INTERNATIONAL
ATOMIC ENERGY

AGENCY

UNITED NATIONS

 EDUCATIONAL,

SCIENTIFIC
AND CULTURAL
ORGANIZATION

IC/80/147

INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

THE SCATTERING MATRIX ELEMENT

OF THE THREE BODY REACTIVE COLLISION

M.W. Morsy
A.A., Hilal

and

M.A. El-Sabagh

1980 MIRAMARE-TRIESTE



T 5 e R R el 65 o bt At s ot - sruEm o



Ic/80/147

Internaticnal Atomic Energy Agency
and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THECRETICAL PHYSICS

THE SCATTERING MATRIX ELEMENT OF THE THREE BODY REACTIVE COLLTSICON *

M.W. Morsy ** A.A. Hilal #==

Intermational Centre for Theoretical Physics, Trieste, Italy,

and

M.A. El-Sabagh

Department of Theoreticel Physics, Nuclear Research Centre,
Atomic Energy Establishment, Cairo, Egypt.

ABBTRACT

The optical model approximation has been a&pplied to the previously
derived [1,2) set of coupled equations representing the dynemics of the three-
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Introduction

In view of the increasing importance of the so-called ab~
initio calculation of the reaction rate constant of the
chemical interactions, we proceed to study the three-body-
molecular dynamics. In previous publications [1,2] , the
classical Lagrangien of this scattering problem has been
derived eand then quantiszed.

In the present article, the previously obtained set of cou-
pled channel equations has been decoupled by using the op=
tical model approximation. Such a procedure yiglds an an—
alytical solution that considerably saves the efforts nece—

ssary for the numerical integration that has been undertaken
until now [4,3] .

Theory

The reactive scattering of three particles has been found
to be represeated by the following set of coupled equations [2]:
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Until now, the above equation has been aolved by means of
the numerical integration techniques [4,5] that evidently
oongume considerabls efforts.

Alternatively, one may decouple such set of equations by em-
ploying the optical model approximation [3 l. To accomplish

this, let us write the aove set of coupled equations sym-
volieally as
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which by virtue of the following transfermation:
R Y ‘4
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This last expression can be written in the form
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However, Eq. (%) implies that for m = 0, the first term
of this last equation reduces simply to UmO’ and therefore
one might rewrite this expression as follows:

= y

= _ ~ .

'a Elm°+ / Vmn a]-’f}“; H-E+io- vn] ’ (7)
YD

Now, let us specify = Eq. (3) for  the channel m = O, then
by virtue of Eg.W)one gets
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whioh againby -virtue of Eq. {7) becones
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It ig to be noted here that the right-hand side of this last
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equation contains inverses of differential operators, which are
complex and non—loocal.

To simplify this equation, let us introduce the optical model
approximationi3l. In this course, one might replace the
orackets on the right-hand side of Fq. (9) by & non—local
complex interaotion U{u,u'). The last equation could fhen be

rewritten as
of

{ E-E ) \Fo(u)>= - ‘ du' U(u,u’) Fo(u') ' (10
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Now, spelling out the explicit form of H [2], one gets
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—g@,(;;SMgUM chfo)+Z£u)-E]FD(u,=-[JuU(u. ) FO c o

Of course, this criterion has a certain similarity to that used
previously and which is known as the adiabatic approximation (61
in spite of the fact that the present treatment is more trans-
parent.

ssymptotically, as u—>teo, the non-local interaction vani-
shes while the static poteatial, V(u,0), the vibrational ene-
TEy in(u) and the varying reduced mass, /M(u) approach oons-
tant values V, §,, M~ and v, ;,/J+ respectively that are
corresponding te the entrance and exit channels respectively.

We are now in a position to solve the soattering equation
given by Eq.{ll)which involves a non-local potential that may
be ocomplex. This can be accomplished by converting the above
integro-differential equation into an asymptotically equiva-
lent differential equation by employing the moment expansion
for non-local potential operators.

More precisely, we expand the goattering wave funotion, Fo(u'),
in Taylor’s series around u as:
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The right-hand side of Eq. (11) then becomes
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e
whers Uk(u) stands for the abbreviation
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Let us now assume that the nop-locality of the interaction
is not so strong such that the %erm of order higher than twe
in the above series can be neglected.

Substituting from expression (12),after being truncated into
Eq. (11)4 ¥yields a gecond order differential equation with
a local potential namely

[ (- Uyt ))31+(wu gﬁunu,,(w)f;
Uo(u)_+\JLulD]+ZM(U)'"EZS ‘:_D'&‘) :-_O

15}

Loreover, the first order differential operator can be eli-
minated by inserting the substitution
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iate q. 13 one obtains
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12 the term containing—é- is assumed to vanish, then it is
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negessary that this funotion S2(u) must satisfy the fo-
1llowing first order differential equation i.e.
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Eq. (17}
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might then be simplified to the form
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Finally, Eq. (19)can be expressed simply as
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where /k1(u) the effective reduced mass, ERM, and Uy, the
effective potential tarrier, EPB, explicitly read ’

M) = ) (22)
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The asymptotic behavicur of these quantities can now be ex—
pressed as

+
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The oorresponding dimensional scattering equation in the
asymptotic regions therefore becomes

D
Evidently, it is to be noted that the effect of pgp inter—
channel interaction is contained in both the LIB U,(u) and
ERY M{u) which, in zeneral, are complex valued in view of
the fact that the zernel Ulu,u'} is assumed to be a complex
optical potential.

T oo

Furthermore, the interaction moments U, (u) vanish as u-=> -
ard consequently the EPB =isc vanichos, while the ERw. be-—

comes constant.
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Asymptoticaly, for u—= e, Eq. {25) can © be expressed as
a linear combination of incoming and cutgoing plane waves.
More precisely, the asymptotic solution corresponding te the
entrance channel is

lim c?0= a; exp (ik;u) + a; exp ( - ik;u) s {26)

M =y —op

while in the exit ohannel these are only outgoing waves, that
is tc say

11mdf= a;exp (1k u) 27)
M—,wo

+*
where k; denotes the channel wave number
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1t is to be noted at this point, that the penetrability
through the EFPB Un(u) is simply the ration of the trans-
mitted flux %o the inocident one, namely, the modulus square
of the scattering matrix element, i.e.

2 k¥ | a? i
P(E) = ISI = 212 . (29)
Ky n;

This last expression will be very useful in calculating the
penetratility factor with the eventual purpose of evaluating
the reaction rate constant.

Coneluding Remarke

1t has been shown here that by employing the optioal model
approximation [31 , it ls possibls 1o iecouple

the channel coupled equaticen into an integro~differe-
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ntial equation. Such an equation could be furiher reduced to

an equivalent differential equation in the frame of the effec-
tive mass approximation.

This eguivalent differential equation has been provided with
an effective potential energy bvarrier and an effective reduced
mass that may be complex.

Further, and more important, the penetrability factor
through the effective potential barrier has been identified
as the modulus square of the scattering matrix element.
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