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ABSTRACT

A "parametric" pencil beam model is introduced for describing the
attenuation of an energetic neutral beam moving through a tokamak
plasma. The nonnegligible effects of a finite beam cross section and
noncircular shifted plasma cross sections are accounted for in a simple
way by using a smoothing algorithm dependent linearly on beam radius
and by including information on the plasma flux surface geometry
explicitly. The model is benchmarked against more complete and more
time-consuming two-dimensional Monte Carlo calculations for the case of
a large D-shaped tokamak plasma with minor radius a = 120 em and
elongation b/a = 1.6. Deposition profiles are compared for deuterium
beam energies of 120-150 keV, central plasma densities of
8 x 10132 x 1014 cm'3, and beam orientation ranging from perpendicular

to tangential to the inside wall.



1. INTRODUCTION

Neutral beam heating of tokamak reactor plasmas has been the
Subject of extensive study(1‘3) over the past several years, not only
as a necessary means to overcome the inherent limjitations of pure ommic
heating but also as a possible means of achieving a sustained current
drive.("'5) As higher plasma betas are achieved, it becomes important
to correctly model the higher o~ geometrical effects imposed on the
fast ion deposition profile H(r) by the resulting distorted plasma
cross sections. As we shall show, noncircular, shifted plasma flux
surfaces can significantly alter these deposition profiles from what
they would be in a corresponding low-beta, circular, concentric casé.

The physics behind the attenuation of an energetic neutral beam
moving through a hot, dense plasma is well known, What we consider
here is a "parametric"™ model for this process where the finite beam and
noncircular plasma cross sections are accounted for, After writing the
analytic description of a pencil beam, we introduce an algorithm which
includes these finite effects., We then benchmark the model against
more exact Monte Carlo calculations for a number of geometries, beam
energies, and beam radii. The limitations inherent in our approach are
pointed out and balanced against the extremely fast computer execution
time of our code, vis-a-vis possible incorporation into plasma

transport codes.



2. PROBLEM DEFINITION

2.1. Plasma/Beam Parameters

In order to obtain a fast ion deposition profile, it is necessary
to specify several key parameters related to the plasma and to the
beam, Since plasma temperature and density are expected to be constant
on surfaces of constant poloidal or toroidal flux for a plasma in
equilibrium, all the key geometric plasma parameters relate to a
specification of these flux contours in the R-Z plane. Shown in Fig. 1
is a set of such contours for an FED/INTOR-sized plasma with a major
radius to the geometric center of RG = 474.6 cm, a major radius to the
magnetic axis of R, = 512.9 cm, and a minor radius in the midplane of
a, = 123 em, For the equilibrium case shown, the finite beta results
in a shifting of the flux surfaces outward as one moves toward the
magnetic axis, wvith a resulting steeper gradient in all plasma
parameters toward the outside of the plasma. Significant elongation,
b,/a, = 1.5, and triangularity, e,/a, = 0.5, are also evident in the
figure, resulting in a modulation of the differential volumes from a
simple circular case. Also shown in Fig. 1 is a horizontal projection
of a neutral beam path for a beam radius of 20 em. This side view
illustrates the coupling between the finite plasma elongation and the
beam path component parallel to but displaced from the midplane of-the
torus. Note that larger elongations allow better "penetration" for thé:
extreme off-plane particles. This is one of the finite beam effects
mentioned earlier, A top view of the plasma-beam system (Fig. 2)

highlights the various beam trajectories considered. here, :with a



convenient trajectory parameter designated by the distance of closest
approach, RB, of the beam path to the center of the torus.

In order to reduce this three-dimensional (3-D) system to a
workable one-dimensional (1-D) model, we employ the grid scheme shown
in Fig. 3. The usual 1-D radial grid is replaced by an effective
radius coordinate r that is defined to 1lie between two parallel
midplane grids Ry and Royp. The latter correspond to the intersection
of the plasma flux contours with the midplane of the torus, inside and
outside of the magnetic axis, respectively. This scheme allows for a
1-D representation of shifted flux surfaces, The arbitrary shape of
each flux surface is accounted for by an array of differential volume
elements (DVOL) that represent the volume between adjacent poloidal
flux contours, This metric makes it possible to collapse the 3-D
plasma onto the midplane, as it were, resulting in a convenient 1-D
representation of the plasma, While information has been lost on the
region of beam-plasma interaction off of the midplane, it 1is possible
to reconstruct this in an ad hoc way by taking a pencil beam of
infinitesimal cross section and broadening the resulting deposition

profile parametrically in terms of the finite beam geometry.

2.2, Fast Ion Deposition Profile--H(r)

The fast ion deposition profile H(r), or H(y), is defined as a
dimensionless shape factor that is related to the fast ion birth rate
by the following expression:

IO/e

H(r) 1)

l;t( |") =



where Ne is the rate (cm’3’- s'1) at which fast ions are born as a
result of the neutral beam-plasma interaction, I,/e is the neutral
particle current, and V is the total volume of the plasma. The total

fraction of incident beam ionized by the plasma, then, is

J ;'1"" 1
7 =y | Hav (2)

For an idealized pencil beam, the relative attenuation in passing

through a "cell" of differential volume AV is

I (-n°<av>

where AI 1is the decrement in intensity due to ionization, I, is the
neutral particle intensity incident on the cell, n, is the background
plasma density, and <ov> is the ionization rate for a neutral particle
moving with veloeity v, through a Maxwellian plasma distribution. The
path length through tne cell A2 depends on the incident beam trajectory
(Fig. 2). The ionization rate <ov> represents a contribution from
charge exchange (°cx)' electron impact ionization (°ei)' and ion impact

ionization (011). so that

O = Ogx + Ogi *+ 044

These cross sections have been tabulated for atomic hydrogen beams



traversing atomic hydrogen;(7'8) they are easily applied to other
species by expressing them in terms of hydrogenie'velocities.
By following the trajectory of the beam across the plasma, using

Eqa. (3), H(r) is built up by integration:

H(r) ~= % AH;

where
(AI,)y
Hi =2 |e—ovnon—1V
4 lnvm.1

and the summation is taken over each cell (designated by the subscript
i) traversed. The resulting H(r) is entirely local, in that it only
considers the birth point of the fast ion, and not the subsequent
"smearing® of its effective radial position due to finite orbit and
drift effects. The latter effects have been considered in detail by
Fowler et al.,(g) and are easily calculated within the context of a
Monte Carlo type code; they are expected to be appreciable, however,
only in cases involving large orbits, such as counterinjection or for

those injection trajectories (nearly) perpendicular to the field lines,



3. MODELING FINITE BEAM EFFECTS

The parameters that are included under the umbrella of finite beam
effects are factors such as beam radius, arbitrary beam cross section
and profile, divergence, and focus. A complete consideration of all
these real beam parameters requires a Monte Carlo type treatment
although 1in practice the experimental uncertainty attached to many of
these parameters makes such time-consuming calculations unwarranted,
particularly when extrapolating to larger systems. Another approach is
to model the finite cross-section beam by a collection of penci
beamlets suitably distributed over the profile.(1°) This represents a
considerable savings in computation time, although off-plane
trajectories still present a problem that requires careful geometrical
computation, In the approach we describe here, we remain on the
midplane by using a single pencil beam, redistriﬁuting the resulting
deposition profile H(r) by a smoothing algorithm that takes into
account various constraints imposed on the profile by the physics and
geometry of the problem, The correct "smoothing® 1is chosen by a
careful comparison with Monte Carlo type calculations which are taken
to be the standard against which we benchmark our results.

The smoothing algorithm contains a single parameter, the smoothing
radius Rgys such ;hat over the range r = 0 - Rgy, H(r) is replaced by
H(r), where H(r) is obtained from a cubic that satisfies the following

conditions:

(1) 88 . patr=0
ar



Rgy = R
(2> oM Hav = [oSM pav

(3)ﬁ=Hatr=RSM

dH dH
(4) Fri I at r = Rgoum

This procedure is motivated by the knowledge that H(r) for a
pencil beam has a singularity at r = 0 and that this singularity can be
integrated (i.e., it vanishes for a finite beam). Condition (1) above
preserves the flattening of the profile that results from an exact
integration. Condition (2) ensures that particle number is conserved
in the deposition region, and conditions (3) and (4) preserve
continuity in the function and its derivative at the matching point
Rgum- Figure Y4 illustrates the H(r) profiles which result from a
varying Rgy. Note that only the central region of each profile is
plotted,

The two cases represent inward and outward peaked profiles typical
of good penetration and strong edge absorption, respectively. As RSM
is 1increased, the central singularity 1is redistributed over the
smoothing region, with a resulting decrease of H(r) near the origin.
changes in Rgy have no noticeable effect on the outer 90% of the
profile.

Earlier studies have been made with concentric, circular plasma
geometries to determine an optimum parameterization for Rgy as a
function of the various finite beam variables. Using the circular
Monte Carlo beam deposition code FREYA(11) as a benchmark, it was
fbund“a) that the only significant parameter dependence was on beam

radius, all the other factors being only of weak influence. The



results of this study are summarized in Fig. 5, where the best-fit

smoothing radius RSM is plotted against the beam radius for a number of

injection energies and for two injection trajectories. The two plasma

geometries considered are a FLT-sized device (R, 130 em, a, = 45 cm)

o =
and a TFTR-sized device (RO = 248 cm, a, = 85 cm). Detailed
comparisons of the resulting H(r) profiles against the Monte Carlo
standard are shown in Figs. 6 and 7. These studies indicate that for
over a wide range of parameters, a choice of RSM equal to twice the

beam radius is an excellent choice to provide good reproductory H(r)

prcfiles,
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4, HIGH-BETA EFFECTS

4.1. Goals

Up to this point we have only considered in detail circular,
nonshifted plasmas (i.e., <> = 0). In this section, we will examine
the applicability of our model to finite beta plasmas, i.e., those
which exhibit noncircular, shifted flux contours. Specifically, we are
interested in showing that the model parameterizations obtained in the
previous section also apply to these more realistic cases and that the
grid system we use is capable of modeling the more complex geometry.
Having done this, we will be in a position to examine straightforwa;dly
the specific effects that finite beta imposes on the resulting

deposition profile.

4.2. A High-Beta Equilibrium

The high-beta equilibrium case that we will study here is shown in
Fig. 1. The elongation and triangularity of the outermost flux surface
are bola° = 1.5 and c,/a, = 0.5, respectively. The outward shift of
the magnetic axis, §, ~ 38 cm, is fully 30% of the minor radius.
Volume-averaged bGeta toroidal is 6.5%, with beta poloidal ~2.9. We
consider here two cases represented by the same equilibrium: a high
density, 1low penetration case (ne° ~2x 10" em=3) and a 1lower
density, high penetration case (neo ~8 103 em3). s before, these

lead to significant differences in the shape of the deposition profile-

and test the versatility of our parameterization using RSH'
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4.3. Benchmark Results

In order to benchmark our H(r) profiles, we compare them with the
results of the noncircular geometry Monte Carlo code NFREYA.(g) with
and without bounce averaging. The reference neutral beam used is
deuterium, with an infinite focal 1length and =zero divergence, a
circular cross section, uniform profile, and a radius of 20 em (Rb).
The beam trajectories are those shown in Fig. 2, all incident on the
plasma along the midplane of the torus. Two beam energies are
studied: 120 keV and 150 keV. The NFREYA calculation is fully
three-dimensional, using all the equilibrium information given in
Sect. 4,2, whereas our code BEAM distills this input by considering
only midplane projections with additional information stored 1in the
RIN/ROUT and DVOL arrays,

Figures 8-11 show a comparison of the resulting H(r) from BEAM
versus the corresponding output from NFREYA for a number of cases. In
each case, Rgy/R, = 2, with no other free parameters; the effective
smoothing radius for the noncircular geometry is defined as the radius
at which the cross-sectional area of the plasma is four times the
cross—-sectional area of the beam. The bounce-averaged results from
NFREYA are also included for the sake of completeness, although in the
cases shown here the effects are insignificant. The data for the
innermost cell in the NFREYA calculations are plotted at the half
radius for the cell while the data for the beam calculations are
plotted at the origin. Thus, the endpoints of the plots in both cases
represent H(0). The agreement between the two codes is almost exact,
whether for good penetration (Figs. 8 and 9) or for poor penetration

(Figs. 10 and 11). In each case, only the full energy component of the
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beam is shown. Figure 12 shows no deterioration in the agreement
between codes when the 1lower half- and third-energy components are

consideqed.

4.4, Specific High-Beta Effects

In order to isolate the high-beta effects of shifted flux surfaces
on the attendant H(r) profile, we consider here the case of an
"equivalent" zero-beta equilibrium that is constructed by replacing the
D-shaped flux surfaces in Fig. 1 with concentric ellipses of elongation
€ centered at the same major radius, RG = §74.6 cm. The value of ¢ is
chosen so as to preserve the total volume of the plasma. A comparison
of the resulting H(r) for this case with the H(r) for the full
finite-beta case shown in Fig. 1 is presented in Fig. 13. The outward
shift of the flux surfaces in the finite-beta case shortens the optical
path 1leagth of the beam to the magnetic axis, leading to significantly
increased penetration, even at 40 keV. The greatest advantage of the
shift is to reduce the beam energy requirements for finite-beta,
beam-driven plasmas since the energy and path length for a given degree

of penetration are approximately related by E° « f£.
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5. PENCIL BEAM VERSUS MONTE CARLO

The main advantage that the pencil bean model has over the Monte
Carlo approach 1is in the large savings in computation, When
incorporated into a 1larger code that uses it repetitively, this
translates directly into a savings in computer time. On the CDC 7600,
for example, running both codes in optimum fashion, the BEAM code is
roughly 50 times faster than NFREYA, The limitations for the former
have to be recognized, however; BEAM cannot treat diffuse beam
trajectories off the midplane nor can it account for nonlocal "bounce"
effects when they are important. Finally, the smoothing algoritim
parameterization of RSM is reasonable only for those cases where
Rg << a,. This is not the case, for example, in a device such as
ISX-B. Furthermore, the optimal parameterization of Rgm =~ 2Rp,
presented here, must be reevaluated for departures from circular,

constant profile beam cross sections.
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6. CONCLUSIONS

We have shown that the pencil beam model can be successfully
modified to treat not only finite beams but also their interaction with
finite-beta plasmas. A single parameter is sufficient to accurateliy
reproduce more detailed, Monte Carlo H(r) deposition profiles, and the
dependence of this parameter on beam and plasma variables has been
demonstrated to reduce to simple 1linear relationship with the beam
radius. Furthermore, the outward shift in magnetiec axis due to
finite-beta considerations has a marked influence on H(r) deposition
profiles, increasing the penetration significantly over large regions

of the beam-plasma interaction.
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FIGURE CAPTIONS

Fig. 1. Projection of the midplane beam path (beam diameter =
40 cm) on the poloidal plane. The dashed contour indicates the
magnitude of the amoothing radius used in the calculations. Ry is the
coordinate of the magnetic axis, Ro the plasma major radius, and a, the
minor radius. The elongation of the plasma bcundary is ¢ = bolao = 1.5
and the triangularity is 6 = ¢ ‘a; = 0.53. §, indicates the magnituve

of the magnetic axis shift.

Fig. 2. Midplane projection of the various beam trajectories

discussed in the text.

Fig. 3. Schematic view of the mesh geometry.

Fig. 4. The variation of H(r) (BEAM) with smoothing radius Rgy.

Fig. 5. The variation of Rgy/Rgpay with beam radius for the

various parameters indicated,

Fig. 6. H(r) profiles from BEAM (solid) and FREYA (dashed) for

four typical TFTR cases,

Fig. 7. H(r) profiles from BEAM (solid) and FREYA (dashed) for

four typical PLT cases.
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Fig. 8. H(r) profiles from BEAM (solid) and NFREYA (dashed) for

beam trajectories at E, = 120 keV and Ngg = 8 x 1013 em~3.

Fig. 9. H(r) profiles from BEAM (solid) and NFREYA (dashed) for

beam trajectories at E, = 150 keV and n_ , = 8 x 1013 em=3,

Fig. 10. H(r) profiles from BEAM (solid) and NFREYA (dashed) for

beam trajectories at E, = 120 keV and Ngy = 2 x 1014 em=3,

Fig. 11. H(r) profiles from BEAM (solid) and NFREYA (dashed) for

beam trajectories at Eo = 150 keV and Ngo = 2 x 101“ em=3,

Fig. 12. H(r) comparison for all three beam energy components at

120 keV and Ngg = 2 x 101" cm‘3.

Fig. 13. A comparison of H(r) (for all three beam energy

components) at two different <g8> values.
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EFFECT OF HIGH B ON PENETRATION
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