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FOREWORD

In the past ten years principles and methods for a

unified system reliability and safety analysis have

been developed. Fault tree techniques serve as a

central feature of unified system analysis, and

there exists a specific discipline within system

reliability concerned with the theoretical aspects

of fault tree evaluation.

Ever since the fault tree concept was established,

computer codes have been developed for qualitative

and quantitative analyses. In particular the presen-

tation of the kinetic tree theory and the PREP-KITT

code package has influenced the present use of fault

trees and the development of new computer codes.

This report is a compilation of some of the better

known fault tree codes in use in system reliability.

Numerous codes are available and new codes are

continously being developed. The report is designed

to address tha specific characteristics of each code

listed. A review of the theoretical aspects of fault

tree evaluation is presented in an introductory

chapter, the purpose of which is to give a frame-

work for the validity of the different codes.

Please note that the code summaries are — with a

few exceptions — based on the manuals as given in

the references. Some of the codes have been revised

at later dates. No pretentions as to the complete-

ness of this compendium are given.

Stockholm in March 1981

Bengt Ly2ell
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1. FAULT TREE ANALYSIS — A TOOL IN RELIABILITY
AND SAFETY ENGINEERING

The general principles of fault tree analysis are

well established. There now exist standards where

certain procedures of the techniques involved are

documented [1,2]. Research and development efforts

during the past two decades have produced the

tools — i.e. computer codes — to effectively

perform reliability analyses of complex systems.

However, the validity of fault tree analyses has

received comparatively little attention.

The present application of fault tree techniques

are mainly related to four areas of system analysis:

(1) Qualitative analyses — identification of

potential component failures leading to the failure

of a system, (2) quantitative analyses — calculation

of system failure probability (system unavailability),

(3) identification of dependencies in a system, and

(4) generic failure analysis.

It is to be noted that fault tree analyses in many

cases serve as input to specific reliability evalu-

ations such as those concerned with periodic testing

and repair strategies. A number of reliability codes

are designed to be compatible with fault tree codes

related to the four areas mentioned above.

1.1 Evolution of the Fault Tree technique

During the 1950s the foundation of the statistical

reliability theory was established. Of principal
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interest at that time was the analysis of multi-

component reliability. The papers of Birnbaum,

Esary and Saunders [3], and Esary and Proschan [4]

introduced the concepts of coherent structures,

paths and cuts. These concepts made it possible to

clarify the relationships between component relia-

bility and system reliability in a mathematically

stringent way.

However, it was the introduction of the fault tree

technique in the early 1960s that provided the

practical utilization of the coherent structure

theory [5]. The concept of fault tree analysis was

originated by H.A. Watson of Bell Telephone Labora-

tories in 1961. The System Safety Symposium in

Seattle in 1965 initiated a wide-spread interest

in using the fault tree technique as a qualitative

and quantitative tool for the evaluation of system

reliability characteristics. A classical paper from

this era is that of Haasl [6].

Originally the quantitative fault tree evaluations

were performed with simulation techniques. In 1970

Vesely [7] presented the foundation of the analyt-

ical fault tree evaluation — kinetic tree theory.

Later this theory has been improved [8] to include

models for different repair and inspection policies.

In the years following the presentation of the kin-

etic tree theory, efforts were directed to the

development of effecient computer codes for fault

tree evaluation. There now exist numerous computer

codes for different aspects of fault tree analysis.

The fault tree technique has evolved into a state

of being an integral part of system analysis.
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In general, fault trees have proved to be effective

in identifying potential failure events in complex

systems. However, there are a number of aspects of

the technique that make its validity very sensitive

to the way a system analysis is performed.

It is a strength — and in the same time a possible

weakness — that the quality of a fault tree model

is controlled only by the skill and thoroughness of

the analyst. A fault tree of any system is a graphi-

cal representation of the analyst's knowledge of a

specific system. Errors of over-sight and omission

can, however, severly distort an analysis.

A quite recent trend in the fault tree technique is

the development of systematic, computerized methods

of fault tree synthesis [9,10], The object of this

work is to find a procedure for simplifying

the often very tedious and time consuming construct-

ion phase of a fault tree analysis. The analyst can

hereby direct his efforts to the understanding of

the system to be evaluated, and thus reducing possi-

bilities of over-sight and omission. The automatic

fault tree construction is often designated as

generic failure analysis.

The literature on the various aspects of fault tree

analysis is extensive. A number of bibliographies

covering certain areas of the subject have been pub-

lished [11,12], and the availability of computer

codes is in general unrestricted. The Argonne Code

Center in the U.S.A. and the NEA Data Bank in France

respectively prepare and publish program abstracts

and bibliographies of computer programs.
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1.2 Basic Concepts of Fault Tree Evaluation

Basically, fault tree analysis is a systematic

approach of representing a structure (system) in terms

of its potential failure initiators (primary events).

The fault tree theory on which the reviewed computer

codes are based is restricted to systems with binary

components, i.e. the components can have two states

only.1 Because of this restriction a fault tree can

be described as a logic diagram showing the various

failure events as they combine through a set of

Boolean gate operators leading to the system failure

(top event).

The technical systems under consideration in fault

tree analysis are defined as coherent structures. In

the coherent structure theory the state of a set of

n components is indicated by the vector x = (x-, x_.

x ) , denoted as a vector of basic event out-n
cones. A binary structure function $ (x) is used to

determine the state of the 3vstem. We have

1 when basic event i occurs
xi =

0 when basic event i does not occur

1 when top event occurs
(x) =

0 when too event does not occur

*A generalized fault tree theory has been developed
by Caldarola [13]. This theory is not discussed
further.
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A structure (system) is defined as coherent when [3]

a. <J> (x) > <J>(y) whenever x>y

b. <5>(1) = 1, where 1 = (1,1, , 1)

c. $(0) = 0 , where 0 = (0,0, , 0)

Consequently, a structure is coherent if its structure

function is increasing (condition "a") and each compo-

nent is relevant (condition "b" and " c " ) .

In a fault tree analysis the failure characteristics

of any system are described by logic gate operators.

The AND and OR gates are the basic logic operators.

The structure function representing an AND gate is

given by

n
W X ) = X1*X2

while an OR gate is represented by

Wx)

n
U x, (2)

Equation (1) & (2) represent Boolean structure func-

tions that are coherent. Due to a number of reasons
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fault tree construction usually is limited to the

application of AND and OR logic gate operators.

However, in certain situations it is necessary to

describe the logical behaviour of a system in a

more detailed way. This can be done by using the

NOT logic gate operator. A single event x. operated

by a NOT gate is per definition represented by

Contrary to the AND and OR gates, a NOT gate is not

represented by a coherent Boolean structure function.

We have

»NOT(0) =

Fault trees with AND, OR and NOT gates are defined

es complete fault trees [14], and complete fault

trees are incoherent. Processing of such trees is

tedious and requires large computer memories. Kuma-

moto and Henley [15] have presented an approach for

the effecient evaluation of incoherent fault trees.

Many of the computer codes reviewed in this report

are restricted to handling coherent fault trees only.

An exact quantitative fault tree analysis requires

the determination of the minimal cut set represen-
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tation of a system. Per definition a cut set is a

group of primary events whose occurence will cause

the top event (system failure) to occur. A cut set

is minimal if it cannot be further reduced and

still remains a cut set.

A minimal cut set determination is equal to a qua-

litative fault tree evaluation. Usually qualitative

fault tree evaluations — fault tree reductions —

are performed by application of the laws of Boolean

algebra. For complex tree structures these proce-

dures can be very time consuming. The quantitative

analysis of binary fault trees does not require

the minimal cut set determination strictly, however.

In the case of multinary fault tree structures

minimal cut set determination is a requirement for

quantification.

1.3 Generic Fault Trees

The concept 'generic fault trees' refers to an

approach that reduces the time required to construct

detailed system fault trees significantly. In this

approach generic logic models are developed for

commonly occurring components and systems. The logic

models are stored on a computer, and when a need

arises specific, overall system fault trees can be

constructed.

Any fault tree analysis always involves at least

three steps: (1) System definition, (2) constiaction

of a fault tree, and (3) qualitative fault tree evalu-
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<-tion. Until recent years research and development

efforts mainly have been directed towards the last

step. During the early 1970s general principles

for computerized fault tree construction were pre-

sented. Fussell [16] and Powers and Tompkins [17]

respectively defined two approaches for the auto-

matic generation of fault trees.

There now exist several computer codes for automa-

tic fault tree construction. The experience gained

from the application of these codes indicates that

their effectivenesfj very much depends on the way

the component failure models (generic logic models)

are represented. The different failure models in use

are

- Equation models, [9]

- Mini fault tree models, [16]

- Digraph models, [17]

- Input-output models, [18]

The resulting algorithms have been tested on a number

of academic sample problems. Further development is

needed before the algorithms are properly validated

and a widespread use of available computer codes is

attempted.
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1.4 Limitations in the Fault Tree Evaluation
Techniques

In the practical utilization of fault tree evaluation

techniques an awareness of the basic assumptions and

the limitations is of prime importance. The general

assumptions are (1) component independence, (2) no

component failures exist at time t = 0, and (3) that

the .nimal cut sets of a system adequately represent

the system.

Whenever a fault tree is drawn, the reliability ana-

lyst has to decide on which granularity (level of

detail) to be used. A very fine fault tree granular-

ity does not always imply a high degree of accuracy.

Furthermore, if the level of detail of a tree is too

fine, computer times can be excessive. Hereby making

computerized fault tree analysis uneconomical.

There are a number of ways to reduce computer times.

In many cases — but not always! — the importance

of a minimal cut set is a decreasing function of its

order n.1 Therefore, a commonly employed procedure

of reducing computer times is to neglect minimal cut

sets having order greater than a fixed value n —

logical cut off.

A more effecient computer time reduction is achieved

with the probabilistic cut off. Here, minimal cut

sets having unavailabilities less than a chosen cut

off value are discarded. This approach is sometimes

being referred to as a "built in sensitivity analysis"

[19].

*The order of a minimal cut set is defined as the
number of primary events in a minimal cut set.
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The use of the logical cut off and the probabilistic

cut off criteria respectively can be more advantag-

eous if, at the same time, it is possible to estimate

the importanca of the discarded minimal cut sets —

residual error estimation. Estimation of residual

error helps the analyst to judge the choice made for

logical cut off and probabilistic cut off.

If an analysis is to be extended beyond the manual

construction of a fault tree, the analyst has to

proceed with great care. Implementation of a computer

code can be very time consuming. Besides, there is

not always an assurance that a specific code can

handle any system. Even if a computer code is at hand

the preparation of necessary input data can be deterr-

ent. The choice between manual and automatic fault

tree evaluation is not unequivocal!

In summary, the limitations of fault tree analysis

fall into two categories: (1) Limitations occurring

during implementation, and (2) limitations in theory.

Computer programs for qualitative and quantitative

evaluations cannot always handle the large trees en-

countered in practice due to computer storage require-

ments. Theoretical limitations are related to the

independent component assumption, and the binary

assumption. Fussell [20] and Rowsome [21] respectively

give overviews on limitations in fault tree analysis.

1.5 References

1. IEEE Guide for General Principles of Reliability
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Protection Systems, IEEE Std 352-1975 (ANSI N41.4-
1976)
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2. CODE SUMMARIES ~ QUALITATIVE FAULT TREE
EVALUATION

tsome of the codes reviewed in this chapter also
appear in chapters 3 & 4; i.e. the respective
codes also include quantitative evaluation or
dependent failure identification options.
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2. 1 ALLCUTS

The ALLCUTS code package was developed at the Atlantic

Richfield Hanford Company in the U.S.A. in the early

1970s for the safety assessment of nuclear fuel cycle

operations. The code development was specifically

directed towards problems related to evaluation of

very large fault trees with high-order minimal cut

sets.

2.1.1 Purpose

ALLCUTS is a qualitative evaluation code using already

constructed fault trees. The code is capable of find-

ing up to 10-event cut sets from a fault tree with

175 bottom events and 425 logic gates [1, p 4). The

ALLCUTS algorithm is similar to the top down algorithm

of the MOCUS code.

In order to make detailed, and in the same time com-

puter time conserving system analyses a so called risk

index cut off is employed. The risk index is defined

as [1, p 1] "the logarithm of the product of the cut

set probability, multiplied by the quantity and type

of material released and transported".

In practice, a logical cut off is used to discard cut

sets of a certain order from further analysis. A

probabilistic cut off is applied on the cut sets sur-

viving the first cut off. The cut sets surviving the

second cut off are finally used for calculating the

risk index. The result of these procedures is an ord-
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ered list of the important cut sets. All the discard-

ed cut sets are retained for a final estimation of

total risk.

The desire to handle high-order minimal cut sets is

related to the fact that low probability minimal cut

sets — multi event minimal cut sets — can lead to

severe consequences. High probability minimal cut

sets do not necessarily imply a high level of risk.

A review of various aspects on fault tree analysis in

the safety assessment of nuclear fuel cycle operations

is presented in [2].

2.1.2 Program Description

ALLCUTS is a Fortran code capable of handling cohe-

rent fault trees. The INHIBIT gate — which is a

special case of the AND gate — can be handled as

well.1 A top-down algorithm is employed in the fault

tree evaluation.

The fault tree expansion — determination of minimal

cut sets — is initiated by defining a starting cut

set (usually the top event) and the tree is then

systematically searched for bottom events (primary

events). At each level of the tree the developing

set is analysed and if any event in the developing

set is a bottom event, no further development is

*The INHIBIT logic gate is used in cases where an
output is caused by a single input but some quali-
fying condition must be satisfied before the input
can cause the output. Typcally, the INHIBIT logic
gate is used in the analyses of chemical process
systems.
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possible and the event label (specification of the

event) is carried with the set until it is fully

expanded. Logical gates are treated by the algorithm

in the following way

AND gate; the gate is replaced by the gates
and/or bottom events which are input to the AND
gate.

OR gate; the inputs to the gate are used to cre-
ate cut sets (n inputs make n cut sets). Each
cut set have the OR gate of the original set
replaced by its first input.

INHIBIT gate; the gate is replaced by its input
event label.

ALLCUTS produces outputs in the form of tables con-

taining bottom event importances and importance fac-

tors as well as lists of all the cut sets containing

a predefined bottom event. A quantitative evaluation

option is i eluded in the code.

2.1.3 References

1. W.J. Van Slyke, D.E. Griffing, ALLCUTS, A Fast,
Comprehensive Fault Tree Evaluation Code, ARH-
ST-112, Atlantic Richfield Hanford Company, 1975

2. T.H. Smith, et al, A Risk-Based Fault Tree
Analysis Method for Identification, Preliminary
Evaluation, and Screening of Potential Acciden-
tal Release Sequences in Nuclear Fuel Cycle Ope-
rations, BNWL-1959, Battelle Pacific Northwest
Laboratories, 1976
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2.2 ELRAFT

The ELRAFT code was developed at the Westinghouse

Electric Corporation and a first paper presenting

the code was published in 1971 [1]» It is not known

to what extent the code has been used in system

reliability analyses.

2.2.1 Purpose

ELRAFT is a qualitative code for the identification

of minimal cut sets in coherent fault trees. The

code is restricted to finding minimal cut sets con-

taining up to 6 basic events, i.e. 1 < n < 6 [2].

2.2.2 Program Description

ELRAFT is a Fortran code using a bottom-up algorithm

based on the unique factorization property of natural

numbers. Every natural number greater than one can

be expressed as a product of powers of prime factors

— a natural number is called prime if it is greater

than one and has no factors except itself and one.

The expression characterizing a certain natural

number is unique, except from the order in which the

factors are written.*

We have for example that 60 = 2Z«3«5 = 3«22«5 =

5«22«3, etc
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In the ELRAFT algorithm, every basic event is assigned

a unique prime number. The fault tree is examined from

the bottom-up. The cut sets for the gate events on

successively higher levels in the tree are determined

as the product of the numbers associated with each of

the input events. Note that any fault tree in essence

consists of three levels: (1) Top event with its OR

gate, (2) cue sets with AND logic gates, and (3) basic

events.

Set containment is indicated whenever one number is a

factor of another. A cut set indicated by 30 is logi-

cally contained in the cut set indicated by 15. Conse-

quently, the cut set indicated by the larger number can

be eliminated. Repeated use of this principle finally

produces the minimal cut sets for the top event.

In the code the tree top is identified as event number

1. The first avent of the next level is identified as

12, etc. The number of the digits in the identification

number is equal to the level in the tree to which the

event belongs. Within one numbering sequence, both the

number of levels and the number of inputs to a gate are

limited to nine [2].

A quantitative evaluation option is included in the

code. If quantification is required in addition to the

minimal cut set identification, probabilities of basic

event outcomes have to be assigned to the input cards

describing the events.

2.2.3 References

1. S.N. Semanders, "ELRAFT. A Computer Program for
the Efficient Logic Reduction Analysis of Fault
Trees", IEEE Transactions ot Nuclear Sciencs,
Vol NS-18, 1971, pp 481-487
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2. R.B. Worrell, G.R. Burdick, "Qualitative Analysis
in Reliability & Safety Studies", IEEE Trans. Rel.,
Vol R-25, 1976, pp 164-170



- 20 -

2.3 FATRAM

The development of the FATRAM algorithm [1] was per-

formed at the Idaho National Engineering Laboratory

and the algorithm is included in the Reliability

Analysis System (RAS) code package [2]. Requirements

for effective use of computer core memory initiated

the FATRAM development.

2.3.1 Purpose

FATRAM is basically similar to the MOCUS algorithm

(see section 2.5). All algorithms for minimal cut

set determination have advantages and disadvantages

related to the computer implementation. If complex

trees are to be analysed external storage devices

sometimes must be used. FATRAM is characterized by

its effecient use of a main computer memory.

2.3.2 Program Description

FATRAM is included in the RAS package, which can

handle coherent fault trees. RAS is an integrated

package of computer programs for qualitative and

quantitative evaluations as well as dependent failure

identification. The algorithms/codes included in RAS

are MOCUS, FATRAM, POCUS, KITT-1, and COMCAN.

The steps of the FATRAM top-down algorithm are [ 1 ]
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Evaluation begins with the top event. If the
gate under the top event label is an AND gate,
all inputs are listed as one set; if it is an
OR gate, the inputs are listed as separate
sets.

Repeate until all OR gates with gate inputs
and all AND gates are resolved. OR gates with
only primary event inputs are not resolved at
this time.

Remove any supersets — cut sets that are not
minimal — that still exisv..

Process any repeated basic events remaining
in the unresol'.ed OR gates. Each repeated event
is processed as
a. The repeated event replaces all unresolved

gates of which it is an input to form new
sets.

b. These new sets are added to the collection.
c. This event is removed as an input from the

appropriate gates.
d. Supersets are removed.
e. Resolve the remaining OR gates. All sets

are minimal cut sets.

RAS is controlled by a number of keywords that acti-

vate the different algorithms and provide input in-

formation to the algorithms. The output of RAS is of

three types: (1) printed, (2) punched cards, or (3)

a file on a storage device.

2.3.3 References

1. D.M. Rasmuson, N.H. Marshall, "FATRAM - A Core
Efficient Cut Set A^orithm", IEEE Trans. Rel. ,
Vol R-27, 1978, pp 250-253

2. D.M. Rasmuson, N.H. Marshall, G.R. Burdick,
User's Guide for the Reliability Analysis System
(RAS), TREE-1168, EG & G Idaho Inc., 1977
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2.4 FAUNET

The FAUNET package [1] was primarily designed for

implementation on mini computers. The code develop-

ment was performed at the Danish Research Establish-

ment Ris# in the mid 1970s. At a later date FAUNET

has formed a basis for the development of the

Reliability Analysis Package (RAP) [2].

2.4.1 Purpose

FAUNET includes a qualitative and a quantitative

evaluation module for the analysis of coherent fault

trees. The FAUNET algorithm is based on the Fusseli-

Vesely algorithm for obtaining minimal cut sets [3].1

A special modularization technique is included to

reduce computer time and computer storage require-

ments.

2.4.2 Program Description

FAUNET is a Fortran code and the qualitative part of

the package fall into two main categories: (1) TREE,

and (2) CUT. The programs under the TREE label per-

form various error checks on the input data and pro-

vide graphical representations from the input data

JThe Fussell-Vesely algorithm is often denoted as the
Boolean Indicated Cut Sets (BICS) algorithm.
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— fault tree structures are drawn on a line prin-

ter. TEECH is the error checking program in the

TREZ package. It lists the number of OR and AND

gates and the number of basic events as well as

produces a list of basic events and gates together

with the times they occur in the tree. It checks

the tree to see if it is connected and to see it

there are multiple specifications of a gate. Finally

it calculates the number of BICS and the maximum

length of these for each gate. The graphical pro-

grams consist of a number of modules that structure

the gates and events in an orderly way and draw the

trees on the line printer.

The CUT package consists of seven programs that make

the top-down assessment of the minimal cut sets.

CUTUP is the modularization part of CUT and performs

a bottom-up analysis by identifying pairs of basic

events always occurring in the same types of gate.

Such a pair is replaced by a "complex event". If two

complex events always appear as a pair in the same

type of gate, they are combined into a new complex

event. This process continues until no more pairs

are found.

2.4.3 References

1. 0. Platz, J.V. Jensen, FAUNET: A Program Package
for Evaluation of Fault Trees and Network, Ris«5
Report No 348, Research Establishment RissJ, 1976

2. E.R. Corran, H.H. Witt, "Reliability Analysis
Techniques for the Design Engineer", Proceedings
of the 6th Advances in Reliability TechnolO'
Symposium, University of Bradford, 9-11 Aprfi
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3. J.B. Fussell, W.E. Vesely, "A New Methodology
for Obtaining Cut Sets for Fault Trees",
Transactions of the American Nuclear Society,
Vol 15, 1972, pp 262-263
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2.5 MOCUS

The MOCUS user's manual was published in 1974 [1].

One aim with the code development was to replace

PREP (see section 2.7) in the PREP-KITT code pack-

age with a more efficient algorithm for minimal cut

set determination.

2.5.1 Purpose

MOCUS is a program that locates minimal cut sets in

coherent fault trees. The MOCUS algorithm is descri-

bed in [1,2,3]. The cut sets obtained by the algo-

rithm are called Boolean Indicated Cut Sets (BICS).

If there is no replication of primary events then

the BICS are precisely the minimal cut set?

2.5.2 Program Description

The program is a Fortran code. An already constructed

fault tree is required and a description of the tree

forms the input. The fault tree description is similar

to the input needed for TREBIL — a program included

in the PREP package. Only OR and AND gates can be hand-

led. Other types of logical gates must be described

in terms of OR and AND gates.

The MOCUS output always contains (a) an input data

edit, (b) the number of minimal cut sets, and (c)

punched or printed minimal sets for at least one gate

[1, p 18]. The output options are
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- Printed minimal cut sets for up to 20 speci-
fied logic gates;

- Punched failure data and minimal cut sets
for up to 20 specified logic gates.

MOCUS is compatible with the quantitative fault tree

evaluation code KITT (see chapter 3). It is possible

to define a MOCUS output that contains a cross refe-

rence table that correlates a component failure

integer name as supplied to KITT to each component

alphanumeric name as supplied by the MOCUS user.

2.5.3 References

1. J.B. Fussell, E.B. Henry, N.H. Marshall, MOCUS -
A Computer Program to Obtain Minimal Sets from
Fault Trees, ANCR-1156, Aerojet Nuclear Company,
1974

2. J.B. Fussell, W.E. Vesely, "A New Methodology for
Obtaining Cut Sets for Fault Trees", Transactions
of the American Nuclear Society, Vol 15, 1972,
pp 262-263

3. R.E. Barlow, H.E. Lambex't, "Introduction to Faalt
Tree Analysis", Proceedings of the Conference on
Reliability and Fault Tree Analysis, University
of California, Berkeley, September 3-7, 1974, pp
7-35
(SIAM 1975)
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2.6 PL-MOD

The program PL-MOD has been developed at the Massa-

chusetts Institute of Technology — a user's manual

was published in 1977 [1]. In comparison with the

other codes reviewed PL-MOD is unique in that it is

not based on the minimal cut set theorem. Fault trees

are described by means of modular decomposition [2]

which circumvents the often very tedious minimal cut

set determination.

2.6.1 Purpose

The qualitative part of PL-MOD performs a modulari-

zation of fault trees — there is no generation of

minimal cut sets! A fault tree module is a group of

components acting as a super-component. It is suffi-

cient to know the state of the module in order to

determine the overall state of a system. Modular

composition is derived directly from fault tree

diagrams.

Modularization of fault trees having no replicated

events or gates is straightforward. Every intermedi-

ate gate for such a fault tree will be the top event

for a tree submodule. When replicated events and

gates occur i a fault tree, the modularization becomes

a more involved procedure. The modularization algo-

rithm uses a Boolean vector form to characterize the

modular composition of a fault tree.
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2.6.2 Program Description

PL-MOD is a PL-1 code for the evaluation of coherent

fault trees. The PL-MOD algorithm is described in

[2, pp 545-547]. A number of PL-1 language features

are employed in a certain order for the fault tree

modularization.

PL-MOD generates a complete Boolean vector represen-

tation for the modular minimal cut sets of a fault

tree. This representation forms a basis for quanti-

fication.

2.6.3 References

1. J. Olmos, M. Modares, L. Wolf, User's Manual for
PL-MOD and PL-MODT, Department of Nuclear Engi-
neering, Massachusetts Institute of Technology,
1977

2. J. Olmos, L. Wolf, "A Modular Representation and
Analysis of Fault Trees", Nucl. Eng. Des., Vol
£8, 1978, pp 531-561
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2.7 PREP

PREP — short for "preprocessor" — is the qualita-

tive code in the well-known PREP-KITT code package.

A user's manual was published in 1970 [1]. PREP-KITT

was one of the first fault tree evaluation code

available to reliability analysts and consequently

it has served as a basis for later code developments,

2.7.1 Purpose

PREP is designed for the qualitative eveluation of

coherent fault trees. Minimal cut sets are found

either by deterministic testing or by Monte Carlo

simulation. According to the code manual fault trees

with up to 2000 primary events and up to 2000 logical

gates can be handled.

2.7.2 Program Description

PREP is a Fortran code which consists of the programs

TREBIL and MINSET. TREBIL produces the logical equi-

valent of the fault tree in the forin of a subroutine

— TREE — and serves as the input processor for

MINSET. The MINSET program determines the minimal cut

sets.

Only AND and OR gates can be accepted by TREBIL. Other

types of logical gates must be described in terms of

AND and OR gates. The fault tree logic building algo-
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rithm requires that each logical gate and each

component of the tree be given an alphanumeric

name. A set of cards is used as input to TREBIL.

One card — containing the name of the gate, the

type of the gate, the number and names of the

other gates that are attached to it — is read

in for each logical gate in the fault tree.

The MINSET program determines the minimal cut sets

by either deterministic testing or Monte Carlo

simulation. COMBO is the deterministic testing

algorithm for finding minimal cut sets. The Monte

Carlo simulation procedure for finding minimal cut

sets is performed by the subroutine FATE.1

In the deterministic testing procedure primary

events are imagined to have occurred first one at

a time, then two at a time, etc. For each combi-

nation the logic of the fault tree is tested to

determine whether or not that combination causes

the top event. Combinations that cause the top event

represent cut sets. A minimization of cut sets is

performed using an element by element comparison

to other cut sets. The testing procedure is repeated

until minimal cut sets of order n are obtained. The

order n is restricted to ten.

In the Monte Carlo simulation procedure the number

of minimal cut sets will be found in accordance

with their probabilistic importance. The time of

failure is computed for each component from the

exponential distribution based on an input time

called "mission length" (or "mixing parameter").

Strictly speaking, when FATE is used PREP is a
quantitative code.
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The component with the smallest time of failure

is first failed and TREE is called. If the system

is in a non-failed state, then the component with

the next smallest time of failure is failed, and

TREE is tested again. This process is repeated un-

til the system fails. When failure occurs, this

set of components is reduced to the minimal cut

set.

2.7.3 Reference

1. W.E. Vesely, R.A. Narum, PREP and KITT: Computer
Codes for the Automatic Evaluation of a Fault
Tree, IN-1349, Idaho Nuclear Corporation, 1970
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2.8 SALP-MP

The SALP-MP code is an improved version of the

original SALP code. SALP-MP has been developed

at the Joint Research Centre at Ispra in Italy.

The User's manual was published in 1980 [1].

There are certain similarities between SALP-MP

and the PATREC code [2,3] developed at Commissa-

riat å l'Energie Atomique in France.

2.8.1 Purpose

The qualitative part of the code package searches

for minimal cut sets by a direct manipulation of

an already constructed fault tree. A bottom-up

algorithm is employed, and a single phase logical

analysis as well as a multi-phase analysis can be

performed.

A multi-phase system is a system whose structure

function changes at fixed times. The structure

function changes as a consequence of the different

tasks the system is requested to perform in subse-

quent mission intervals. In the analysis of a

multi-phase system as many fault trees as the number

of phases are required.

The list processing technique [4] is used for the

internal computer representation of fault trees.

This technique makes it possible to store and easily

handle complex data structures. A preorder or end-
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order traverse [1, p 12] determine the minimal cut

sets.

2.8.2 Program Description

SALP-MP is a PL/1 code for the qualitative and

quantitative evaluation of coherent fault trees.

The input description of a fault tree differs

depending on whether single phase or multi-phase

structures are considered. The code consists of

two programs; SALP-MP1 and SALP-MP2. When a single

phase structure is to be analysed SALP-MP1 is used.

Multi-phase structures are analysed by means of

SALP-MP2.

The user specifies the maximum order of the minimal

cut sets to be determined (logical cut off). A

probabilistic cut off level is also included in the

data input. Estimation of residual error is includ-

ed in the code.

A fault tree can be described using a free format.

Each input card describes a gate and its descend-

ants (gate inputs). It is not necessary to respect

any certain order in the description of the gates.

The computer output consists of a list of minimal

cut sets ordered from high to low probability.

2.8.3 References

M. Astolfi, et al, SALP-MP (Multi Phase). A
Computer Program for Fault Tree Analysis of
Complex Systems and Phased Missions. Descrip-
tion and How-to-Use, P.E.R. 389, Joint Research
Centre, Ispra, 1980
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2. B.V. Koen, A. Carnino, "Reliability Calcu-
lations with the List Processing Technique",
IEEE Trans. Rel., Vol R-23, 1974, pp 43-50

3. A. Blin, et al, "A Computer Code for Fault
Tree Calculation: PATREC", Proceedings of
the American Nuclear Society Meeting Proba-
bilistic Analysis of Nuclear Reactor Safety,
Newport Beach, May 8-10, 1978, paper no.
XIII.6

4. D.E. Knuth, The Art of Computer Programming,
Vol 1. Fundamental Algorithms, Addison-Wese-
ley, 1968
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2. 9 SETS

The SETS code has been developed at the Sandia

National Laboratories in the U.S.A. A first user's

manual was published in 1973. The basic principles

of the code have been improved over the years since

its inception and the latest version of the user's

manual appeared in 1980 [1]. Due to the flexibility

of the SETS code, it has found a wide field of

application.

2.9.1 Purpose

SETS is basically a code for the qualitative evalu-

ation of complete fault trees. There are however

two procedures available for certain quantitative

evaluations. SETS manipulates Boolean equations. By

applying Boolean identities on the set equations

representing a fault tree, the equations can be trans-

formed in a way which allows the minimal cut set

determination.

In addition to the standard AND and OR gates, the

code can contain INHIBIT, PRIORITY AND, and EXCLUSIVE

OR gates. The INHIBIT gate represents a situation

where the output occurs if the single input occurs

in presence of an enabling condition. The PRIORITY

AND gate is used to represent an output event that

occurs if all input events occur in a specific se-

quence. Finally, the EXCLUSIVE OR gate is used to

represent cases where an output event occurs if

exactly one of the input events occurs.
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An option exists for the specification of logical

combinations that cannot be readily expressed with

any of the gates above. The analyst may define

"SPECIAL" gates to represent m-out-of-n logics.

2.9.2 Program Description

SETS is a Fortran-Extended code. The input to the

code consists of the fault tree input and the SETS

user program. The fault tree input is written in

a free format language and is directly prepared

from the graphical representation of the fault tree.

The SETS user program is an algorithm for reading

the input representation of a fault tree, establish

a Boolean equation for each intermediate gate as a

function of its input events, and then make these

equations available for further processing. The

Boolean equations are transformed in a way which

allows the minimal cut sets to be obtained. Three

steps are necessary for finding minima] cut sets for

a particular intermediate gate [1, p 17]

1. Generate all of the intermediate gate equa-
tions defined by the fault tree;

2. Generate an equation for the selected inter-
mediate gate as a function of only primary
events by a repeated substitution process
using the intermediate gate equations gene-
rated in step 1;

3. Reduce the equation resulting from step 2 by
applying the Boolean absorption identities
P*P = p and P + P*Q = P.
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The result of step 3 is an equation in disjunctive

normal form equal to a listing of the minimal cut

sets.

2. .3 Reference

1. R.B. Worrell, D.W. Stack, A SETS User's Manual
for the Fault Tree Analyst, SAND77-2051, Sandia
National Laboratories, 1980
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3. CODE SUMMARIES — QUANTITATIVE FAULT TREE
EVALUATION
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3.1 BOUNDS

The computer code BOUNDS has been developed at UCLA.

A user's manual was published in 1976 [1]. The code

is not to be characterized as a conventional quanti-

tative fault tree evaluation code, but rather as an

option available to the analyst requireing a more

complete quantification of top event probabilities.

BOUNDS is compatible with some of the qualitative

fault tree codes.

3.1.1 Purpose

BOUNDS is specifically designed for the calculation

of the mean and variance of top event probabilities.

From the mean and variance of a top event, the confi-

dence bounds are determined. The methods employed

are analytical.

The analytical approach taken in BOUNDS is based on

the method of moments [1,2,3]. The first two moments

— mean and variance — are calculated for each

primary event. A Taylor series expansion of the top

event equation — in terms of the primary event

probabilities — produces the mean and variance of

the top event. Finally, the confidence bounds are

calculated either by using empirical distribution

functions [4] or standard inequalities.1

*There exist standard inequalities such as Cantelli's
and Tchebycheff's that for any distribution give the
relationships between the mean and the variance.
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3.1.2 Program Description

BOUNDS is a Fortran code which can handle 1000

primary events and up to 500 minimal cut sets [1, p 63]

The order n of the minimal cut sets is limited to 5

(n < 5). A qualitative fault tree evaluation must pre-

ceed a BOUNDS computer run.

The required input data consists of system information

(number of components, number of minimal cut sets) and

primary event failure data. The failure data must con-

sist of median failure rates, erroL factors of the

respective failure rates, median mt-an-time-to-repair

(f), and error factors of T.

The output consists of two lists with primary event

and minimal cut set means and variances, as well as a

system una/ailability summary with the confidence

bounds. An estimation of system failure distribution

is also included in the output.

3.1.3 References

1. Y.T. Lee, G. Apostolakis, Probability Intervals
for the Top Event Unavailability of Fault Trees,
UCLA-ENG-7663, Energy and Kinetics Dept., Uni-
versity of California, Los Angeles, 1976

2. G. Apostolakis, Y.T. Lee, "Methods for the Esti-
mation of Confidence Bounds for the Top-Event
Unavailability of Fault Trees", Nucl. Eng. Des.,
Vol 41, 1977, pp 411-419

3. M. Mazumdar, J.A. Marshall, S.C. Chay, "Propa-
gation of Uncertainties in Problems of Structural
Reliability", Nucl. Eng. Des., Vol 50, 1978,
pp 163-167
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4. G.J. Hahn, S.S. Shapiro, Statistical Models in
Engineering, John Wiley & Sons, Inc., 1967,
pp 195-224
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3.2 IMPORTANCE

In the same sense as the BOUNDS code IMPORTANCE is

an option available to the analyst requireing more

detailed quantifications of fault tree unavailabili-

ties. The IMPORTANCE code manual was published in

1975 [1].

3.2.1 Purpose

In the design of reliable complex systems a common

approach is to concentrate the resources on the sub-

sets of components that are most critical to the

system reliability. One aim with system reliability

analyses therefore often is to calculate measures

of probabilistic importance [2].

Different measures of component and minimal cut set

importance have been developed. Some measures are

based on a knowledge of the system structure only

— a series component generally plays a more impor-

tant role than the same component in parallel —

other measures are based on component reliability and

system structure.

In IMPORTANCE the following seven measures of compo-

nent importance can be computed: (1) Birnbaum's

measure, (2) criticality importance, (3) upgrading

importance, (4) Vesely-Fussell importance, (5) Barlow-

Proschan importance, (6) steady-state Barlow-Proschan

importance, and (7) contributory sequential importance.
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Two measures of minimal cut set importance can be

computed: (1) Barlow-Proschan cut set importance,

and (2) Vesely-Fussell cut set importance.

3.2.2 Program Description

IMPORTANCE is a Fortran code. It requires as input

the minimal cut sets of a fault tree, and primary

event characteristics — failure rates and fault

duration times. The failure and repair distribut-

ions are assumed to be exponential, and furthermore,

all measures of importance are calculated assuming

statistical independence of the primary events. A

listing of the computer code is found in [1].

Four options are available in the code. The first

option computes measures of importance as a function

of time. The second option computes measures of

importance as a function of the probability of the

top event. In the third option the measure of impor-

tance is computed as a function of the top event

probability and the failure rates are expressed pro-

portionally. Finally, the fourth option computes

the measures of importance as a function of a refe-

rence time unit.

The type of importance measures computed and the

type of code option to be used is defined by the

data input. The output consists of a series of

tables listing the measures of importance in de-

scending order as a function of the data input.
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3.2.3 References

1. H.E. Lambert, Fault Trees for Decision Making
in System Analysis, UCRL-51829, Lawrence Liver-
more Laboratory, 1975

2. D.A. Butler, "An Importance Ranking for System
Components Based Upon Cuts", Operations Research,
Vol 25, 1977, pp 874-879
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3.3 KITT

The KITT code was developed at the Idaho Nuclear

Corporation and the user's manual was published in

1970 [1], The code has influenced the development

of many fault tree codes.

3.3.1 Purpose

The KITT computer code is an application of the

kinetic tree theory developed by Vesely [2]. Two

versions — KITT 1 and KITT 2 — are available,

designed to obtain quantitative reliability charac-

teristics of primary events, minimal cut sets and

top events. The PREP code (see chapter 2) produces

the necessary input to KITT.

The primary events are restricted to having constant

failure rates, and with regard to repair of the

primary events, constant repair rates are used.

KITT 1 is a so called single phase code, meaning

that the failure rate and type of repair must remain

the same for all time. KITT 2 is a multi phase code.

Here, failure rates and type of repair must be con-

stant in one time phase, but can change in an arbi-

trary manner from phase to phase.

3.3.2 Program Description

KITT is a Fortran code. For each primary event, mini-

mal cut set, and for the top event the following
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reliability characteristics are obtained at time

points specified by the user:

Probability of being in a failed state at
time t
(differential characteristic)

Expected number of failures per unit time t
(differential characteristic)

The probability of suffering a failure per
unit time t, given it is functioning at time
t
(differential characteristic)

The expected number of failures during the
time interval from 0 to t
(irtegral characteristic)

The probability of suffering one or more fai-
lures in the time interval from 0 to t
(integral characteristic)

The input to KITT 1, besides the information obtained

from PREP, consists of the failure rates and repair

data for the primary events. Exact, time-dependent

reliability information is determined for each com-

ponent of the fault tree and for each minimal cut set,

The system reliability information is obtained by

upper bound approximations (denoted as bracketing in

the code manual.

The bracketing principle determines the upper and

lower bounds of the probability of the top event by

succesively taking into account intersections of an

increasing number of events. A good approximation of
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the top event probability is obtained by this pro-

cedure when the primary event probabilities are

much less than one. The number of terms in the top

event equation used in the bracketing procedure

are determined by the user.

KITT 2 obtains the same reliability information as

KITT 1, and a large portion of the input to KITT 2

is identical to that of KITT 1. In KITT 2 multi-

phase descriptions of components can be evaluated.

The components may have different reliability prop-

erties during different time intervals (phases).

Up to 50 phases per component are allowed in KITT 2,

3.3.3 References

1. W.E. Vesely, R.A. Narum, PREP and KITT: Comput-
er Codes for the Automatic Evaluation of a Fault
Tree, IN-1349, Idaho Nuclear Corporation, 1970

2, W.E. Vesely, "A Time-Dependent Methodology for
Fault Tree Evaluation", Nucl. Eng. Des., Vol 13,
1970, pp 337-367
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3.4 LENC

The LENC code was developed at Asea-Atom in Sweden

[1], and a user's manual was published in 1975 [2],

The code is based on KITT.

3.4.1 Purpose

The LENC code is based on the kinetic tree theory

and is specifically designed to calculate mean-un-

availabilities on system levels. In comparison with

the KITT code the following characteristics are

unique to LENC: (1) Four types of components with

time dependent structure functions can be handled,

(2) evaluation of the impact of periodic testing

can be performed, and (3) an importance ranking of

the minimal cut sets by means of fault duration

times is within the capability of the code. The

component types are

- Type 1; constant repair rate

- Type 2; constant repair time

- Type 3; not repairable immediately, time
between inspections = T

- Type 4? the probability of failure is con-
stant

In comparison with KITT computer times have been

reduced, as well as computer core memory require-
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merits [ 1 ] . A sample problem analysed with LENC is

presented in [3].

3.4.2 Program Description

LENC is coded in Fortran and consists of two sub-

routines, DIM and PAGE. In DIM the reliability

calculations are performed. PAGE completes the

edited output with table heads.

A qualitative fault tree evaluation must preceed

a LENC run. Information about the minimal cut sets

must be included in the data input, together with

the reliability data and the number of time steps,

i.e. the time points at which the calculation of

the failure characteristics are made. The intervals

between inspections must be multiples of a time step.

Failure probabilities and failure rates are calcu-

lated on the primary event level, minimal cut set

level, and top event level. Fault duration times

are calculated for each time interval. Finally, the

mean-unavailability of the system is calculated as

the ratio of the fault duration time to the total

time period that is analysed.

3.4.3 References

1. L. Carlsson, Development of Computer Codes for
System Availability Analysis, TR KUA 73-350,
Asea-Atom, 1973
(in Swedish)
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2. Y. Larsson, LENC - A Computer Program for the
Analysis of Mean-Unavailability of Complex
Systems. User's Manual, REA 75-81, Asea-Atom,
1975
(in Swedish)

3. O. Johansson, H. Tuxen-Meyer, Fault Tree Ana-
lysis with the LENC Code, K5-79/30, Studsvik
Energiteknik, 1979
(in Swedish)
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3.5 SALP-MP

The quantitative part of SALP-MP is integrated with

the qualitative part described in Chapter 2. Quanti-

fication is performed on the significant minimal

cut set (the non-significant minimal cut sets are

discarded by means of logical cut off and probabi-

listic cut off).

3.5.1 Purpose

The following quantitative analyses are performed in

SALP-MP: (1) Calculation of unavailabilities and un-

reliabilities of each significant minimal cut set,

(2) calculation of upper bounds of the top event un-

availability and unreliability, and (3) determination

of the importance for the primary events. Only expo-

nential distributions for the time to failure and

time to repair can be accepted.

Cold standby structures with perfect switching can be

handled. The allowable type of maintenance is on line

maintenance where repair is started immediately after

failure. System components are assumed "as good as

new" after repair.

3.5.2 Program Description

SALP-MP is a PL/1 code and a qualitative evaluation

of the fault tree must preceed quantification (see
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Chapter 2. section 8). The input data consists of

the A-and y-values for each primary event. The

maximum number of primary events and logical gates

are 9999 and 20.000 respectively [1, p 66].

For multi-phase systems the different phases are

analysed in a sequential way starting with the first

phase. For each phase both the tree and primary

event data are read. Then the minimal cut sets are

determined and stored on a specific file.

It is to be noted that the failure mode of an event

cannot change from one phase to another. Further-

more, events cannot have an inspection time, and an

event repairable in a given phase must be repairable

in all the successive phases in which it appears.

3.5.3 Reference

M. Astolfi, et al, SALP-MP (Multi Phase). A
Computer Program for Fault Tree Analysis of
Complex Systems and Phased Missions. Descrip-
tion and How-to-Use, P.E.R. 389, Joint Research
Centre, Ispra, 1980
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3.6 SUPERPOCUS

SUPERPOCUS was developed at the University of Tenn-

essee and a user's manual [1] appeared in 1977. The

code is based on approximations of the kinetic tree

theory [2].

3.6.1 Purpose

Being based on approximations of the kinetic tree

theory the code yields highly bounded primary event,

minimal cut set, and top event failure information.

The system reliability characteristics are obtained

under the following assumptions:

The primary event failures and repairs are
statistically independent;

The failure distribution of each primary
event is exponential and the failure rate
X is known;

The primary event repair distribution is
exponential and the mean-time-to-repair T
i c knnun.is known.

Since in many practical situations there is a lack

of detailed failure data and the ass ^tions are

therefore not considered to be overl} jstrictive.

An importance ranking of primary events and minimal

cut sets can be performed.
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3.6.2 Program Description

SUPERPOCUS is a Fortran code that is designed to

be compatible with the MOCUS and PREP codes. A

system containing up to 400 primary events, and

1000 cut sets with up to 10 primary events per set

can be handled. Kjsults of a computer run always

consists of an input data edit, and time-dependent

reliability characteristics for the top event. A

maximum of 25 time steps can be handled.

The input to SUPERPOCUS consists of groups contain-

ing control parameters, primary event failure rates

and repair times, the time coordinates used for the

analysis, and minimal cut sets (obtained from a

qualitative fault tree evaluation). Optional output

available to the analyst includes reliability char-

acteristics for the primary events and the minimal

cut sets. A further option is the importance rank-

ing.

3.6.3 References

1. J.B. Fussell, D.M. Rasmuson, D.P. Wagner,
SUPERPOCUS. A Computer Program for Calculating
System Probabilistic Reliability and Safety
Characteristics, NERS-77-01, Nuclear Engineer-
ing Department, College of Engineering, The
University of Tennessee, 1977

2. J.B. Fussell, "How to Hand-Calculate System
Reliability and Safety Characteristics", IEEE
Trans. Rel., Vol R-24, 1975, pp 169-174
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3.7 WAM-BAM

The WAM-BAM code package has been developed by the

Science Applications Incorporated [1]. A user's

manual was published in 1976 [2], and the code pack-

age has been implemented at the Studsvik Laborato-

ries in Sweden at a later date [3].

3.7.1 Purpose

WAM-BAM is designed for fault tree unavailability

calculations. It uses programs in the WAM code

family as preprocessor. WAM-CUT determines the mini-

mal cut sets from complete fault trees. By incorpo-

rating the NOT logic gate operator possibilities

exist for the analysis of dependent failures [1].

BAM uses Boolean algebra minimization techniques

to find the resultant logic expressions from an

input tree and then calculates the associated point

unavailability. It is possible to calculate the means

and variances of the top event and by application of

the Tchebycheff inequality a 95% confidence bound can

be found.

3.7.2 Program Description

BAM accepts the fault tree logic input to include

any of the 16 operations of two binary variables
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[1, p 9]. The preprocessor develops an alpha-numeric

description of the fault tree, which is converted to

a numerical form and used as input to BAM. WAM-BAM

will accept fault trees with up to 1500 primary events

and 1500 two-input gates [3].

3.7.3 References

1. E.T. Rumble, et al, Generalized Fault Tree Ana-
lysis for Reactor Safety, EPRI-217-2-2, Electric
Power Research Institute, 1975

2. F.L. Leverenz, H. Kirch, User's Guide for the
WAM-BAM Computer Code, EPRI 217-2-5, Electric
Power Research Institute, 1976

3. J.-P. Bento, K. Pörn, Fault Tree Analysis. Imple-
mentation of the WAM-Codes, K2-79/169, Studsvik
Energiteknik, 1979
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4. CODE SUMMARIES — DEPENDENT FAILURE ANALYSIS
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4.1 BACFIRE

The BACFIRE code was developed at the University of

Tennessee and a user's manual appeared in 1977 [1].

BACFIRE is similar to COMCAN. Reviews of qualitative

dependent failure analysis are presented in [2,3].

4.1.1 Purpose

BACFIRE is designed to find common cause candidates

— defined as minimal cut sets with common potential

causes of failures. The code is compatible with

several of the codes for qualitative and quantita-

tive fault tree evaluation. Only coherent fault trees

can be handled. The program produces lists of the

qualitative failure characteristics of the common

cause candidates.

4.1.2 Program Description

BACFIRE is a Fortran code. A minimal cut set will be

identified as a common cause candidate by either of

two criteria:

- If all the primary events in a minimal cut set
are associated by a certain condition — such
as calibration, test and maintenance, energy
flow — which may alone increase the proba-
bility of multiple component malfunction;
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- If all the primary events in a minimal cut
set are susceptible to the same secondary
cause — defined as a component malfunction
for which the component itself is not held
responsible — and are located in the same
domain for that cause of secondary failure.

Necessary input information for the BACFIRE code

consists of five data sets:

- Event definition;

- Event location references;

- Cause of secondary failure library;

- Component manufacturer;

- Minimal cut sets

BACFIRE searches the qualitative failure characte-

ristics of the primary events contained in the

minimal cut sets to find those characteristiscs

common to all primary events by either of the two

criteria defined above. The minimal cut set that

is defined as a common cause candidate is then

listed. The common failure characteristic is also

listed with the common cause candidate. BACFIRE

successively determines all other common failure

characteristics af the minimal cut sets.
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4.1.3 References

1. C.L. Cate, J.B. Fussell, BACFIRE - A Computer
Program for Common Cause Failure Analysis,
NERS-77-02, Nuclear Engineering Department,
College of Engineering, The University of
Tennessee, 1977

2. J.R. Wilson, et al, "Techniques for Qualitative
Analysis of Common Cause Failures", included in
A Collection of Methods for Reliability and
Safety Engineering, ANCR-1273, Aerojet Nuclear
Company, 1976

3. D.M. Rasmuson, G.R. Burdick, J.R. Wilson,
Common Cause Failure Analysis Techniques: A
Review and Comparative Evaluation, TREE-1349,
EG & G Idaho, Inc., 1979
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4.2 COMCAN

COMCAN was the first code for qualitative dependent

failure analysis available to the reliability ana-

lyst. The code development was performed by the

Aerojet Nuclear Company, and a user's manual [1]

appeared in 1976.

4.2.1 Purpose

COMCAN is designed to qualitatively determine the

susceptibilities to common cause failures for each

primary event in a minimal cut set and to locate

common links between components.1 The main objective

of a COMCAN analysis is to indicate weak points in a

system and to suggest corrective action. COMCAN

therefore, in certain situations, is a useful comple-

ment to computer codes for qualitative fault tree

analysis.

4.2.2 Program Description

The COMCAN code is written in Fortran and its format

is compatible with the input format used with com-

puter codes for qualitative and quantitative fault

tree analysis such as PREP, MOCUS, and KITT. The

computerized analysis is concerned with locating

1Please note that a common cause failure is a depen-
dent failure which can be identified by means of
fault tree techniques.
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oommcr. cause candidates (defined in Section 4.1.1),

priwe common cause candidates (all comonents in the

minimal cut set share a common location), and identi-

fying significant common cause events. A significant

common cause event is a secondary cause that is com-

mon to all the primary events in one or more minimal

cut sets.

The key to obtaining the common cause candidates and

prime common cause candidates is the set of input

cards containing all the variables that can cause

dependencies. These inputs are

- Primary event description input. Involves a
system code, component identification and
failure mode code;

- Location input. Involves the physical location
of the components in the primary events;

- Manufacturer input;

- Generic cause susceptibility input. Involves
information about common links that result in
dependence between components.

- Domain definition. The input on the domain
definition cards relates- regions within a struc-
ture, usually a single building, to causes
which may present a hazard to components
located within thost regions.

- Minimal cut set input. Describes the minimal
cut sets generated by some other program.

- Cause ranking cards. The cause ranking cards
permit an importance ranking of the causes.

- Generic cause table cards.

- Option cards.
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The outputs of the computer executions are in the

form of lists containing information about depen-

dencies due to various common causes. A number of

printer options are available and the user deter-

mines the printout.

4.2.3 Reference

1. G.R. Burdick, N.H. Marshall, J R. Wilson,
COMCAN - A Computer Program for Common Cause
Analysis, ANCR-1314, Aerojet Nuclear Company,
1976
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4.3 COMCAN II-A

COMCAN II-A is an improved version of the COMCAN

code. The user's manual was published in 1979. The

code development was performed at the Idaho Natio-

nal Engineering Laboratory.

4.3.1 Purpose

COMCAN II-A is designed for the identification of

potential common causes for the failure of fault

tree minimal cut sets. Like its predecessor, COMCAN,

it locates common cause candidates and identifies

associated significant common cause events.1

A major drawback of COMCAN is that since it uses

fault tree minimal cut sets as inputs, complex trees

cannot be analysed very effectively. Usually the in-

puts consists of minimal cut sets of order 3 or less.

In dependent failure analysis it is however necessary

to evaluate high order minimal cut sets.

To circumvent the COMCAN dependence upon minimal cut

sets obtained by other codes, the FATRAM algorithm

(see Chapter 2, Section 3) has been included as a

program module of COMCAN II-A. Consequently, COMCAN

II-A is an integrated qualitative and dependent fai-

lure evaluation code.

*A significant common cause event is a secondary
event that is common to all primary events in one
or more minimal cut sets.
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4.3.2 Program Description

COMCAN II-A is coded in Fortran. The input phase of

a COMCAN II-A execution consists of fault tree defi-

nition and information about the potential common

causes to be analysed. Optional inputs include (1)

the manufacturer of each component with an event

appearing in the fault tree, (2) a barrier map de-

sctibing common locations for various possible common

cause events, (3) the location of each component with

an event in the input, and (4) numbers in the range

0 to 9 indicating the relative ranking of each pri-

mary event's susceptibility to the common cause

(importance ranking).

The output from COMCAN II-A is a list of minimal cut

sets with events that share a common location, common

link, or common manufacturer, or that represent simi-

lar components. The program can handle 2000 primary

events and 700 logic gates, and the amount of initi-

ator data is stated as 1000 initiators (physical ca

ses or generic causes) for about 100 rooms [1, p 30J

4.3.3 Reference

1. D.M. Rasmuson, et al, COMCAN II-A - A Computer
Program for Automated Common Cause Failure Ana-
lysis, TREE-1361, EG & G Idaho, Inc., 1979
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4.4 SETS

A discussion on how to use the SETS code (see Chapter

2, Section 9) in dependent failure analysis is presen-

ted in [ 1 ] . Applications of the SETS code in dependent

failure analysis are represented b'j the vital area

identification [2] and the evaluation of systems inter-

action in nuclear power plants [3].

4.4.1 Purpose

The common cause failure analysis option of SETS is

used to achieve a description of how cause events —

or common causes — are related to primary events, and

how minimal cut sets and top events are affected by

cause events. Implementation of common cause analysis

using SETS is based on a transformation of variables

using the Boolean distributive law, idempotent law,

and the law of absorption.

Before the transformation of variables, a Boolean

equation must be defined for every primary event in

the fault tree. The equation for a primary event speci-

fies the special conditions and secondary causes that

are applicable to the primary event. The equation also

indicates the physical location of the primary event.

A special condition is defined as [1] a characteristic

which closely links some of the primary events in the

fault tree. A secondary cause is defined as [1] an

event which may contribute to the occurrence of some
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of the primary events in the fault tree.

4.4.2 Program Description

SETS is a Fortran-Extended code. The primary event

equations are contained in special input blocks. A

SETS user program is used to determine the common

cause candidates. Some special importance ranking

routines for the selection of the common cause

candidates with the highest probability of occur-

rence is included in the code.

4.4.3 References

1. R.B. Worrell, D.W. Stack, Common-Cause Analysis
Using SETS, SAND77-1832, Sandia Laboratories,
1977

2. G.B. Varnado, N.R. Ortiz, Fault Tree Analysis
for Vital Area Identification, SAND79-0946,
Sandia National Laboratories, 1979

3. G.J. Boyd, et al, Final Report - Phase 1 Systems
Interaction Methodology Applications Program,
SAND80-0384, Sandia National Laboratories, 1980



- 68 -

5. CODE SUMMARIES — GENERIC FAILURE ANALYSIS
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5.1 CAT

The CAT code, developed at UCLA, is a general com-

puter implemented approach to the modelling of

complex systems. The CAT algorithm is based on in-

put-output models. A user's manual appeared in 1978

[1], Critical reviews of the CAT algorithm have

been published at later dates [2,3].

5.1.1 Purpose

The purpose with the CAT code is to let a computer

construct fault trees. The drawing of fault trees

is however not included. Decision tables for compo-

nent and system behaviour form the basis of the CAT

algorithm. Given a proper system description a fault

tree for a certain top event will be constructed.

Automatic fault tree construction requires the availa-

bility of two basic types of information: (1) Compo-

nent operating and failure modes , and (2) descrip-

tion of how the various components of the system are

interconnected. Decision tables are used to formalize

the description of the functioning and failure charac-

teristics of the components.

5.1.2 Program Description

CAT is coded in Fortran and the input consists of the

following information:
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- Program control data. Consists of program di-
mensions used to define the sizes of the com-
ponent library nad system configuration;

- Decision table models. These contain the basic
information for the component types, number of
inputs, internal failure mechanisms, outputs,
and the decision table itself;

- System configuration. Coupling of components,
numbers are assigned to the nodes at which
output of a component is connected to the in-
puts of one or more succeding components;

- Top event definition. Top event described in
terms of system states at specific nodes;

- Boundary conditions. System or component states
which have been predefined as existing or not
existing boundary conditions within the system.
A boundary condition is defined initially and
continues to exist throughout the fault tree.

- Failure and repair data. This group is optional.

The output of the code consists of two parts. First

is the printed output of all the input data, and then

the fault tree itself in coded form. The preparation

of input data can be very time consuming in certain

cases [3]. Consequently, the field of application of

the CAT code is limited.

5.1.3 References

1. G.E. Apostolakis, S,L. Salem, J.S. Wu, CAT: A
Computer Code for the Automated Construction of
Fault Trees, NP-705, Electric Power Research
Institute, 1978
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2. G. Squellati, Critical Review of the CAT Algorithms
for Automated Fault Tree Construction, P.E.R. 392/
80, Joint Research Centre, Ispra, 198C

3. U. Berg, P. Hellström, B. Lydeli, Fault Tree Syn-
thesis Using the CAT Algorithm, PSE02-81, Swedish
Nuclear Power Inspectorate, 1981
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5.2 DRAFT

An early approach to the automatic fault tree con-

struction was presented by Fussell in 1973 [1].

Fussell's approach is called synthetic tree model

(STM), and the DRAFT code algorithm — based on the

synthetic tree model -- is based on mini fault tree

models. It is not known if any further code develop-

ments have been performed.

5.2.1 Purpose

The DRAFT code is limited to the automatic fault

tree construction of electrical systems. It does

not draw ths fault trees! The code output consists

of the fault tree in a coded form, which the ana-

lyst has to translate into a tree.

In DRAFT a fault tree is constructed from small

segments, called component failure transfer func-

tions. The transfer functions (component models)

are obtained by conventional FMEA. The differnet

component models are stored, and the system sche-

matic diagram provides the input for piecing to-

gether the different component models.

5.2.2 Program Description

The DRAFT input consists of the system schematic

and the system boundary conditions — which define
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the operating conditions of the system. Component

library data must exist in coded form. In its

original form the code would construct coherent

fault trees with 100 logic gates "in typically

less than seven second" [1, p 77].

5.2.3 Reference

1. J.B. Fussell, Synthetic Tree Model. A Formal
Methodology for Fault Tree Construction, ANCR-
1098, Aerojet Nuclear Company, 1973



- 74 -

INDEX

AND-gate, 5

binary structure function, 4

coherent structure theory, 4

common cause candidate, 58

complete fault tree, 6

EXCLUSIVE OR-gate, 35

fault tree synthesis, 3

generic fault tree, 7

INHIBIT-gate, 15

logical cut off, 9

minimal cut set, 7

NOT-gate, 6

OR-gate, 5

order of a minimal cut set, 9

probabilistic cut off, 9

prime common cause candidate, 62

PRIORITY AND-gate, 35

residual error estimation, 10

significant common cause event, 64


