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RESUMO

AplicanchE teoria éa recinica Go continuc de mis
turas biraries de fluidognewtoniancs irncompressiveis, estudou-se
cscoamentos tipo Poissuille e Coucite com fins de verificar se
ocorre difus3o em tais escoamentss. Conmstatia-:2 gue a  difusdo
nio ocorre no caso Couette, Entretanto em escoamento TCoiseuille

ha diferengas significantes entre as velocidades dcs vonstituin
tes Ea mistura., Este resultado mostra-se plenar@nte concordante
corm agueles de Mills para misturas similares d2 composigao  nao

uniforme.{(adahi)

ABSTRACT

Using the continuum theory of birary mixtures of

incompressible Newtonian fluids, Poiseuille an

flcws
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are studied with a view to determining whather dilffu
uch flews., It is chown that éiffusion is =z2bsaent in the
Coustte case. Howzver, in Peiscuille flow there are significant
£ ween the velocities of the species comprising
the mixture., This result is in brocad agreement with that of Mills

3y mixtures ci nonuniform composition.(audk,t)
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1. Introduction

It hag bean establis?

-
“cf viscosity of a binary mixture of inocrpressible Newtonian
h o

n and can then
1)

s utilized for cases where the relative. valoci: zere T L

2 determined in fio s

It is thercfore of great intersst o dztar visconetrie

Ficws diffusion does not cccur to a signif ‘These can
an b2 uied to determine the aforementicn2d coeifficisnts of

In this paper we consider four classical wvisomaoirio

flows: planar Coustte, circular Couette, planar Poiseuille, and

N

. Eguations of notion

3
Tovo= 0 ! R (1)
~ ' *2:1‘-1,2 '
c 8 Tv.ov. =7, +m o+ eb ! {2)
Y2 ~n o~ - ~2 4 L~x

i3l density, ¢ volumetric
<

internal body force, and b external
the spasizg  a. dince the
raierials of the species are frcompreszsible a3d the mixture
ccompesition is uniform, we note that both ¢ znd Ea are

congtant. Clearly,

2
T s =1, (3)

As the surzation of the linear momentum balance eguation of

the species shonld ¢give the corresponding equations for the

mixture, then(z)
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i
m = 0 ~ (0
a=x}

i.e. m =-m, =m, say.

We assure that the only external body force acting on the
mixture is that due to gravity. Then,

b =g =12 (5)

(1)

Following Sampaio and Williams » we write the

constitutive esquations for the stress tensors of the species as

T, = - plz + ZUIVY: + 2u3vgz ’ (6)
where Hy = s’nl *ell-elngy, (8)/
By = (l—e)znz +e(l=e)nq,, (9)
By =¥, = cll-e) v, (Sa)
g = jﬁ;ﬁ; . (10)

Yere, p fenotes an indeterminate pressure, nl and Ny denote the
viscosity coefficients of the fluids in the unmixed state. The
superscript 8§ denotes the symmetric part of the tensor.

For m, we use the form developed by Struminskii

A
for binary mixtures of gases(4'5'

. P1EPy(1-€) K8

.y (V -V )' (11)

~1 -

where K is the Boltzmann constant, 8 denotes absolute temperature,
M molecular weight, and D12 binary diffusion coefficient.

3., Couette flows

, Consider unidirectional horizontal flow between
two infinite parallel plates, a distance 2L apart. Let there be
no externally imposed pressure gradient and let one of the planes



move at a speed V in the horizontal direction, the other plate
remaining stationary. The equations of motion reduce to“)

d’le K,
: K1 le - - i; le M Akzy + b‘z » Q2)
v

dy
X2
Vo, = - _; - + szy + sz, {13)
where
A= o {::::2 , (14)
12
v K, +K
K %2

Vix and Vo 2re velocity components ir the horizontal direction,
y is the vertical coordinate measured from the plane midway

between the two infinite plates, and

X9 { My * oy

PP 1:(1-:)
k= 22 Py [uup * ui)

1 (PyMy = poMy) € + p M)

’ (16)

Ke | P21t ¥ _
P1Pa Dy, ["1“2 — "5 e(l-¢)
K, = - , (a7
(pyMy = P M) & + o M)

The solution of eguations (12) and (13) subject to the boundary

conditions
y = -L, Vi = Voy T o, (18)
y =L, Vig = Vox * v, (19)
is given by
= YV |Y
v,. = ¥ 2 4], (21)
2x~ 2 (L ’

Clearly, no diffusion occurs in this flow.

Consider now unidirectional circular flow between



two vertical concentric cylinders, the inner one fixed while the
other rotates at an anqular speed . Let the rsdii of the inner
and the outer cylinders be nR and R respectively, where 0 <n <1.
For this case, the equations of motion reduce to(

dily av v
10 + 1 18 _ 18 _ (K, + K.) v .,  +
ar? r dar r? 1l 2 18
AK. K BK.K
+ ; 2, 12_,, (22)
K AK BK
= - 2 2 2
V2 K, et 2 Tt E (23)

where Vip and Vag 2are velocity components in the azimuthal
direction, and

(K, +K y
]
A= |22 }x; L2l (24)
1-n%j | "172)
nn‘n*] o v}
B = - X . (25)
-n?
l1-n [ lez
The boundary conditions may be written as
r = nR, Vig = Vo = o, (26)
r = R, Vie ™ V2g ™ fR. (27)
The solution of equation (21) is then
2n2
Vig = — [r - -"—f—) (28)
(1-n?)
and substitution into equation (22) yields
u [} _ n2R2
V20 = TI=n7) [' T } g (29)

As in the planar case, this fldw takes places without diffusion.



4. Poiseuille flows

Congider unidirectional horizontal flow between
twvo stationary plates. Let the distance between them be 2 L.

Assuming an external pressure gradient C, applied to(??th

fluids, the equations of motion can be simplified to
a’v CK.K_K
2y Xy + k) vy 2 Y
Cly,-u,) CK.K._K_L?
Bhtls e MR u i wI)
(p,p,~p2)
12 "3
K CX_K CK_K.L?
- - -2 23,2 __23
Vax xl"u‘ 2 Y 7’
where
K3 . (g; - u;l, . (u2 - u3) i

- 2 - 2
Kyluguy = u3) Ky oy — w3)
The appropriate boundary conditions are

y = -L, Vi = Vox 0,

Y =L, vig = Vox = 0.

The solution is given by

N S VL,
1x © KiK. X, FK .
172 "1 7 72 KiKoRa(uguy = w3)
f ‘,"ﬁl"’tzy s KKy
X l - +
'( /El"'lea + - JEI‘PKZL
e e
CK. K. K
12 w2op 2
* Iy (YoLY)

(30)

(31)

(32)

(33)

(34)

(35)



2 v Bl |
' | = ———— —— - ‘
a2x K, *K K, *K - .2
172 l1 2 Kllzls(uluz u,)

C!]! ‘l 1

N ."El"z Y. !'El’xz Y
"Rl KL

+C [5;1 - ;%-—1:;,-;}] (y?-r?). (36)

The occurrence of diffusion is clear from equations (35) and
(36), depending in magnitude on several material parameters,
pressure gradient, and channel width.

We now consider unidirectional flow through a cir
cular horizontal tube of radius R. Let there be an externally

imposed pressure gradient C. The equations of motion reduce ho“)

alv av -CK.K_K
1z . 1 1z _ 123 2
ac? ’r——-dr (K1+K2) Vls————-‘ rt +
CK.R? B, = W
3 2 3
+ —3— KK, + CK, T “3}' (37)
K CK.K.r? CK_R?
Vaz K, V12t T4 raml Py (38)
subject to the boundary conditions
dv dv
r =R, v1z = v2z = 0, (40)

the solution is given by



-7 -

’ (41)

X (K. +K)

K
£, (42)
1

where Io is the modified Bessel! function of order zero and of
the tirat kind. Again, diffusion occurs to an extent which
dipcnal on fluid material parameters, pressure gyradient, and
tube radius.



S. Conclusions

We have shown t..at for a diffusion - free flow of
a binary mixture of incompressible Newtonian fluids, Couette
flow, whether planar or circular, is to be adopted as a
viscometric flow. This is for any apparatus dimensions and for
any fluid pair. This is not the case for Poiseuille flow,
planar or circular. These results are in agreement with those
of Hills(z) who considered mixtures c‘ varying composition.

Our work complements that of Sampaio and Williax. b

in that they showed that measurements in a none - diffusing
flow are sufficient to determine all viscosity coefficients and
we have established that Couette flows are such flows. They,
rather than Poiseuille flows, suggest themselves as appropriate
viscometric flows for binary mixtures of incompressible Newtonian
fluids.
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