence makes it possible to use pro-
cedures from reliability analysis and demography for radiation risk
assessment. Two methods used by reliability analysts — hazard plot-
ting and total time on test plots — a r e discussed in some detail and
are applied to characterize the hazard rate in radiation carcino-
genesis. C.d.f.'s with increasing, decreasing, or constant hazard
rate have different shapes and are shown to yield different dose-
response curves for continuous irradiation. We point out that the
absolute risk is a sound estimator only if the force of mortality is
constant for the exposed and the control group. Dose-response rela-
tionships that use the absolute risk as a measure for the effect turn
out to be special cases of dose-response relationships that measure
the effect with cumulative incidence. We explain how life tables —
a popular demographic tool —should be used to calculate the risk to
a population from a risk estimate obtained from another exposed popu-
lation.

INTRODUCTION

The basic idea of competing risk theory was first outlined by
Daniel Bernoulli in his "Memoir" published in 1760 (l). In this
publication he attempted to answer the question: Is mandatory vac-
cination against smallpox beneficial, and what are the quantitative
effects of vaccinations on the survival experience of a population
(1)? Each individual was considered as exposed to two risks: death
from smallpox and death from other causes. The analogous "modern"
question is: Is exposure to a certain dose of ionizing radiation
detrimental, and what are the quantitative effects of a radiation
exposure on the survival experience of a population? Each indidivual
is again subject to two competing risks: death from radiation-
induced cancer and death from other causes not related to the radia-
tion exposure. During the last few decades competing risk theory
developed rapidly because of the need to answer very similar questions
in reliability analysis. There a device can fail due to different
failure modes, and it is desired, for example, to estimate the prob-
ability that the device will fail due to one particular failure mode
not later than a certain time t. The life of a person or a device is
therefore a non-negative random variable T [P(T < 0) = 0 ] . In the
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field of radiation risk assessment, we are interested in the estima-
tion and comparison of Fj(t,D), the cumulative distribution function
of T for a control population radiation dose (D = 0) and an exposed
population (D > 0). T is the life length from exposure to death or
diagnosis of a radiation-induced malignancy. In the following sec-
tion we will introduce some concepts related to Fj and discuss their
estimation and connection with dose-response curves.

CUMULATIVE HAZARD, DISTRIBUTION FUNCTIONS, AND DOSE-RESPONSE CURVES

If Fy(t,D) or, for short, F is the c.d.f. for the life or in our
context synonymously the tumor appearance time (latent period) after
exposure then

F = 1 - F = survival function
f = dF/_dt = F1 = probability density function
h = f/F = hazard function or age (time) specific tumor rate
H = oS

t dt'h(t') = cumulative hazard

The arguments t,D have been suppressed for brevity. One easily sees
that

F = 1 - exp (-H) (1)

Intuitively h(t,D)At can be interpreted as the conditional prob-
ability that an individual will die from a tumor in the interval
(t,t+At) having survived to age t. For this reason h is sometimes
also called the force of mortality. Every c.d.f. of tumor appearance
times has a corresponding force of mortality h(t). If F = l-exp(-At),
the force of mortality is X = constant. This is a unique characteri-
zation of the exponential c.d.f. These probabilistic concepts and
the different relationships among them are weJJ known and very simple.
The difficult aspect is the estimation of F, F, or H from observed
quantities. To understand why this is so, consider the following
situation: Groups of N; individuals are exposed to doses Dj
(i = 0,1,2...; Do = 0). The exposure is instantaneous and takes
place at t = 0. As t increases, we observe for each dose group D; a
sequence of H\ indicators like

0,0,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0

A "1" means in our context that the individual died from cancer pos-
sibly induced by radiation. A "0" means that the individual died
from another cause, was lost from the study, or is still alive. Each
0 or 1 has associated with it the time when the event occurred. All
the times where a 0 occurred can be considered as observations of a
random time variable L. "L" stands for loss to indicate that the
0 —events represent lost information for the estimation of Fj(t).
The problem of estimating F if losses (0 — events) occur was solved
by Kaplan and Meier (2) under the assumption that T and L are sta-
tistically independent. An estimator for H is also available in the
1 iterature (3 A).

A dose-response curve at a fixed time to for instantaneously
exposed individuals (e.g., atomic bomb survivors) can be defined as a

232



i plot of Fj(to,D;) versus D; on linear graph paper (5). This replaces
! the plotting of the ratio, number of tumors, nj/number of individuals
"i exposed, Nj. The magnitude of n j/N ; is clearly influenced by the
I;' number of 0 —events (e.g., accidents) and does not measure solely
••' the effect of the radiation exposure. The same dose D; can therefore
; produce different effects —measured by n;/N; —depending on how many
t other deaths occur. Since Fj(to,D;) differs from this ratio, the

shape of F-r(to,D;) versus D; will differ in most cases from nj/Nj
: versus D; [see (5) for more details]. Most of the time the ratio
:. n ; /N f is used to measure the effect of D; in exposed animals. In
'{' human epidemiological studies the fraction, nj/total number of person-
[} years, is used instead, and sometimes the difference AX or ratio p of

these fractions for an exposed and an unexposed group are plotted
* versus D; [see e.g. (6)]. The fraction a = AX/D; is the absolute

risk, and the ratio p is the relative risk (6). Both are incorrect
; measures of the radiation risk because of hidden and unwarranted

assumptions. To see the mistake, consider Equation 1. For H << 1,
one obtains

F = H (l1)

^ For the exponential distribution — cf. the earlier remark — H = Xt,
; where X, the force of mortality, is constant. If F is exponential,

X can be estimated by nj/total number of person-years (7), but the
assumption of exponentiality (i.e., X = constant) is incorrect for
both the unexposed and the exposed group for time periods longer than

v, two to three years [see e.g. (8)]. For spontaneous and radiation-
': induced cancer h = h(t) . This fact can be demonstrated by graphical

techniques-hazard plotting (3,^0 and total time on test (TTT) plots
(9). If Equation 1' holds and the force of mortality is time de-
pendent, then only AH = H(to,D;) - H(to,Do) and H(to,D;)/H(to,Dç) are
meaningful measures of the radiation effect at to. The net radiation
risk RN(to,D|) at time to due to an instantaneous dose Dj should be
defined as the difference of the cumulative incidences:

' RN(to,D.) = FT(to,D;) - FT(to,Do) (2)

This definition assumes that cancer is the only risk acting. If
• Equation 1' holds, h-r(t,Dj) = Xj = constant and hj(t,Do) = Xo = con-

stant, then Equation 2 becomes

; j RN(to,Di) = HT(to,D;) - HT(to,Do)

= U r X o ) t o = AXto

I f in addi t ion AX = aDj, then

RN( to ,Di) = aDj to (h)

The derivation of Equation *4 shows that the absolute risk concept and
f; linear dose-response curves based on this concept are valid only under
i! very special circumstances.
if For continuous radiation exposure, the dose D(t) is an increasing
| function of time. If Fj(t) has been estimated, Gn(d) , the c.d.f. for
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the random variable D, can be obtained by a simple transformation (10).
For D = 6T — the simplest case with constant dose rate <S — one ob-
tains GD(d) = Pr {tumor for D < d} = FT(d/<5) . If FT = HT, then GD
increases like Hy. A plot of GQ versus d is a possible definition of
the dose-response curve for continuous irradiation. The shape of GQ
depends on the behavior of Hj(t) and will be different for increasing
(decreasing) hazard rate hj(t). A serious problem with this defini-
tion stems from the fact that one does not know up to what time after
first exposure dose effectively induces cancer. The dose delivered
after this time is "wasted." A deeper understanding of radiation
carcïnogenesis is necessary to_solve the "wasted" radiation problem.

The general relationship F = exp(-H) can be used to calculate
the potential crude radiation risk from D; at to to a so far unex-
posed population, if AH has been estimated from data on an exposed
population. The survival function S(t) for the actual life of the
population can be found in a life table. The crude radiation risk
can then be defined as

M t o . D i ) = S(to) [l-exp(-AH)] (5)

The crude radiation risk in Equation 5 is the additional risk from
radiation exposure in the presence of all other competing risks.
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