
Th<» book w * MTOftfrd M *caount o> w o I «jowo»«d bv *n«s»nc* of AM Uiuwd $»!«* GMmmeAt . 
N e t t t h * Unxed $t««t G&wetnmeftJ w r J»v * * f t cv r w *ny o» iftfcf e^Covee*. m t * n * r r * 
vmtmtv. w y n i or *np<««*. f tejat twb<i'ty or rmon^ihtv the accv'KY. 
comglBigwcM, or u * M < * » o» information. apcwatut. WoduO, Of ( W W d i r lowr f . Of 
r a p r w m t tfurt i t i uw vwHifd not f rC f f r v (WrtlMfV flt'««f>« to any «©ec4lK 
c o m r w c u l product, process. C »TVICT by « m t , trmXmtrk, m*nul*ct<jt*r, or o t f W r t » . 
cxrt t*cws»*W o» »tn©tv «» w t f o m w t . rtco^wwuetotAtt. o r foarfne t j v l *e Untied 
$ t««* Gowmrtwnt or v * j q m y Thereof. The v<ewi «na opiniom of «K0res»a t w i n do not 
recently or i®f»ct vr\awo< <jn>tw Statw Co>rtrnrr«ni c* any •geney thereof. 

OBNL/TM-7658 
Dist. Category UC-20 g 

Contract No. W-7405-eng-26 

FUSION ENERGY DIVISION 
O R N L / T M — 7 6 5 8 

DB82 008146 

NEUTRAL-BEAM DEPOSITION IN LARGE, FINITE-BETA 
NONCIRCULAR TOKAMAK PLASMAS 

R. M. Wieland 

Computer Sciences 

and 

W. A. Houlberg 

Fusion Energy Division 

Date Published - February 19S2 

NOTICE Thit document contain Information of • preliminary nature. 
It h subiact to revision or correction and therefore doe* not i i p r i m t • 
final report. 

NOTICE 

Prepared by the 
OAK RIDGE NATIONAL LABORATORY 
Oak Ridge, Tennessee 37830 

operated by 
UNION CARBIDE CORPORATION 

for the 
DEPARTMENT OF ENERGY 

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It 
has been reproduced from the ba i t aval(afeto~ 
cony to permit the broetfest pmsibfe avail* 
abilhy. 

disthibut idh o f t h i s document is U N U M l t f e i p 

•v v 



CONTENTS 

ABSTRACT V 

1. INTRODUCTION 1 

2. PROBLEM DEFINITION 3 

2.1. Plasma Beam Parameters 3 

2.2. Fast Ion Deposition Profile—H(r) 4 

3. MODELING FINITE BEAM EFFECTS 7 

4. HIGH-BETA EFFECTS 11 

4.1. Goals 11 

4.2. A High-Beta Equilibrium 11 

4.3. Benchmark Results 12 

4.4. Specific High-Beta Effects 13 

5. PENCIL BEAM VEHSUS MONTE CARLO 15 

6. CONCLUSIONS 17 
t 

ACKNOWLEDGMENT 19 

REFERENCES 21 

iii 



ABSTRACT 

A "parametric1* pencil beam model is introduced for describing the 

attenuation of an energetic neutral beam moving through a tokamak 

plasma. The nonnegligible effects of a finite beam cross section and 

noncircular shifted plasma cross sections are accounted for in a simple 

way by using a smoothing algorithm dependent linearly on beam radius 

and by including information on the plasma flux surface geometry 

explicitly. The model is benchmarked against more complete and more 

time-consuning two-dimensional Monte Carlo calculations for the case of 

a large D-shaped tokamak plasma with minor radius a = 120 cm and 

elongation b/a = 1.6. Deposition profiles are compared for deuteriun 

beam energies of 120-150 keVt central plaana densities of 

8 x 1 0 1 3 _ 2 x 1011* c m ~ 3 f and bean orientation ranging from perpendicular 

to tangential to the inside wall. 

V 



1. INTRODUCTION 

Neutral beam heating of tokamak reactor plasmas has been the 

subject of extensive study^1~3) over the past several years, not only 

as a necessary means to overcome the inherent limitations of pure ohnic 

heating but also as a possible means of achieving a sustained current 

drive/ 1* -^ As higher plaana betas are achieved, it becomes important 

to correctly model the higher uv- geometrical effects imposed on the 

fast ion deposition profile H(r) by the resulting distorted plasma 

cross sections. As we shall show, noncircular, shifted plasma flux 

surfaces can significantly alter these deposition profiles from what 

they would be in a corresponding low-beta, circular, concentric case. 

The physics behind the attenuation of an energetic neutral beam 

moving through a hot, dense plasma is well known. What we consider 

here is a "parametric" model for this process where the finite beam and 

noncircular plasma cross sections are accounted for. After writing the 

analytic description of a pencil beam, we introduce an algorithm which 

includes these finite effects. We then benchmark the model against 

more exact Monte Carlo calculations for a nunber of geometries, beam 

energies, and beam radii. The limitations inherent in our approach are 

pointed out and balanced against the extremely fast computer execution 

time of our code, vis-a-vis possible incorporation into plasma 

transport codes. 

1 
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2. PROBLEM DEFINITION 

2.1. Plasma/Beam Parameters 

In order to obtain a fast ion deposition profile, it is necessary 

to specify several key parameters related to the plasma and to the 

beam. Since plasma temperature and density are expected to be constant 

on surfaces of constant poloidal or toroidal flux for a plasma in 

equilibriixn, all the key geometric plaama parameters relate to a 

specification of these flux contours in the R-Z plane. Shown in Fig. 1 

is a set of such contours for an FED/INTOR-sized plaama with a major 

radius to the geometric center of R q = 474.6 cm, a major radius to the 

magnetic axis of RQ = 512.9 cm, and a minor radius in the midplane of 

aQ = 123 cm. For the equilibriun case shown, the finite beta results 

in a shifting of the flux surfaces outward as one moves toward the 

magnetic axis, with a resulting steeper gradient in all plasma 

parameters toward the outside of the plasma. Significant elongation, 

b Q/a 0 s 1.5, and triangularity, c 0/a 0 = 0.5, are also evident in the 

figure, resulting in a modulation of the differential volumes from a 

simple circular case. Also shown in Fig. 1 is a horizontal projection 

of a neutral beam path for a beam radius of 20 cm. This side view 

illustrates the coupling between the finite plasma elongation and the 

beam path component parallel to but displaced from the midplane of the 

torus. Note that larger elongations allow better "penetration" for the 

extreme off-plane particles. This is one of the finite beam effects 

mentioned earlier. A top view of the plasna-beam system (Fig. 2) 

highlights the various beam trajectories considered here, >wl.th a 
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convenient trajectory parameter designated by the distance of closest 

approach, Rg, of the beam path to the center of the torus. 

In order to reduce this three-dimensional (3-D) system to a 

workable one-dimensional (1-D) model, ue employ the grid scheme shown 

in Fig. 3. The usual 1-D radial grid is replaced by an effective 

radius coordinate r that is defined to lie between two parallel 

midplane grids Rj^ and Rqu j. I*16 latter correspond to the intersection 

of the plasma flux contours with the midplane of the torus, inside and 

outside of the magnetic axis, respectively. This scheme allows for a 

1-D representation of shifted flux surfaces. The arbitrary shape of 

each flux surface is accounted for by an array of differential volume 

elements (DVOL) that represent the volume between adjacent poloidal 

flux contours. lhis metric rpakes it possible to collapse the 3-D 

plasma onto the midplane, as it were, resulting in a convenient 1-D 

representation of the plaana. While information has been lost on the 

region of bean-plasma interaction off of the midplane, it is possible 

to reconstruct this in an ad hoc way by taking a pencil beam of 

infinitesimal cross section and broadening the resulting deposition 

profile parametrically in terms of the finite beam geometry. 

2.2. Fast Ion Deposition Profile—H(r) 

The fast ion deposition profile H(r) , or H(i|>), is defined as a 

dimensionless shape factor that is related to the fast ion birth rate 

by the following expression: 

I0/e 
nf(r) = H(r) ( 1 ) 
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where n f is the rate (cm~3 • s~1) at which fast ions are born as a 

result of the neutral beam-plasma interaction, lQ/e is the neutral 

particle current, and V is the total volume of the plasma. The total 

fraction of incident beam ionized by the plaana, then, is 

I n^dV . 
= 1 I H(r)dV (2) 

For an idealized pencil beam, the relative attenuation in passing 

through a "cell" of differential volune AV is 

AI = I Q 
/-nG<ov> \1 

1 - expl— Ail I (3) 

where AI is the decrement in intensity due to ionization, IQ is the 

neutral particle intensity incident on the cell, n Q is the background 

plasma density, and <ov> is the ionization rate for a neutral particle 

moving with velocity v Q through a Maxwellian plaana distribution. The 

path length through the cell A* depends on the incident beam trajectory 

(Fig. 2). Hie ionization rate <ov> represents a contribution from 

charge exchange (o c x) ( electron impact ionization (oei), and ion impact 

ionization (o^^), so that 

o s a c x • o e l + O i i 

These cross sections have been tabulated for atonic hydrogen beams 
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traversing atomic h y d r o g e n ; ^ » 8 ) they are easily applied to other 

species by expressing them in terms of hydrogenic velocities. 

By following the trajectory of the beam across the plasma, using 

Eq. (3). H(r) is built up by integration: 

HCr) --s £ AHi 
i 1 

where 

and the sunmation is taken over each cell (designated by the subscript 

i) traversed. The resulting H(r) is entirely local, in that it only 

considers the birth point of the fast ion, and not the subsequent 

"smearing" of its effective radial position due to finite orbit and 

drift effects. The latter effects have been considered in detail by 

Fowler et al./^) and are easily calculated within the context of a 

Monte Carlo type code; they are expected to be appreciable, however, 

only in cases involving large orbits, such as counterinjection or for 

those injection trajectories (nearly) perpendicular to the field lines. 
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3. MODELING FINITE BEAM EFFECTS 

The parameters that are included under the umbrella of finite beam 

effects are factors such as beam radius, arbitrary beam cross section 

and profile, divergence, and focus. A complete consideration of all 

these real beam parameters requires a Monte Carlo type treatment 

although in practice the experimental uncertainty attached to many of 

these parameters makes such time-consuning calculations unwarranted, 

particularly when extrapolating to larger systems. Another approach is 

to model the finite cross-section bean by a collection of pencil 

beamlets suitably distributed over the p r o f i l e . * T h i s represents a 

considerable savings in computation time, although off-plane 

trajectories still present a problem that requires careful geometrical 

computation. In the approach we describe here, we remain on . the 

midplane by using a single pencil beam, redistributing the resulting 

deposition profile H(r) by a smoothing algorithm that takes into 

account various constraints imposed on the profile by the physics and 

geometry of the problem. The correct MsmoothingN is chosen by a 

careful comparison with Monte Carlo type calculations which are taken 

to be the standard against which we benchmark our results. 

The smoothing algorithm contains a single parameter, the smoothing 

radius R S M, such that over the range r = 0 - RSm» M1*) i s replaced by 

H(r), where H(r) is obtained from a cubic that satisfies the following 

conditions: 

A 
(1) 35 s 0 at r s 0 dr 
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(2) JoSM HdV = /J S M HdV 

(3) H = H at r = R S M 

( 4 ) RSM dr dr 

This procedure is motivated by the knowledge that H(r) for a 

pencil beam has a singularity at r = 0 and that this singularity can be 

integrated (i.e., it vanishes for a finite beam). Condition (1) above 

preserves the flattening of the profile that results from an exact 

integration. Condition (2) ensures that particle number is conserved 

in the deposition region, and conditions (3) and (4) preserve 

continuity in the function and its derivative at the matching point 

R S M. Figure 1 illustrates the H(r) profiles which result from a 

varying R g M # Note that only the central region of each profile is 

plotted. 

The two cases represent inward and outward peaked profiles typical 

of good penetration and strong edge absorption, respectively. As RgM 

is increased, the central singularity is redistributed over the 

smoothing region, with a resulting decrease of H(r) near the origin. 

Changes in RgM have no noticeable effect on the outer 90% of the 

profile. 

Earlier studies have been made with concentric, circular plaana 

geometries to determine an optimum parameterization for ®s a 

function of the various finite beam variables. Using the circular 

Monte Carlo bean deposition code FREYA^1 ̂  as a benchmark, it was 

f o u n d * t h a t the only significant parameter dependence was on beam 

radius, all the other factors being only of weak influence. The 
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results of this study are summarized in Fig. 5. where the best-fit 

snoothing radius R S M is plotted against the beam radius for a nimber of 

injection energies and for two injection trajectories. The two plasma 

geometries considered are a PLT-sized device (R0 = 130 cm, aQ = 45 cm) 

and a TFTR-sized device (RQ = 248 cm, aQ = 85 cm). Detailed 

comparisons of the resulting H(r) profiles against the Monte Carlo 

standard are shown in Figs. 6 and 7. These studies indicate that for 

over a wide range of parameters, a choice of R g M equal to twice the 

beam radius is an excellent choice to provide good reproductory H(r) 

profiles. 



td 
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4. HIGH-BETA EFFECTS 

4.1. Goals 

Up to this point we have only considered in detail circular, 

nonshifted plasmas (i.e., <fj> = 0). In this section, we will examine 

the applicability of our model to finite beta plasmas, i.e., those 

which exhibit noncircular, shifted flux contours. Specifically, we are 

interested in showing that the model parameterizations obtained in the 

previous section also apply to these more realistic cases and that the 

grid system we use is capable of modeling the more complex geometry. 
« 

Having done this, we will be in a position to examine straightforwardly 

the specific effects that finite beta imposes on the resulting 

deposition profile. 

4.2. A High-Beta Equilibrium 

The high-beta equilibriun case that we will study here is shown in 

Fig. 1. The elongation and triangularity of the outermost flux surface 

are bQ/a0 = 1 . 5 and c 0/a 0 = 0.5, respectively. The outward shift of 

the magnetic axis, S Q ~ 38 cm, is fully 301 of the minor radius. 

Volune-averaged beta toroidal is 6.5%, with beta poloidal ~2.9. We 

consider here two cases represented by the same equilibriun: a high 

density, low penetration case (n» ~ 2 x 1014 cm"3) and a lower eo 
density, high penetration case (n_, - 8 r 101^ cm~3). Aa before, theae o 
lead to significant differences in the shape of the deposition profile 

and test the versatility of our parameterization using R S H. 
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4.3* Benchmark Results 

In order to benchmark our H(r) profiles, we compare them with the 

results of the noncircular geometry Monte Carlo code NFREYA, (9> with 

and without bounce averaging. The reference neutral beam used is 

deuterium, with an infinite focal length and zero divergence, a 

circular cross section, uniform profile, and a radius of 20 cm (Rb). 

The beam trajectories are those shown in Fig. 2, all incident on the 

plasma along the midplane of the torus. TVo beam energies are 

studied: 120 keV and 150 keV. The NFREYA calculation is fully 

three-dimensional, using all the equilibrium information given in 

Sect. 4.2, whereas our code BEAM distills this input by considering 

only midplane projections with additional information stored in the 

RIN/ROUT and DVOL arrays. 

Figures 8-11 show a comparison of the resulting H(r) from BEAM 

versus the corresponding output from NFREYA for a number of cases. In 

each case, Rg^/R^ = 2, with no other free parameters; the effective 

smoothing radius for the noncircular geometry is defined as the radius 

at which the cross-sectional area of the plasma is four times the 

cross-sectional area of the beam. The bounce-averaged results from 

NFREYA are also included for the sake of completeness, although in the 

cases shown here the effects are insignificant. The data for the 

innermost cell in the NFREYA calculations are plotted at the half 

radius for the cell while the data for the beam calculations are 

plotted at the origin. Thus, the endpoints of the plots in both cases 

represent H(0). The agreement between the two codes is almost exact, 

whether for good penetration (Figs. 8 and 9) or for poor penetration 

(Figs. 10 and 11). In each case, only the full energy component of the 
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beam is shown. Figure 12 shows no deterioration in the agreement 

between codes when the lower half- and third-energy components are 

considered. 

4.4. Specific High-Beta Effects 

In order to isolate the high-beta effects of shifted flux surfaces 

on the attendant H(r) profile, we consider here the case of an 

"equivalent" zero-beta equilibrium that is constructed by replacing the 

D-shaped flux surfaces in Fig. 1 with concentric ellipses of elongation 

e centered at the same major radius, Rq = 474.6 cm. The value of e is 

chosen so as to preserve the total volume of the plasma. A comparison 

of the resulting H(r) for this case with the H(r) for the full 

finite-beta case shown in Fig. 1 is presented in Fig. 13. The outward 

shift of the flux surfaces in the finite-beta case shortens the optical 

path length of the beam to the magnetic axis, leading to significantly 

increased penetration, even at 40 keV. The greatest advantage of the 

shift is to reduce the beam energy requirements for finite-beta, 

beam-driven plasmas since the energy and path length for a given degree 

of penetration are approximately related by EQ « 1. 
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5. PENCIL BEAM VERSUS MONTE CARLO 

The main advantage that the pencil beam model has over the Monte 

Carlo approach is in the large savings in computation. When 

incorporated into a larger code that uses it repetitively, this 

translates directly into a savings in computer time. On the CDC 7600, 

for example, running both codes in optimum fashion, the BEAM code is 

roughly 50 times faster than NFREYA. The limitations for the former 

have to be recognized, however; BEAM cannot treat diffuse beam 

trajectories off the midplane nor can it account for nonlocal "bounce" 

effects when they are important. Finally, the smoothing algorithm 

parameterization of Rg^ is reasonable only for those cases where 

Rg << a Q. This is not the case, for example, in a device such as 

ISX —B. Furthermore, the optimal parameterization of Rg^ ~ 2Rg, 

presented here, must be reevaluated for departures from circular, 

constant profile beam cross sections. 
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6. CONCLUSIONS 

Vte have shown that the pencil beam model can be successfully 

modified to treat not only finite beams but also their interaction with 

finite-beta plasmas. A single parameter is sufficient to accurately 

reproduce more detailed, Monte Carlo H(r) deposition profiles, and the 

dependence of this parameter on beam and plasma variables has been 

demonstrated to reduce to simple linear relationship with the beam 

radius. Furthermore, the outward shift in magnetic axis due to 

finite-beta considerations has a marked influence on H(r) deposition 

profiles, increasing the penetration significantly over large regions 

of the beam-plasma interaction. 
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FIGURE CAPTIOUS 

Fig. 1. Projection of the midplane beam path (beam diameter = 

40 cm) on the poloidal plane. The dashed contour indicates the 

magnitude of the smoothing radius used in the calculations. RH is the 

coordinate of the magnetic axis, RQ the plasma major radius, and a0 the 

minor radius. The elongation of the plasma boundary is e = b Q/a 0 = 1.5 

and the triangularity is 6 s c t'a Q = 0.53. 6 0 indicates the magnitude 

of the magnetic axis shift. 

Fig. 2. Midplane projection of the various beam trajectories 

discussed in the text. 

Fig. 3. Schematic view of the mesh geometry. 

Fig. 4. The variation of H(r) (BEAM) with smoothing radius RgM. 

Fig. 5 . The variation of Rsf/rBEAM w i t h b e a m r a dius for the 

various parameters indicated. 

Fig. 6. H(r) profiles from BEAM (solid) and FREYA (dashed) for 

four typical TFTR cases. 

Fig. 7. H(r) profiles from BEAM (solid) and FREYA (dashed) for 

four typical PLT cases. 
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Fig. 8. H(r) profiles from BEAM (solid) and NFREYA (dashed) for 

four beam trajectories at EQ = 120 keV and n e o = 8 x 1013 era-3. 

Fig. 9. H(r) profiles from BEAM (solid) and NFREYA (dashed) for 

four beam trajectories at EQ = 150 keV and n e Q = 8 x 1013 cm"3. 

Fig. 10. H(r) profiles from BEAM (solid) and NfREYA (dashed) for 

four beam trajectories at EQ = 120 keV and n e o = 2 x 1014 cm"3. 

Fig. 11. H(r) profiles from BEAM (solid) and NFREYA (dashed) for 

four beam trajectories at EQ = 150 keV and n e o = 2 x lO1* cm~3. 

Fig. 12. H(r) comparison for all three beam energy components at 

E Q = 120 keV and n e o = 2 x 101I< cm-3. 

Fig. 13. A comparison of H(r) (for all three beam energy 

components) at two different <ft> values. 
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Fig. 4. 
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