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ABSTRACT

During the period covered by this report, the authors
investigated the serial properties of aerial radiometric
data. Results were applied to the choice of minimum seg-
ment width in the maximum variance segments algorithm and
to the use of aerial radiometric data in the design of
ground sampling experiments.

The report also presents the results of a comparison
of normal and lognormal percentile estimation techniques.

Twenty-two quadrangles are being analyzed in the
search for a uranium favorability index. Computer codes
developed during this investigation have been provided to
the Bendix Field Engineering Corporation in Grand Junction,
Colorado.

I. INTRODUCTION

This report outlines the activities and progress of the Los Alamos Scien-

tific Laboratory (LASL) on the Geostatistics project during the first half of

FY1980. The Geostatistics project is part of the National Uranium Resource

Evaluation (NURE) program sponsored by the US Department of Energy (DOE),

Grand Junction, Colorado, office. The NURE program is designed to assess the

potential uranium resources throughout the conterminous United States and

Alaska. In close cooperation with the Grand Junction Office of DOE, the Geo-

statistics project at LASL applies statistical methods to the analysis of data

collected by airborne instrumentation. To handle a broad range of problems
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related to the NURE, LASL maintains a close statistical consulting relation-

ship with the DOE Grand Junction Office and the Bendix Field Engineering Cor-

poration (BFEC) in Grand Junction.

We developed a statistical model for the correlation between observations

taken along a flight line ana considered two applications. The first involves

the choice of a minimum segment width for the maximum variance segments algor-

ithm being tested by BFEC. The second application involves the use of aerial

radiometric data to aid in the design of ground-based sampling experiments.

This last application developed as a result of a joint BFEC-LASL effort to

design a statistically valid ground-based experiment in East Texas.

Standard deviation maps that are produced as part of the aerial program

are closely related to the estimation of percentiles in the normal and loqnor-

mal probability distributions. This, plus the fact that anomalies are often

defined explicitly or implicitly in terms of percentiles, motivated a study to

determine the effect of using the wrong distribution (normal instead of log-

normal or vice versa) when estimating percentiles.

Twenty-two quadrangles with assigned uranium favorabilities are being

analyzed in the search for a uranium favorability index. Computer codes

developed during this investigation have been transferred to BFEC.



II. NOTES ON THE TWO "MAXIMUM VARIANCE SEGMENTS" ALGORITHMS

In Ref. 1 Bement and Waterman give (1) an algorithm for determining the

largest sum S. (N) of the variances of up to k disjoint segments from the

data x,, x_, ..., x.,, and (2) a much simpler algorithm for determining

S(N) = sup Sk(N).

The second algorithm is incorrectly stated; it should read

S(0) = 0

S(j) = max {SU-D + vl£,j)},

where v(j,j) = 0 by definition. When modified to allow only segments of
length between w and W, this algorithm becomes

S(j) = 0, 0 1 j < w

S(j) = max{S(j-l), max [S(^-D + v(£,j)]}, w < j < N

where ^(j) = max(l, j - W + 1) and £2(j) = j - w + 1.

Given S(j), 1 < j <N, plus, for each j, a flag L(j) defined by

(0 if S(j) = S(j-l)

*if S(j) = S(£-l) + v(£,j),

it is possible to find the segments which went into S(N), the maximum possible

total sum of variances for segments of the data. This is the algorithm imple-

mented by a program that BFEC is usinq.

Similarly, given Sk(j), 1 < j < N, as computed by the first algorithm,

and a flag ^(j) defined by

0 if Sk(j) = Sk.iCj)

1 if Sk(j) = Sk.itf-l) + v(£,j),



one can work backwards to find the best k segments. This algorithm is much

harder to implement, however, and requires either much more computer time or a

large random-access memory such as "extended core" on the Control Data Corpor-

ation machines.

These two algorithms select segments cf data on different principles, and

there is no reason to suppose that tht k segments with largest variance pro-

duced by the second algorithm will be the k segments that go into Sk(N) as

computed by the first algorithm. In fact, unless k is very large, on the

order of N/w, this will hardly ever be the case.

The first algorithm picks segments to maximize the total variance

achieved by exactly k segments. The second algorithm, on the other hand,

maximizes the total variance achievable by any number of segments. For noisy

data, the variance is relatively independent of the length of the segment, and

therefore the way to maximize

k

J=

is to pick as many segments as possible in x,, ..., x , which means pick-

ing them as short as possible. For such data, therefore, the second algorithm

almost invariably selects segments of the minimum length, w, and never gets

beyond w+2 or w+3.

Interestingly enough, although the first algorithm has no such built-in

bias toward short segments provided k « N/w, it also appears to choose seg-

ments of the minimum length more frequently than expected, given that the ex-

pected variance of the segment increases with the length of the segment.

(This is for correlated data and an assumption that we have something besides

noise, although the noise is large). However, it chooses somewhat" different

segments (although it identifies, in a general way, the same regions pulled

out by the second algorithm). As the minimum segment width, w, increases, thp

first algorithm appears to have a greater tendency to choose segments of

length greater than w, and the sum of the variances of the top k segments

found by the second algorithm becomes a smaller fraction of S. (N).

Table I shows the toD ten seaments in a string of n = 560 observations

from one geological type selecteo by the first algorithm, where the length of

the segment was restricted to lie between 5 and 15 seconds of data. Table II

shows the results from the second algorithm, similarly restricted. Roughly



similar areas are identified, but the chosen segments are not identical, and

the second algorithm has clearly made a suboptimal choice, with total variance

of 1103.1 in ten segments, compared with S,Q(N) = 1177.0 computed by the

first algorithm. In particular, the second algorithm appears to have missed a

fairly significant segment, 467-471, chosen sixth by the first algorithm. It

also selected two segments, 253-257 and 260-264, near the first algorithm's

fourth choice, 256-260.

Tables III and IV represent a similar comparison for segments between 10

and 25 seconds in length. Here it is interesting to note that the first

algorithm occasionally selects a very long segment, something which is almost

impossible for the second algorithm. The second algorithm achieves a total

variance of 790.4 in ten seaments, comoared with S-,n(N) = 887.2.

When applied to the NURE data, these discrepancies are probably not

important, as long as the two algorithms identify approximately the same areas

as interesting. There is some advantage to having all of the segments of

about the same length, because then their variances are directly comparable,

and we can justify picking off the top k, without worrying about the fact that

the expected value of the variance increases with length.

TABLE I

SEGMENTS SELECTED

(w = 5,

BY FIRST ALGORITHM

W = 15)

Variance

199
125
122
121
111
108
100

.1

.9

.4

.6

.8

.5

.5

Endpoints

548 - 553 199.1 6
69 - 73 125.9 5
19 - 23 122.4 5

256 - 260 121.6 5
554 - 560 111.8 7
467 - 471 108.5 5
232 - 236 100.5 5
168 - 172 96.9 5
119 - 123 96.7 5
1 - 5 93.5 5

Note: Total variance = SIQ(N) = 1177.0.



Endpoints

549 - 553
72 - 16
554 - 560
253 - 257
231 - 235
260 - 264
168 - 172
119 - 123
16 - 20
1 - 5

TABLE II

SEGMENTS SELECTED BY SECOND ALGORITHM

Variance

188.1
119.3
111.8
105.8
100.2
97.0
96.9
96.7
93.7
93.5

5
5
7
5
5
5
5
5
5
5

Note: Total variance = 1103.1

Endpoints

551 - 560
69 - 78
253 - 262
39 - 53
162 - 173
404 - 428
19 - 36
117 - 126
224 - 235
1 - 1 0

TABLE III

SEGMENTS SELECTED

(w = 10,

BY FIRST ALGORITHM

W = 25)

Variance

159
97
86
84
81
78
77
75
73
71

.4

.5

.4

.5

.9

.8

.8

.8

.9

.4

Length

10
10
10
15
12
25
18
10
12
10

Note: Total variance SJO(N) = 887.2.



TABLE IV

SEGMENTS SELECTED BY SECOND ALGORITHM

(w = 10, W -• 25)

Variance

159
86
81.
71.
70.
67,
66.
65.
61.
58.

.A

.A

.9

.A

.8

.9
,6
.8
A

Endpoints

551 - 560 159.A 10
256 - 265 86.A 10
162 - 173 81.9 12
1 - 1 0 71.A 10

11 - 20 70.8 10
115 - 12A 67.o 10
71 - 80 66.9 10

278 - 288 65.6 1.1
A09 - A18 61.8 10
Al - 50 58.A 10

Note: Total variance = 790.A.

III. SERIAL PROPERTIES OF THE RADIOMETRIC DATA

In this section we describe a statistical model for the correlation

between observations taken along a flight line. Physically the model is

over-simplified, failing to take into account much of what is known about the

processes of decay, gamma emission, scattering and measurement. However, a

basic statistical model of this type will help us to see how the aerial data

is related to what is on the ground, and in particular, what kinds of informa-

tion might be extracted from the data. We consider applications related to

the choice of a minimum "bin" or segment width for the maximum variance seg-

ments algorithm and the prior estimation of the components of variance in a

ground-based survey.

A. The Statistical Model

Suppose that the gamma emissions I at a given frequency or in. a band of

frequencies) at a point (x,y) on the ground at time t have intensity X(x,y,t)

counts per second per unit area. Let EX(x,y,t) = Mx,y), independent of time,

where A(x,y) is presumably proportional to the concentration of the source

element or elements at (x,y). In turn, A(x,y) is assumed to be a realization

of a spatial random process A(x,y), and the principal task of the following



development is to see how the properties of the A process (e.g., its covar-

iance function) are reflected in the aerial data.

(The notion that the concentration A(x,y) at a given point is a "realiza-

tion" of a stochastic process is a statistical fiction which is very useful in.

practice. For example, it underlies the work of Matheron, et al. (Ref. 2) and

is similar to models used in other branches of statistics, for example, in

sampling theory. There is nothing in the discussion which follows, however,

that makes its use imperative, and tne reader may prefer to think of the quan-

tities which we denote using E (expected values) as simply the appropriate

spatial averages.)

The integrals of X over a finite region and time interval,

fLtrrJ //«».» dx dv dT>

have Poisson distributions with mean

At f f A(x,y) dx dy.
S

Letting S shrink to zero and At -* 0 implies that

E[X(x,y,t)|A=A] = A(x,y) (1)

Var[X(x,y,t)|A=X) = Xx,y), (2)

although X itself is not Poisson (it does not have units of counts).

The number of photons reaching the airborne detector during the time

interval (t-At) (which are recorded at time t) is a random quantity

K(t) = f f " ft p(x,y) X(vs-x,-y,s) ds dx dy + B(t)
JJ-~ Jt-Lt

+ B(t),



where p(x,y) is the instrumental point spread function, usually modeled as the

product of a frequency-dependent exponential term decreasing with altitude and

a geometrical factor. The detector is assumed to be traveling with velocity,

v, along the x-axis (y=0). B(t) is radiation from cosmic sources, from the

aircraft, and so forth.

Of the K(t) photons, only

Z(t) =eK(t) + n(t) (4)

are actually recorded, where e is the efficiency of the detector and n is a

random component. This recording process might be modeled as a binomial,

Z(t) ~ S[K(t),e], or a Poisson process, Z(t) ~ P[eK(t)].

We begin by assuming that A(x,y) is a second-order stationary process,

which means that

EA(x,y) = m = constant for all (x,y), and

Cov[A(x,y), A(XHAX, y+Ay)] = E{[A(x,y) - m][A(x+Ax,y+Ay) - m]}

= CA(Ax,Ay),

a function which depends only on the separation (Ax,Ay) of two points, not on

the absolute position (x,y). If the background B(t) is also a stationary pro-

cess, then so is Z(t). In particular,

EZ(t) = E[I(t) + B(t)]

= m Pv + EB(t),

where

fr rAt
pv = // / p(x-vs,y) ds dx dy. (5)

-oo 0

We next show how C,(Ax,Ay) is related to

Cz(h) = Cov[Z(t), Z(t+h)].



First we consider

Cx(Ax,Ay) = Cov[X(x,y,t), X(x+Ax,y+Ay,t+At)].

(Cx will in fact turn out to be independent of At, as well as of x, y and

t.) By definition, this is

E{[X(x,y,t) - EX(x,y,t)] [X(x+Ax,y+Ay,t+At) - EX(x+Ax>y+Ay,t+At)]}.

Conditioning on A(x,y), this can be written as the sum of two terms,

E/E{[X(x,y,t) - A(x,y)][X(x+Ax,y+Ay,t+At) - A(x+Ax, y+Ay)]|A}J

+ Cov{E[X(x,y,t)|A], E[X(x+Ax,y+Ay,t+At)|A]}. (6)

As E[X(x,y,t)|A] = A(x,y), the second term in Eq. (6) is just C.(Ax,Ay). In

the first term, we can assume that the random variates X(x,y,t) and X(x+Ax,

y+Ay, t+At) are independent, given A, unless Ax = Ay = A t = 0. (That is, the

deviation of X from its conditional expected value A at one point in space and

time is independent of the deviation at a different point in space and/or at a

different time.) When Ax = Ay = At = 0, the first term in Eq. (6) is

E{Var[X(x,y,t)|A"|} = EA(x,y) = m,

using Eq. (2). Thus,

( cA(o,o) +

I C.(Ax,Ay)

m Ax = Ay = 0
Cx(Ax,Ay) = { " (7)

otherwise.

Next we consider
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= Cov[I(t),

oo oo f- fc+h

: /Ydxdy/Yd ?dn# ds / dx p(x,y) p(£,n
JJ JJ J J

~°° t-At t+h-At

CovrX(vs-x,-y,s), X(vx-C,-n,

Make the following changes of variables:

Z = t-s
r = x+vz
x, = t+h-T
p = x-5+vh-vc
a = yn-

The above irtegral then becomes

rr rr rht r A t

//dr dy//dp da/ dz / d? p(r-vz,y) p(r-p+vh-v?,y-a)
-OO -00 0 0

Cavrx(vt-r,-y,t-z), X(vt-r+p,-y+a,t+h-?)].

The covariance is just C x(p,a), independent of all of the other integration

variables. Define

-At
Pv(a,S) = / P(a-VT,3) dx. (8)

0
Then after performing the integrals over z and C, what remains is

OO CO

/y dpdo CX(P,^) /y drdy pv(r,y) pv(r+vh-p, y-a).
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Define the inner integral as C (vh-p,-a), which leads finally to

00= If Cx(p'a ) p

= (Cx*Cp)(vh,O), (9)

where * denotes the convolution of two functions,

(f*g)(x,y) = J T fU.n) g(x-c.y-n)

Thus, the covariance function of I is equal to the covariance function of X

(which in turn was essentially the covariance function of A, differing from

the latter only at h=0, and this makes no difference in the integral) con-

volved with a function which depends on the point spread of the instruments.

Finally, from Eqs. (3) and (A), assuming that the signal from the ground,

I(t), the background signal B(t), and the measurement noise i(t) are all un-

correlated, we get

Cz(h) = Cov[2(t), Z(t+h)]

( £2[(CA*CD)(vh,0) + CB(h)], h ^ 0
= ! o

{ 2 ) + CB(h)] + E(Var n{t)), h = 0.

Some examples will make the nature of the terms in Eq. (10) clearer. The

function C arose as a convolution-like integral,

oo

Cp(x,y) = JJ

12



where

• /

p(x-vt,y) dt.

Several models for the point-spread function p have been proposed. Two are

based on simple geometrical considerations (Ref. 3). They are not to" differ-

ent from one which appears in Ref. 4. Figures 1 and 2 are based on the "ele-

mentary rod" model in Ref. 3, normalized as

p(x,y) = p'(r)

r2) • o h2 3/2. (11)+ r) • o 2 3/2.

r> 2 2

In Eq. (11), r = x + y , h is the altitude of the aircraft and u is a

frequency-dependent linear coefficient. Figure la is a plot of p(x,O) = p'(x)

for h = 125 m and P = 0.005 m~ . Figure lb is a plot of pv(x,0) for At =

1 second, v = 120 mph. The second x-axis converts units of distance to units

of time at the given velocity. Figure ]c shows the corresponding function

C (x,0). Figures 2a and 2b are for a velocity of 70 mph, more typical of

helicopter speeds.

In general, we can expect any signal, such as A or B, to have what we

will call both a "continuous" exponent and a noise component. By this we

mean that the covariance function has a discontinuity at the origin, for

example,

CA(0,0) k lim C.(Ax, Ay). (12)
Ax.Ay-KD

C^(0,0) is the total variance of A. in the case of a geological process, such

as A, it may be hard to visualize a sharp discontinuity in any realization X,

but it is often the case that estimates of C.(Ax,Ay) strongly suggest that Eq.

(12) holds. The reason for this is probably that A has not been sampled

finely enough. The small-scale structure in A, if it were studied, might lead

to a smooth extrapolation of Cŷ  to zero (apart from negligible measurement

error), but when samples are available only at greater distances, the

13



estimated autocovariance function appears to have a large discontinuity or

"nugget" at the origin. In the case of the background signal, this discontin-

uity is due to the random Poisson nature of the signal. In any case, their

covariance functions have in general a shape such as shown in Fig. 3, where

the central spike has zero width in the case of C B or small but finite width

in the case of C.. The "continuous" component of A corresponds to the remain-

ing positive portion of the function,

CA(Ax,Ay) = C^(0) Corr[A(x,y), A(x+Ax,y+Ay)],

and is positive at distances over which the A process is positively correl-

ated. That is, nonzero correlation over short distances is taken to represent

some degree of continuity in the underlying process.

The following data examples are taken from the single record reduced

count rates for the Rawlins quadrangle, a segment which was flown by helicop-

ter over the tertiary Browns Park formation (TBP). These reduced count rates

are obtained after considerable manipulation of the raw window count rates,

the quantities that might reasonably be modeled by Z(t) in Eq. (4). However,

perhaps because the reduction procedures are linear operations, even these

data show the structure anticipated in Eq. (10).

The thallium record (Fig. 4a) has little structure apart from some short

trends over distances on the order of two kil-xneters. The total variance of

this segment [Cz(0) in the notation of Eq. (11)] is 47.3, while the next

points in the autocovariance estimate (Fig. 4b) drop down to something on the

order of 13 to 16. Thus, the noise term [E(Var n) in Eq. (10)] has a magni-

tude of about 32, and the signal in Fig. 4a is more than two-thirds noise,

which certainly agrees with the visual impression. Part of this is undoubted-

ly due to a pure noise component in Cg(h); that is, we suspect that the

background signal is partially uncorrelated from second to second, although in

part it comes also from highly continuous sources, such as the "bismuth-air"

signal. The continuous part of the covariance, the CA*C term (which is al-

ways continuous as h •* 0 even though C^ may not be continuous by itself) and

the continuous part of CB(h), are reflected by the decline of the sample au-

tocovariance function from 13-16 at h - 0 to zero at about 2.0 km. As 2.0 km

is considerably greater than the width of C , the positive correlation out

to this distance must be ascribed either to some underlying correlation in A
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out to distances of 1.5 km or greater, or to the continuous (correlated) part

of the background signal, or both. (The effect of convolving C with C A is

to broaden C A by about the half-width of C , which was not more than 0.5 km;

for this reason, if C/̂ *C is positive out to 2.0 km, C^ must have been posi-

tive out to at least 1.5 km.) At the moment we have no way of estimating the

relative contributions of the two terms to the continuous part of C-,. For

this purpose, it will be necessary to do some analyses of the "bismuth-air"

and "cosmic" signals, as well as to investigate the details of GeoMetrics1 in-

strument and aircraft correction procedures.

The reduced potassium record for the same segment is shown in Fig. 5a.

The visual impression given by these data is that the signal-to-noise ratio is

higher than in Fig. 4a, and this is confirmed by Fig. 5b, which shows that

lim C7(h) is about 600, more than 80* of the total variance C7(0). The
h-n) L L

potassium signal is also apparently positively correlated out to at least 3.0

km.

The reduced bismuth signal is interesting because of the sharp jump at

about 9.0 km (Fig. 6a). This presumably reflects a point anomaly on the

ground, and the effect of such a discontinuity is to add a significant contri-

bution to the underlying discontinuous part of C/y. When this spike at the

origin is convolved with C the result has the shape of C , and this is

clearly visible as a hump in Fig. 6b. The noise component in this case is

about 30.0 (about half of the total). From about 34.0, sample autocovarisnce

function decreases to about 23.0, at 0.5 km, with a shape like that seen in

Fig. 2b. The continuous part of Cz(h) extends farther, to perhaps 3.5 km.

This extension, again, comes from the continuous part of C^ convolved with
C_ and/or the continuous part of CQ.P o
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STfiTIONRRY POINT-SPREflO FUNCTION

Fig. la. One model for an instrumental point-
spread function.

ONE-SECOND POINT-SPREflD FUNCTION
VELOCITr - 120 N.P.H.

0.0 IK.O

l.l 1.4 «.«

I SECONDS)

Fig. 1b. Widening of point-spread function due to
integration over one second at 120 mph.
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P . S . r . CONVOLVED HITH ITSEU"

VELOCITY - 120 n.p.H.

o ne.o no.o ao.o icn.o

7.2 10.1
ISEC0N05I

Fig. lc. Convolution of the point-spread function
with itself (120 mph).

ONE-SECOND POINT-SPREAD FUNCTION
VD.OCITT - 70 M.P.H.

O.D 100.0 900.0 300.0 400.0 500.0

7.S 11.1
(SCCONOSI

15.1

MO.O

Fig. 2a. Widening of point-spread function at
70 mph.
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P.S.T. CONVOLVEO WITH ITSELF
VfLOCITt - 70 fi.P.H.

0.0 100.0 200.0 300.0 400.0 SOO.O KD.O 7O0.0 «00.0 (00.0 1000.0
tCTERS

0.0 «.2 12.4 !••( 24.1 31.0
(SECONOS)

Fig. 2b. Convolution of point-spread function
with itself (70 mph).

0.6

4.0 6.0 8.D 10.0 12.0 14.0 1S.0 11.0 20.00.0 2.0

Fig. 3. Typical shape for autocovariance
function of correlated,noisy ob-
servations.
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THRLLIUM LINE NUMBER 220 I TBP 1
IflVERflGE VELOCITr - 65.43 ti.P.H. I

.0 1.0 2.0 3.0 4.0 S.O 6.0 7.0 6.0 9.0 10.0 II.0 12.0 13.0 11.1 15.0

KILOMETERS

O.C 102.0 201.0 306.0 409.0 510.0

I SECONDS I

Fig. 4a. Single record reduced count data
for 2 0 8 U .

THRLLIUM LINE NUMBER 220 ( TBP )
SRMPLE flUTOCOVRRIflNCE FUNCTION

.0 O.S 1.0 I-S 2.0 2.5 3.0 3.S 4.0

KILOMETERS

0.0 X.O S2.0 71.0 104.D 130.0

(SECONDS)

Fig. 4b. Sample autocovariance function for
208T£.
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POTflSSIUM LINE NUMBER 220 ( TBP I

IRVERRGE VELOCITY - 65.43 M.P.H.)

<uu.u -

60.0-

20.0-

eo.o-

40.0-

0 .0-

• . - +
• • • • •

<

• l

^ . •

• . ? .*

• •

• a
— . . *

" '-ftvT

-i 1 1 r——

. " • • ••"

0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 11.0 !5.0

KILOMETERS

I02.0 20*.0 306.0 «H.O 510.0
I5EC0ND51

Fig. 5a. Single record reduced count data
for ""K.

POTflSSIUM LINE NUMBER 220 I TBP )
SflMPLE RUTOCOVflRIRNCE FUNCTION

0.0 0.5 1.0 l.S 2.0 2.5 3.0 3.5 1.0

KILOMETERS

0.0 26.0 52.0 78.0 104.0 130.0
(SECONDS I

Fig. 5b. Sample autocovariance function for
"'K data.
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BISMUTH LINE NUMBER 220 I TBP )

IflVERRGE VEL0C1TT - 65.13 M.P.H.]

* • *

0.0 I.O 2.0 3.0 4.0 S.O 6.0 7.0 8.0 9.0 IQ.O 11.0 12.0 13.0 11.0 15.0

KILOMETERS

i 1 1 1 1 1

0.0 102.0 204.0 306.0 408.0 510.0
(SECONDS)

Fig. 6a. Single record reduced count data
for 21"Bi.

BISMUTH LINE NUMBER 220 I TBP )
SHMPLE flUTOCOVRRlfiNCE TUNCTION

0 0 ».O S2.0 7B.0 104.0 130.0
(SECONDS)

Fig. 6b. Sample autocovariance function for

21



B. Other Descriptions of Serial Properties

There are a number of functions which are related to the autocovariance
function C^Ch). One of the best known is the power spectrum,

SZ(OJ) = f e-i2^
w n Cz(h) dh (13)

(also called the spectral density function). Sz(u>) is estimated by the
periodogram

N

K») - T T l £ ZCnah)e-12mun|2, (14)
n=l

assuming that the process Z(h) has been sampled at regular intervals Ah. It
can be shown that

I(o>) =Ah £ e- i 2™ k Cz(KAh),
k=-«

in immediate analogy with Eq. (13), where Cz(kAh) is the sample autocovar-
iance function

Cz(kAh) =

2-L [(Z(nAh)-Z][Z((n+|k|)Ah)-Z] 0 ± |k| < N
n=l

(15)

\k\ >.N.

(These are the functions plotted in Figs. 4b, 5b and 6b, estimating Cz(h).)

Under the Fourier transform of Eq. (13), Eq. (10) becomes

2 )] + E(Var n).

S (w) [the transform of C (x,0)] is shown in Fig. 7. Figure 8 is the
periodogram of the data in Figure 4a. The transforms of C. and Cg are much
narrower than S , so the periodogram falls off rapidly to about 0.5 cycles
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per km, where it is virtually down to the noise level (the constant E(Var n)
times Ah; the product is slightly less than 1).

Another function, which will be useful in establishing a criterion for
the minimum bias width in tne maximum variance segments algorithm, is an inte-
gral of Cz(h) called the variance-length curve,

VZ(L) = Cz(0) - \ J (L-h) Cz(h) dh. (16)
L 0

It can be shown that VZ(L) is the expected variance of Z within a segment of
length L,

1 fl 2VZ(L) = E {\-J [2(t) - m L ] ^ dt}, (17)
0

where

m L = E\if z(t) d tr
L 0 J

If Z(t) were a pure noise process, VZ(L) would be constant for all L. How-
ever, when Z is positively correlated over short distances, V2(L) is an in-
creasing function of L, where lim V-,(!_) is the noise level (the discontin-

L-K) L

uous part of Z) and lim VZ(L) = Var Z.
The variogram

Yz(h) = ]-Var[Z(t+h) - Z(t)] (18)

can be defined even if Z is not itself stationary, but does have stationary
increments. When Z is stationary, then

Yz(h) = Cz(0) - Cz(h). . (19)

Figure 9 is the variogram for the data in Fig. 5, showing again the hump, now
inverted, which arises from convolving C with the discontinuous part of
CA. Fig. 9 is not exactly Fig. 5b as inverted because the experimental vario-
gram of Fig. 9 was computed as
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N-n

V n A h ) = 2(N-n) 5Z [Z(kAh)-Z((k+n)Ah)]2?

k l

which i s not quite Cz(0) - Cz(nAh).

4.0 (.0

CYCLES PER KILOMETER
12.4 11.6

(CYCLES PER SECONO)

Fig. 7. Fourier transform of convolution of
point-spread function with itself
(70 mph).
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THRLLIUM LINE NUMBER 220 1 TBP )

PERI0OOGRFK1

0.0 0.7 1.4 2.1 2.8 J.5 4.2 4,» 5.6 (.3

0.072 0.10a
tCrO.ES PER SECOND)

F i g . 8 . Per iodogram of 20SU d a t a .

BISMUTH LINE NUMBER 220 ( TBP )
VfiRlOGRWI

0.0 O.S 1.0 1.5 2.0 2.S 3.0
SEGMENT LENGTH (KILOMETERS)

J.S 4.0

S2.0 7t.O
ISEC0N0S1

Fig. 9. Experimental variogram of 21l*Bi data.
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C. The Effect of a Moving Average

One method which is popular for increasing the signal-to-noise ratio in a

segment such as shown in Fig. 4a is the use of a seven-point (sometimes

five-point) moving average- This is equivalent to convolving Z(t) with a rec-

tangular window

R(t) =

-a < t < a

otherwise.

For the data in Fig. 4a, a is approximately 0.1 km. The result of the con-

volution is shown in Fig. 10a. Indeed, the noise has been much reduced. Fig.

10b is the corresponding sample autocovariance function, which is given by

Cz(h) * CR(h),

where CR(h) is the convolution of R with itself, a triangular function of h

whose half-width is about 0.2 km. The triangle is seen out to about 0.2 km in

Fig. 10b, the result of convolution with the discontinuous part of Cz(h).

The remainder of the autocovariance function is smoothed and broadened slight-

ly by the convolution (for example, Fig. 4b).

However, the moving average introduces some distracting artifacts which

are very noticeable in Fig. 10a, specifically, small oscillations on the order

of 2 to 3 cycles per kilometer. The reason for this is clearer if we consider

the "frequency" domain. The Fourier transform of the convolution of Z with R

is the product of the Fourier transforms of Z and R. The transform of R is

shown in Fig. 11. It is nearly zero for frequencies between about 4.5 and

5.25 cycles per kilometer, and thus multiplication with the transform of Z

suppresses these frequencies in the product. As a result, the lower frequen-

cies, relatively unmodified (compare Fig. 12 with Fig. 8) become distractingly

apparent in the original data. For this reason a filter with a smoother

"roll-off" in both the spatial ana frequency domains would be preferable.
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THRLLIUM LINE NUMBER 220 I TBP )
IflVERflGC VELOCITT - 6 5 . « ti .P.H. I

0.0 1.0 2.0 3.0 4.0 S.O S.O 7.0 t.O 4.0 10.0 It.O 12.0 13.0 14.0 1S.0

KILOMETERS

I5EC0N0SI

Fig. 10a. Result of applying a seven-point
moying average to the 208T£ data.

THflLLIUM LINE NUMBER 220 ( TBP )

SBHPLE flUTOCOVHRlflNCE FUNCTION

0.0 O.S 1.0 1.S 2.0 2.S 3.0 I S 4.0

KILOMETERS

0.0 X.O S2.0 71.0 104.0 130.0
(SECONDSI

Fig. 10b. Sample autocovariance function of
the averaged 208T£ data.
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TRRNSfORM OF MOVING ftVERRGE WINDOW

VELOCITY - 65 .« n.P.H.

0.0 1.0 2.0 3.0 4.0 5.0 S.O 7.0 t.O 9.0 10.0

13.6 20.4

ICfCLES PER SECONOI

34.0
.10-

Fig. 11. Fourier transform of the seven-point
moving average.

THflLLIUM LINE NUMBER 220 ( TBP )

PERIOOOGftflM

0.0 0.7 1.4 2.1 2.1 1.5 4.2 4.9 S.i (.3
10'

0.072 0.10*

(CYCLES PER SECONOI

Fig. 12. Periodogram of the averaged 2 0 8T£
data.
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D. Selection of Minimum Length for "Maximum Variance Segments"

Given that the current maximum variance segments algorithm almost invar-

iably produces segments of the present minimum length, w, the choice of w be-

comes a matter of some interest. Fortunately, sane rational basis for this

choice exists because of the correlation introduced into successive observa-

tions by the instruments. Each observation is a weighted average of the sig-

nal over a fairly large area on the ground beneath the plane. [The weighting

function is the instrumental point spread function, one model of which was

given in Ea. (11).] Even at '20 mph the plane does not move very far in one

second, compared to the area ewer which it is integrating. As a result, even

if the ground signal is completely uncorrelated from one point to another,

adjacent records are highly correlated, so that significant variation over

short segments is attributable almost entirely to noise added by the recording

procedure, not to variation in the signal. Therefore, short segments should

be excluded from consideration by the maximum variance segments algorithm.

For present purposes, the correlation introduced by the instruments is

most conveniently described by the variance-length curve, V (L), defined in

Eqs. (16) and (17). Let us rewrite Cz(0) as the sum of an instrumental

noise variance component, VN, and an incoming signal variance component,

V_, and set

Cz(h) =VsR(h), h / 0,

where R(h) is the autocorrelation of two observations separated by a distance

h (in the absence of additional measurement error). Then Eq. (16) becomes

VZ(L) = VM + Vs 1 - 77 J (L-h) R(h) dh , (20)
L 0 J

and the fraction of the variance over a segment of length L which can be

ascribed to the signal (as opposed to the white noise added by the recording

procedure) is

TT- 1 - \ /*(L-h) R(h) dh .
N L L Jr\ J

-y = 1 + IT I1 - TT / (L-h) R(h) dh|. (21)
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Now, referring back to Eq. (10) we see that even if CQ(h) were zero for h =
D

0 (that is, the background signal were pure noise) and C.(£x,ny) = 0 for non-

zero £x or Ay (that is, the concentration of the source on the ground is

uncorre.1 ated from one point to another), still the function Cz(h) would have

nonzero values for h i 0, as it is proportional to C (vh, 0), and V,(L)

would be an increasing function of L. This extreme case provides an upper

bound on how fast V,(L) can increase with L. Figure 13 shows plots of

VZ(L)/VN computed according to Eq. (21), where R(h) = C (vh,O)/C (0,0)

for three values of the overall s5gnal-to-noise ratio Vc/VN- Here C is

based on Eq. (11) with a velocity of 75 mph.

A reasonable way to select the minimum segment width, w, might be to

require that V Z ^ W ) / V M > 2, because when V7^-)/VN < 2, the variability

of a segment of length L is more than 50* due to noise. Table V gives the

value of w, in meters, for which V(w)/VN - 2, read off the graphs of Fig.

13, for three values of the signal-to-noise ratio. In the third and fourth

columns of Table V these values are converted to seconds for observations from

fixed-wing aircraft and helicopters.

In particular, a minimum segment width of five seconds for the example

discussed in the section comparing the two maximum variance algorithms (which

is based on helicopter data, flown at about 75 mph) is certainly too small, as

the signal-to-noise ratio is not greater than four.

If the signal on the ground enjoys some spatial autocorrelation, then the

signal received by the instruments will be correlated out to larger distances

and the variance-length curve, VZ(L), will rise more slondy than suggested

by Fig. 13. Empirical variance-length curves suggest that this is indeed the

case, and that it may take several kilometers for V7^-)/ VM to rise above

2. However, this will be extremely variable from one string of data to

another, and furthermore, it is precisely those cases where V^CD/V^ rises

rapidly which are of interest. As computations based on the point-spread

model give a lower bound on L such that VZ(L)/VN = 2, this seems to be a

reasonable way to choose a lower bound on the length of segments to be con-

sidered.
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TABLE V

APPROXIMATE MINIMUM BIN WIDTH, SELECTED BY REQUIRING

Vz(w)/VN = 2

Signal-to-Noise Width Width (seconds)
Ratio (meters) At 125 mph At 70 mph

2 460 8-9 14-15
3 300 5-6 9-10
4 240 4-5 7-8

The total signal plus noise is traditionally estimated by the total

variance of the string of observations Z., Z2, , Z.,:

1 ^ - 2VS + VN = N E (Zi - Z) •

Estimates of the signal variance, Vs, or the noise variance, VN, are

readily formed from plots such as Fig. 5b [use lim Cz(h) for Vg] or Fig. 9

[use lim Y-^h) for V N ] . As a single computed indicator one might use

. N-l _
VS = Cz(Ah) = 1 ^ (Z.-Z)(Z.+1-Z) (23)

i = l

or

(2*)

An estimate of the signal-to-noise ratio VS/VN can be formed by .any of the

obvious combinations of tqs. \.Z2), (23) and (24).
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VflRIHNCE-LENGTN CURVES
VELOCITY - 120 M.P.H.

SNR - 4.0

SNR - 3.0

SNR - 2.0

0.0 JOO.O 400.0 HO.O 800.0 1000.0 1200.0 I4O0.0 HOO.O 1H0.0 3000.0

14.• 22.2
(SECONOSI

Fig. 13. increase in the signal-to-noise
ratio with segment length.
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E. Relating the Components of Variance in Ground-Based and Aerial Measurements

An important problem in the design of a ground-based sampling experiment

is the determination of an adequate sample size. Sample size determination

requires information about the variance inherent in ground-based measure-

ments. The suitability of aerial radiometric data as a source of this infor-

mation will now be considered.

The ground-based measurements ran he thought of as arising from a classi-

cal two-stage nested analysis of variance (ANOVA) design:

(1) several "samples" near one "position" and

(2) several "positions" along each "line."

Within this framework, the "samples" are assumed to vary independently with

variance a|, and this effect is additive to the "position" effect with

variance a2 and the "line" effect with variance o2 .

Let Q, (x,y) denote the true concentration, in ppm, at a point (x,y)

near the k_th_ flight line, (x denotes the coordinate along the line, and y is

small.) In the ANOVA model, Q is the sum of several components,

where (x.., y. .) is the location of the jth sample taken at the ith

position, p is the overall mean, taken to be constant, and L. , P.. and

S. . . are the random effects associated with the line, position and sample,

respectively. The random effects model assumes these are all independent, and

Lk - n(0, a>)

Pki - 1(0, °p)

Skij - n(0' as>'

where n(p , a2) denotes a normal probability distribution with mean p and

variance CT
2-
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Let X .. be the measured value of the sample taken at (x.., y,•),
K1J 1J 1J

where the measurement error \^t ^as a n(0, cr*) distribution.

For a balanced design with s samples per position and p positions per

line, the ANOVA tahle is given in Table VI. The F statistic for testing for

a line effect will have expected value

! • "**
aS + am + S 0P

This expected value is bigger than F, say, if o* > o and s and p are so

large that

1 °p 1 aS + am 1
p # + ip ~^TK PT*

TABLE VI

ANALYSIS OF VARIANCE FOR GROUND SAMPLES

Sum of Squares Degrees of Freedom Expected Mean Square
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The problem considered below is the possibility of learning something

about the relative magnitudes of a|, am, ap and a? from the aerial

data. If the ratios on the left-hano side of Eq. (27) could be estimated,

then the sample size required to demonstrate a "line effect" could be deter-

mined. Unfortunately, it turns out that only the ratio azp/ a£ is avail-

able from the aerial data. Furthermore, preliminary work on uranium concen-

trations in the water and sediments of several Rocky Mountain quadrangles

suggests that a| is far from negligible (though possibly a* is very

small). Therefore, if s and p are chosen under the assumption that the

second ratio is negligible, the result will be much too small.

To make the connection between ground-based and aerial measurements, we

will now consider Q, (x,y) as a random variable defined along a flight line,

and not only at the sampling positions. As in Sec. III.A., we will assume

that Q. (x,y) is a second-order stationary process. (Stationarity is, per-

haps, improbable, but the development which follows, based on these assump-

tions, gives results which are qualitatively similar to those obtained with

more general assumptions, such as the existence of stationary differences

only. Moreover, in the experimental situation being considered here, sta-

tionarity within "lines" may be quite a reasonable assumption.)

Parallel to the ANOVA analysis, we write

Qk(x,y) = y + Lk + Pk(x,y) + Sk(x,y), (28)

where

\i is constant over the whole region;

L. is constant along a line, and the values for each line are drawn

from a n(0, a*) population;

Pk(x,y) is a relatively slowly varying quantity, i.e., Cov[Pk(x),

Pk(x+Ax)] is close to ap for small Ax, and does not fall off to

zero until Ax is several kilometers, or something on the order of

the distance between "positions;"

Sk(x,y) is a rapidly varying quantity, Var Sk(x,y) = a|, but

Cov[Sk(x,y), Sk(x+Ax,y+Ay)] becomes zero for /Ax* + Ay
2 on

the order of a few meters.
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As usual, define

CQ(Ax,Ay) = O M Q ^ x . y ) , Qk(x+Ax,y+Ay)].

As a function of Ax (Ay held constant), C Q may be quite smooth at the ori-
gin, as suggested by Figure 14a, or rather peaked, as in Figure 14b. The
first case corresponds to little local sampling variation, that is, to cr|
being very small. In this case if the "positions" are at least b kilometers
apart, a? = Cn(0,0) is the main component of variance of observations

r W
within a line.

Preliminary studies of hydrogeochemical data in the Albuquerque and
Montrose quadrangles suggests that Figure 14b is more typical, however.
Figures 15a and 15b are estimates of YQ(|h|) for log uranium concentrations
in sediments and in water in the MontrJse quadrangle.. [Recall that in the
stationary case Y(h) is related to the autocovariance function by Eq. (19).]
It is clear that lim Y,(|h| ) is not zero, and that considerable varia-

h -*0 **
bility, at least a quarter of the total over the whole quadrangle (the quan-
tity designated as "variance" in the subtitle) can be expected among samples
separated by less than 200 meters. Thus, Cn has to be modeled with a sub-
stantial discontinuous part, corresponding to o

From the aerial data for each flight line, or perhaps an average over
all flight lines, an estimate of the autocovariance function C2(h) can be
formed, which is related to Cn(Ax,Ay) as in Eq. (10):

y

Cz(h) =

e2(?[(CQ*Cp)(vh,0) + CB(h)]

e2e2[(CQ*C )(vh,0) + CB(h)3 + E Var n(t), h = 0.

Here we have assumed that the emissions A(x,y) are related to the concentra-
tion Q(x,y) ay a proportionality factor 9,

A(x,y) = 6Q(x,v).

36



Assume that the background contribution is negligible. From Eq. (29), the

contributions to Q which are not constant within a flight line (the only

terms which contribute to CQ) come from Pk and Sk, so

Cz(h) ~ e
2e2[(Cp*C )(vh,0) + (Cs*Cp)(vh,0)], h / 0. (29)

The effect of convolution with C is to broaden the original convolution

function (Cp or Cs) by the width of C (about 500 m) and to multiply it

by the volume under C , which is P in the notation of Eq (5)P , in the notation of Eq. (5).

Assuming Cp represents the continuous part of the autocovariance function

CQ, andCQ, and . l

approximately

Cp( Ax, Ay) = a2
p, the first summand in Eq. (29) is

e2e2(Cp*CpHvh,u;

for small h. On the other hand, Cc is the discontinuous part of Cn, and

convolution with C results in a term
P

(vh,0)

for small h. (See remarks in Sec. 111. A in connection with Fig. 6b.) Now,

C (0,0) « P , so unless o* is extremely large, the contribution of the

second term in Eq. (29) is negligible, and

Cz(Ah) ~ (30)

(Compare Eq. (23); again we are using CZ(A h) as an estimate of ljm

Cz(h).) The overall variance of the aerial data over all flight lines

includes an additional term, which is e 6 P a2,

Var Z ~ + E(var n ) . (31)
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The average variance within a line, on the other hand, is

v i T l ^ - e2&*o2
p + E(Var n). (32)

Combining Eqs. (30), (31) and (32) we can arrive at an estimate of the ratio
Op/ o* However, as we saw above, a term involving a% is seldom avail-
able. Some experiments to determine a| directly are therefore necessary.
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4.0 6.0 8.0 10.0 12.0 14.0 16.0 16.0 20.00.0 2.0

Fig. 14a. Possible shape for autocovariance
function of a smooth process.

0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.00.0 2.0

Fig. 14b. Possible shape for autocovariance
function of a noisy process.
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URHNIUM IN SEDIMENTS, MONTROSE QUflDRHNGLE (LOG)

VRRIflNCE - .458

10.0
KILOMETERS

Fig. 15a. Experimental variogram of the logs
of uranium concentration in sediments.

URHN1UM IN HRTER, MONTRDSE QURORRNGLE (LOGI

VBRIRNCE - 2.401

10.0
KILOMETERS

Fig. 15b. Experimental "ariogram of the logs
of uranium concentration in water.
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IV. COMPARISON OF NORMAL AND LOGNORMAL METHODS OF PERCENTILE ESTIMATION

Implicitly or explicitly, percentile estimation has always been an im-

portant feature of the treatment of National Uranium Resource Evaluation

(NURE) aerial radiometric data. Standard deviation maps actually show the

location of records which fall outside certain percentile ranges if one

assumes the data follow either a normal or lognormal distribution. The

definition and identification of anomalous points in regions is usually very

closely related to the estimation of percentiles.

Because of the prominance of percentiles in the analysis of NURE aerial

radiometric data, a study was conducted to compare two commonly used methods

of estimating them. The main thrust of the study was to determine how esti-

mation is influenced by specific types of departures from distributional

assumptions and to provide a suggested method for estimating percentiles. A

report presenting the results of this study will be released by DOE, Grand

Junction, in May or June, 1980. Highlights are presented here.

The two methods of estimation consioered are (1) the normal assumption

method and (2) the lognormal assumption method. In general, if a random

sample is known to have come from a particular type of distribution, the best

way to estimate percentiles is to use the properties of that distribution.

The two methods assume that the data are from either a normal or lognormal

distribution and make use of the properties of these distributions.

Whenever a procedure is applied which, either implicitly or explicitly,

is based on a particular probability distribution, the user should be aware

of the consequences of failure to meet mathematical assumptions. For

instance, under normal distribution theory, X + 1.645S provides an estimate

of the 95th percentile, where X and S are the sample mean and standard

deviation. (The quantity 1.645 is obtained from a normal table.) The

meaning of X + 1.645S is uncertain, however, if the distribution from which

the sample was taken is not normal.

There are many ways in which distributional assumptions can be violated

and we consider two specific cases.

(1) assuming that a distribution is lognormal when it is really normal,

and
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(2) assuming that a distribution is normal when it is really lognormal.

Figures 16 and 17 summarize the results of a Monte Car)o study to deter-

mine the percentage error realized by using the wrong distribution. The

error realized depends on two variables: the percentile being estimated and

the coefficient of variation (CV) of the population being sampled. (The

coefficient of variation is the ratio of the standard deviation to the mean.)

The curves in Fig. 16 show those CV-percentile combinations for which

there is a 5% error when the wrong distribution is used. The regions where

errors are greater than and less than 5% are also indicated. Figure 16 shows

that making an error by assuming the data come from a normal population when

they really come from a loqnormal population causes problems primarily when

estimating tail percentiles. When estimating upper percentiles, however, the

error of making a log-transformation has more serious consequences than does

the error of failing to transform. When estimating lower tail percentiles,

the error of failing to perform a log-transformation has much more serious

consequences than does the error of transforming. When one is estimating

percentiles that are between the 10th and 80th, the consequence of either

type of error is not great if the coefficient of variation is reasonably

small, say less than 0.27.

Figure 17 provides some more detail for the upper percentiles. The 5*

error line resulting from the failure to take logs is shown. The 10% error

line for erroneously taking logs is also shown. For coefficients of varia-

tion between 0.32 and 0.27, the error of assuming normality causes an error

of less than 5% when estimating the 90th_ and 95th percentiles while the error

of assuming lognormality causes at least a 10% error.

Based on the above observations the following suggestions can be made.

These are general rules of thumb and should not be interpreted to be precise

directions for percentile estimation. As throughout the development, they

assume that normal and loanormal populations are the only possibilities.

(1) The coefficient of variation should be computed. If the coeffi-

cient is large, say greater than 0.27, percentile results should be

interpreted cautiously.



(2) If a choice between the two distributions cannot be made and if the
lower percentiles (10th and below) are of interest, the safest
course of action is to assume lognormality. If the central percen-
tiles (10th to 80th) are of interest, it makes little difference
which distribution is chosen. When the upper percentiles are of
interest, the safest course of action to take when in doubt is to
assume the normal distribution. All of these remarks assume that
the coefficient of variation is in the favorable range defined
above.

(3) Because of the large errors which can result from the choice of the
wrong distribution, an effort should be made to determine which
distribution best fits a set of data. A chi-square, Kolomogorov,
Lilliefors, or other test for normality (Ref. 5) should be per-
formed. This is particularly important in the case of a large
coefficient of variation.
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V. URANIUM FAVORABILITY INDEX

During the reporting period computer programs were developed to effi-

ciently and accurately process large sets of data. These codes were applied

to the data collected on the 22 quadrangles listed below.

Rawlins Sherman
Casper Pratt
Greeley Rice Lake
Mesa Ashland
Rock Springs Eau Claire
Enid Green Bay
Harrisburg Hutchinson
Scranton Lamar
Tyonek Manhattan
Mt. McKinley Talkeetna
Lime Hills Wichita

The data base containing output from these codes plus the original data now

consists of approximately 30 million 60-bit words of information.

A. Code Development

We have developed a program which finds percentiles for data sets of up

to 200,000 records. The algorithm, which is based on the Blum algorithm

(Ref. 5), can be summarized as shown below. The algorithm returns the value

of the Tth largest number from a set of size n.

(1) Select a sample of 1000 equally spaced records from the original

data. Store the sample in an array, Y, in ascending order.

(2) From this sample, estimate the location of the Tth largest element

in the original data. Cutoffs of 5% above and below this estimate

are computed. Compute:

lower index = max (^p • 1000 - 50, 1)

upper index = min ( ^ -1000 + 50, 1000)

lower cutoff = Y(lower index)

upper cutoff = Y(upper index).
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(3) Extract from the original data all records between the lower and

upper cutoffs. This data will contain approximately 10% of the

original data and will be searched for the true T — largest

record.
(4) Apply the Blum algorithm (Ref. 5) to this reduced data set to com-

pute the Tth_ largest element.

A second program which was developed computes the covariance matrix

efficiently and accurately for a large set of data. The algorithm is a

one-pass algorithm similar to the one-pass algorithm of West (Ref. 6) for

computing the variance of a set of data. Our algorithm is summarized here.

AMX = X(l)
AMY = Y(l)
T = 0
For I = 2, 3, .... N Do

QX = X(I) - AMX
QY = Y(I) - AMY
RX = QX/I
RY = QY/I
AMX = AMX + RX
AMY = AMY + RY
T = T + (1-1) * QX * QY

End
COV = T/(N-I)

Because of the sizes of the data bases under study, it is not practical

to try to read in all of the data and process it in one step as shown above.

Instead, we input (from a mass storage device) 10,000 elements at a time for

each of the 2 arrays, X and Y, and accumulate the necessary information in T.

The two codes just described have been sent to BFEC, Grand Junction,

Colorado, for their use.

B. Large Data Base

For each of the 22 quadrangles we have computed 265 statistics based on

the following 10 variables: thallium, bismuth, potassium, gross count,

Tl/gross, Bi/gross, K/gross, Bi/K, Bi/Tl, and Tl/K. For each variable we

have computed the median, mean, and standard deviation; the 99th, 95th, 90th,

1st, 5th, and 10th. percentiles; the average and standard deviation of all the
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points above the 99th, 95th, and 90th_ percentiles; and the same for all

points below the ls_t, 5th_, and 10th_ percentiles. In addition, we have com-

puted the 55 upper triangular elements of the 10 by 10 covariance matrix for

the variables listed above. Thus, there are 10 variables times 21 statistics

computed on them plus the 55 elements of the covariance matrix for a total of

265 statistics.

Work is underway to begin analysis of this data in order to find a

uranium favorability index.

C. Problems With the Data

Some of the quadrangles listed in Ref. 7 are not being used in this

study. Some of the reasons for their omission are missing data, incomplete

quadrangle coverage, and difficulties in reading the data tapes.

REFERENCES

1. T. R. Bement and M. S. Waterman, "Locating Maximum Variance Segments in
Sequential Data," Math. Geol. 9, 55-61 (1977).

2. A. G. Journel and C. J. Huijbregts, Mining Geostatistics (Academic Press,
London, 1978).

3. J. Tammenmaa, R. L. Grasty and M. Peltoniemi, "The Reduction of Statisti-
cal Noise in Airborne Radiometric Data," Canadian Journal of Earth
Sciences 13, 1351-1357 (1976).

4. K. L. Kosanke and C. D. Koch, "An Aerial Radiometric Data Modeling Pro-
gram," IEEE Trans. Nuclear Science NS-25, No. 1, 767 (1978).

5. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest and R. E. Tarjan, "Time
Bounds for Selection," Journal Computer and Syst. Sci. 2> 448-461 (1973).

6. D. H. D. West, "Updating and Variance Estimates: An Improved Method,"
Comm. ACM 22,9, 532-535 (September 1979).

7. J. A. Howell, T. R. Bement and P. L. Buslee, "Geostatistics Project of
the National Uranium Resource Evaluation Program, April-September 1979,"
Los Alamos Scientific Laboratory report LA-8175-PR (December 1979).

48


