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1. Introduction

Throughout the present article, we consider incident electrons at

kinetic energies of interest to microscopy, i.e., between a few tens of keV

and several MeV. As to targets, we consider first neutral atoms having lower

atomic numbers (say, Z < 30), and later molecules aiid solids composed of

those atoms. For the majority of the inelastic collisions of electrons with

atoms thus delimited, the Bethe theory (Bethe 1930, 1932, 1933) is well justi-

fied, and provides a good framework for general understanding and for numerical

evaluation of cross sections (Inokuti 1971; Inokuti et al 1978).

A necessary (though not sufficient) condition for the first Born approxi-

mation, used in the Bethe theory, is that the mean orbital speed of the atomic

electron pertinent to the inelastic collision be small compared to the incident

electron speed. For ionization (or excitation) of an inner shell by relati-

vistic electrons, the condition means that the effective charge £ seen by an

atomic electron in that shell be substantially smaller than 137: t, is somewhat

smaller than the atomic number Z, and the condition is fulfilled for moderate

Z, (say Z < 30). For the lowest incident energies of electrons we consider,

the condition is satisfied only for lower Z.

The condition discussed above literally applies to quantitative discus-

sion of cross sections. Even when the condition is not quite fulfilled, however,

often results of the first Born approximation are useful; they may be good as

qualitative guides and may be reliable to modest precision (say, within a

factor of two). This is especially the case for inelastic collisions resulting

in an optically allowed transition and in small scattering angles; then, the

impact parameter is large and thus the incident electron travels well outside
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the target atom. This recognition is readily verifiable in a variety of

empirical data, and is in effect expressible in a more rigorous theoretical

form (Lassettre et al 1969).

Figure 1 exemplifies differential cross sections plotted against the

scattering angle 8. The figure shows the cross sections for collisions of

25-keV electrons with neon, most of the data being taken from Geiger (1964).

Notice that all cross sections are peaked at small angles and that the plot

is doubly logarithmic. The elastic-collision cross section is virtually flat

at small 9, because the interactions between the electron and the atom effec-

tively have a short range in this case. The potential for these interactions

~4
decreases with distance r as r or more rapidly. The inelastic-collision

_2
cross sections depend on 9 more strongly and behave as 8 over a moderate

range of 3, showing that the interactions are of long range (due to the

instantaneous dipole moment associated with the atomic transition). The potential

_2

for these interactions decreases with distance r as slowly as r . At larger G,

the 9-dependence of the inelastic-collision cross section is stronger; the

onset of the stronger dependence is different for different atomic shells

involved. It is the Bethe theory that enables one to see precisely all these

features of the cross sections and to understand how they come about.

As a prelude to discussion on cross sections, we may note here certain

contrasts between the valence shell and the inner shells. The valence shell

has a linear dimension of the standard atomic size, i.e., of. the o: 3er of

2 2 —8
the Bohr radius a = ti /me = 0.52917 x 10 cm, and has binding energies of

4 2
the order of the Rydberg energy E = me /2fi = 13.606 eV. The electronic

structure of the valence shell is seriously influenced by subtle effects of

many-electron correlations or of the atomic environment (i.e., chemical bonds
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and condensed-phase formation). Consequently, experimental spectra of the

valence shell are rich in general, and often contain keys for unraveling

those subtle effects; theoretical calculation of the cross section for valence-

shell excitation or ionization is complicated in general and is often difficult

in practice. By contrast, an inner shell has a much smaller linear dimension

2

(of the order of aQ/Q and a much greater binding energy (of the order of £ R).

Many-eLactron correlations or atomic-environment effects influence the electronic

structure of an inner shell only modestly. Thus, experimental spectra of the

inner shell are governed roughly by the atomic number Z, and therefore often

serve as a means of elemental chemical analysis. The simple picture of the

inner-shell spectra is often taken for granted, but is in fact subject to a

provision. The simple picture is right so long as an ejected electron is much

more energetic compared to the potential of its interactions with the ion core

left behind and with tho. atomic environment. Otherwise, the ejected electron

is slow enough to see details of the potential, and gives rise to various

observable consequences in the inner-shell spectra. Much of the discussion in

Section 3 will concern this topic.

The present article is in effect a continuation of an earlier article

(Inokuti 1978) also written for the electron microscopist. For the reader

of that article, the following will serve as an update with an emphasis on

newer findings on inner-shell ionization.
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2. Elements of the Bethe Theory

2.1 Basics

Suppose that an electron of speed v collides with an atom and

excites it to a higher state, either discrete or continuum, at excitation

energy E measured from the ground state. The kinetic energy of the elec-

tron then will be reduced by E, which may be called the energy loss (from

the incident electron) or the energy transfer (to the target atom). The

direction of the electron motion may be deflected by angle 0, which is

called the scattering angle.

The first point of Bethe is that the momentum transfer fiK = p - p1,

where p is the electron momentum before the collision and p1 is the same

after the collision, is the key variable for analyzing any collision of

fast particles. The magnitude fiK is readily calculable from 0, E, and v

by use of elementary kinematics. For electron energies not negligible

2
compared to me = 511 keV, one must use relativistic kinematics.

The notion of the momentum transfer ftK may be most easily under-

standable when one relates it to the notion of the impact parameter b used

in classical mechanics. Indeed, the two notions are complementary in the

sense that the relation

Kb s 1 (1)

holds for the majority of collisions. In other words, collisions at

large b are called soft or glancing, and result ir» small K; collisions at

small b are called hard or knock-on, and result in large K. Nevertheless,

there is a fundamental distinction; the momentum transfer is unambiguously

defined in all cases, while the impact parameter is not a quantum-mpchanical
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observable. [See Section 4.4 of Inokuti 1971 and Bohr 1948.]

For fixed v and E, the momentum transfer 1iK may take a range of

values depending on 9. The smallest value of fiK occurs when 9 = 0 , and

is given by

*K . = E/v. (2)

mm

To derive this, one relates the change Ap in the electron momentum p

with tha change AT in the kinetic energy T as Ap = (dp/dT)AT, sets
Ap = fiK . and AT = E, and notes dT/dp = v. The derivation, as well as

min

the result [Eq. (2)], is correct in both relativistic and non-relativistic

kinematics. Notice that -nK , for any inelastic collision is never vanish-
min

ing, although it becomes smaller and smaller with increasing v or with

decreasing E. The largest value of fiK for fixed v occurs when 9 = TT, and

is about twice the incident momentum, i.e.,

fiK s 2mv/(l-32)!s, (3)

max
where 3 = v/c. Thus, "liK is in general large and increases without

max
bounds as v •> c.

The second point of Bethe concerns tha differential cross section

for energy transfer values between E and E + dE

daE = 4ao
2(p'/p)(Kao)"

4|nE(K)|
2 27Tsin9d9, (4)

where TL,(K) is an atomic matrix element

Z
np(K) = (E|.E exp(iK-r )|0) (5)

taken between the excited state (E| and the ground state |0), r. being

ry

the position of the jth atomic electron. The quantity |ri (K)| io called

a form factor for inelastic scattering, and may be taken as an even
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function of scalar K, so long as the target atoms or molecules are randomly

oriented. Equations (4) and (5), as well as several equations to follow,

are written specifically for non-rei'.ativistic speeds v, for the sake of

2 -1
compact expression. Notice that do has the dimension area energy,

E

and'|(n (K)1 has the dimension energy

We may rewrite Eq. (4) to express da in terms of the momentum
E

transfer fiK or other related variables. For instance, one may introduce

a variable with the energy dimension, i.e.,

Q = (nK)2/2m (6)

and write

da = (2TTe4/mv2)|n ( K ) | 2 Q~2 dQ. (7)
E

Here it is appropriate to recall the Rutherford formula, which applies to

collisions of two free charged particles. Specifically for a collision

of an electron with a free and stationary electron, the Rutherford cross

section reads

da = (2ire4/mv2) Q~2 dQ, (8)

R
and Q represents in this hypothetical instance the kinetic energy of the

o

recoiled electron. Thus the meaning of the form factor [n (K) | becomes
E

clear; it represents the ratio of the atomic cross section da to the
E

Rutherford cross section. It is the only nontrivial factor in do in the
E

sense that its evaluation by means of Eq. (5) presumes knowledge of

atomic structure. To summarize, we owe to Bethe (then twenty-four years

old) the crucial recognition that dcr r'actorizes into the Rutherford cross

section (which depends on the incident-particle variables only) and the
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form factor (which depends on the momentum transfer hK but not explicitly

on the incident speed v or any ether incident particle variable). For

more detailed commentary, see Inokuti 1971 and Inokuti 1978.

Finally, the generalized oscillator strength df(K,E)/dE per

unit range of E is defined by

df(K,E)/dE = <E/Q)|nE(K)|
2 . (9)

Equivalently, we may write

df(K,E)/dE = (E/R)(Kao)"
2|nE(K)[

2 . (10)

The equivalence of Eq. (10) with Eq. (9) is apparent as soon as one

2 4 2 2 2 2 2
recalls that Ra = (me /2n )(ft /me ) =-n /2m. The term "generalized

oscillator strength" is another innovation of Bethe. As K -*• 0, it

reduces to the optical (dipole) oscillator strength, which governs the

light absorption and practically all optical properties of the atom under

consideration. For the basics of photoabsorption by atoms, see Fano

and Cooper (1968), Manson (1976), Manson (1977), Manson (1978), and

Manson and D511 (1978).

2.2 The Bethe Surface

2
The main object of study is the form factor |nE(K)| or the

generalized oscillator-strength density df(K,E)/dE as a function of both

•nK and E. To make this point clear, Inokuti (1971) used the term "Bethe

surface."

We have already discussed the connection with the photoabsorption,

which corresponds to the limit (K •* 0) we discussed at the end of the

last Subsection 2.1.



At larger E values, df(K,E)/dE substantially differs from zero

only when Q of Eq. (6) nearly equals E and far exceeds an atomic-shell

binding energy. Then, df(K,E)/dE shows a marked peak at those values of

K and E which correspond to free-electron collision thus satisfying the

relation Q = E. Inokuti (1971) called the peak the Bethe ridge, and

emphasized its universal occurrence.

Figure 2 shows the Bethe surface for atomic hydrogen (Inokuti

1971). Figure 3 shows two examples that have been determined by

experiment (Lahmam-Bennani et al, 1979, 1980).

The study of the Bethe surface is a rich subject with many

applications and implications to diverse phenomena. Just to name several

examples, we may start with sum rules, which usually mean theorems on the

integrals involving df(K,E)/dE with respect to E (including sums over

discrete spectra), at fixed K. These sum rules (Section 3.3 of Inokuti

1971) are often useful as control on data. There are also theorems on

the integrals involving df(K,E)/dE with respact to K, at fixed E. (See

Section H E of Inokuti et al, 1978, and Matsuzawa et al, 1979). If the

Bethe surface is drawn on the plane with Cartesian axes representing E

and In K, then the volume under the surface delimited by appropriate kine-

matic limits represents the stopping power of the target atom for any

fast charged particle (Bethe 1930, and Section 4.3 of Inokuti 1971). The

shape of the Bethe ridge is a reflection of electron binding in atoms,

or more precisely, the electron momentum distribution, and is connected

with the Compton profile, i.e., the spectral distribution of high-energy
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photons scattered by atomic electrons (Bonham and Wellenstein 1973, Wong

et al 1975, Barlas et al 1977, and Lahmam-Bennani et al <1979, 1980). Finally,

the so-called (e,2e) measurements, i.e., coincidence measurements of scattered

electrons and ejected electrons resulting from collisions corresponding

to the Eethe ridge, represent an area of many recent studies (McCarthy and

Weigold 1976).

2.3 Integrated Cross Sections and Their Systematics

The third point of Bethe concerns the cross section integrated

over all scattering angles. Starting with Eqs. (4)-(7) and using general

properties of the form factor or of the generalized oscillator strength,

one can show that

GE = 8-ao
2(R/mv2)(ME

2X + C £ ) , (11)

where

X = la[32/(l - 32)] - f32, (12)

2

and R and C are atomic properties derivable from df(K,E)/dE. What is

most important here is that the dependence of a on the electron speed

v = 3c is analytically given and is universal for all targets.

As a consequence, the total inelastic-collision cross section 0

i.e., the sum of all inelastic-collision cross sections, is given by a

formula of the same general structure, i.e.,
Otot - 8 ™ 0

2 ( R / m v 2 ) ̂ t o t ^ + Ctot) •
2

where M and C are atomic properties that often allow accurate
tot tot

evaluation. (See Section 4.3 of Inokuti 1971 and Inokuti et al 1967). An

application of this result is now demonstrated in Fig. 4 and Fig. 5 (taken
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from Inokuti et al 1981). Figure 4 shows a for 50-keV electron for

all atoms with Z S 38. Notice the periodic variation with Z, due to the

well-known shell structure of atoms. Figure 5 shows the mean energy

r.ransfer E per inelastic collision, for 50-keV electrons (solid line)
av

and for any higW> relativistic charged particle (broken line), as

functions of Z. As Inokuti (1978) pointed out already, electron micros-

copists often use theoretical values for o and E based on the
tot av

Thomas-Fermi model of atoms. This model treats all atomic electrons as

a free-electron gas, disregards the atomic shell structure, and therefore

naturally predicts a and E as smooth functions of Z.

tot av

2.4 Condensed Phases

Bethe treated free atoms as target. Extension to free molecules

is formally straightforward. In the definition of the matrix element
n (K) [Eq. (5)] molecular eigenfunctions must be used, and the rotational
E

and vibrational degrees of freedom must be accounted for. Despite the

complications, the theory remains basically unchanged. For fuller discus-

sion, see Section 3.5 of Inokuti (1971). \

Extension to condensed phases bagan v/ith the work of Fermi (1940),

who pointed out what we call the density effect on energy losses. For a

relativistic particle traveling through condensed matter, the relevant

impact parameter may become so large that there are many medium atoms

between the particle and a particular atom that becomes ercited. To see

this, recall Eqs. (1) and (2); the maximum impact parameter is 1/K . =-nc/E,

min
and becomes 2 x 137 a for E = R. The medium atoms are instantaneously



polarized by the electric field of the particle and tend to screen the

particle interactions with the atom that eventually receives energy.

Fermi used a macroscopic description according to electrodynamics, as

summarized by Landau and Lifshitz (1960).

More detailed treatments were developed in the 1950's by many work-

ers including Fano (1956), Ferrell (1957), and Nozieres and Pines (1959).

Special attention was paid to plasmon excitations in metals, which then

began to be studied through electron energy-loss measurements. Recent

work on plasinon excitation is reviewed by Raether (1980). The following

paper by Powell (1982) in the present Conference will include even newer

findings.

Here we make only a few reaiarks. The three major points of Bethe

(i.e., the role of the momentum transfer, the factorization of the cross

section into the Rutherford factor and the form factor, and the analytic

structure of the integrated cross section) all remain true for condensed

phases. The form-factor idea is generalized, and it is customary to use

the complex dielectric response function e(K,E) for describing the effects

of electromagnetic perturbation associated with angular frequency E/n

and propagation vector K. The function may be interpreted also as the

Fourier transform of the electron density fluctuation in the medium. For

charged-particle interactions, the quantity E Im[-l/e(K,E)] plays th..

role of the generalized oscillator strength df(K,E)/dE.

The use of the complex function £(K,E) entails studies on the

analytic properties, especially on the integral relations between the

real and imaginary parts, called Kramers-Kronig dispersion relations.
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Thorough exploitation of these relations has been carried out for several

instances, e.g., metallic aluminum (Shiles et al 1980), but only for

data at K = 0.
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3. Selected Topics

i

3.1 Generalized Oscillator Strengths foe Inner Shells of Atoms: Methods '•

of Calculations

Earlier calculations on the generalized oscillator strengths of

inner shells and related quantities were based on the hydrogenic approxi-

mation (Walske 1952, Walske 1956, and Khandelwal and Merzbacher 1966, to

name just three examples). In this scheme, one uses for one-electron

eigenfunctions for both the initial state and the final state hydrogenic

functions, but accounts for the screening by other electrons by means of

a suitable effective nuclear charge by an adjustment of the energy scale

to fit the experimental ionization threshold. Then, the generalized

oscillator strengths may be readily evaluated analytically. Yet, the pro-

cedure is intrinsically unrealistic for values of the energy transfer E

comparable with the ionization threshold; this deficiency is serious because

much of the strength lies precisely ai; those E values for small and

moderate K values.

Manson (1972a, 1972b) initiated more realistic calculations, within

the one-electron orbital picture. In this picture, one approximates the

ground state |0) of the whole atom by a suitably antisymmetrized product

of one-electron orbitals of the form r~ V^W YjM^
Q*^ » where (r, 6, $>)

are the spherical coordinates of an atomic electron, P^Cr) is the radial

function with the principal quantum number n and the orbital angular-

momentum quantum number H, Y ^ O , <$>) is the spherical harmonic, and m is

the magnetic quantum number. At the same time, one approximates the

excited state |E) in the continuum by r P^, (r) Y ^ O , <|>), where

P (r) is the radial function representing an electron ejected with
eJl'

-u-1



kinetic energy e and angular momentum V. For the ionization of the nl

shell having the binding energy I , £ is related to the energy transfer

E by

E = e + I „. (14)

nJl

For the transition of an electron from the nl subshell to the ionized

state, one may write the atomic matrix element squared as

|nE(K)|
2 = (2r+l)Sx(2X+l)| (*' I M | [RCe.f.n.Jl.W)]2, (15)

(SL" X s\
I is the Wigner 3j symbol, the sum over the index X runs

from -\H-V\ to i+V in steps of 2, and R(c,V ,n,fc,A,K) is the radial

matrix element defined by

j (Kr) being the spherical Bessel function of the Xth order. In Eq. (15),
A

the radial matrix element is the only quantity that depends on the dynamics

of atomic electron, all the other factors being geometric, i.e., dependent

only upon angular-momentum quantum numbers.

The most crucial part of the calculation is the determination of

the radial functions p's. The function P (r) for a bound state with
n JO

a discrete eigenenergy e < 0 satisfies the equation

4i £(£+1)T

? " rn9. ~
 V ( r ) — P

no = 0. (17)
2m dr

Jl+1
behaves as r for small r, and vanishes rapidly for large r so that it

may be normalized as
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/> nJl (r)] d r = lm

In Eq. (17), V(r) is the potential of the field of force seen by the

electron, and the field is due to all the other atomic electrons and the

nucleus. For a neutral atom of atomic number Z, the general limiting

behavior is

V(r) s -Ze2/r for r = 0, (19)

and

V(r) = -e /r for r -*• ». (20)

In many calculations including Manson's, V(r) is determined through a

version of self-consistent field theories, called the Hartree-Slater

method.

The function P (r) for a final, continuum state with energy e > 0
£ A*

satisfies t'.ie equation

d2P

2m dr2
e-V(r) -

2m r2
P e £ = 0, (21)

a+i
behaves as r for small r, and is to be normalized as

f\ O A/ C A/

Notice that the same potential V(r) is used in Eq. (21) as in Eq. (17);

the use of the same V(r) not only simplifies the calculation, but also

guarantees itc internal self-consistency.

The contrast of the modern calculation with the hydrogenic approxi-

mation is seen in the choice of the potential V(r). The hydrogenic

approximation amounts to using I

-16-



V (r) = "Zeff e2/r + V (23)

where Z ,,. and V_ are two adjustable parameters. This potential V ,(r)
err 0 nyd

satisfies neither of the two limiting forms, Eqs. (19) and (20).

Therefore, the hydrogenic approximation can give no realistic behavior

of radial wavefunctions for r s 0 or for r ->• «., nor trustworthy results for

properties depending upon the behavior of the wavefunctions at large or

small r. An example of such properties is the generalized oscillator

strength near a threshold energy (e = 0) crucially depends upon the radial

wavefunctions at large r, as we shall fully document in Subsection 3.2.

Many properties of the realistic potential V(r) have been extensively

studied (Rau p.nd Fano 1968), their consequences to radial wavefunctions P's

have been eluctc'sred in great detail (Fano et al 1976, Manson 1976,

Manson 1977, Manscn 1978, Manson and Dill 1978), especially in connection

with the optical oscillator strength spectra, i.e., df(K,E)/dE at the

limit K •* 0. Calculations by Manson (1972a, 1972b) and their extensions

(Manson and Inokuci, 1980) are based on extensive experience with work on

the optical oscillator strength, Manson and Inokuti have calculated the

spectra of the generalized oscillator strengths for the ionization of the

K-shell and the L-shell of all atoms for Z ^ 30, but have not published

the results comprehensively. In the following section (Section 3.2), some

of the results will be discussed.

Leapman et al (1980) and Rez and Leapman (1981) also reported

similar calculations on the K-, L-, and M-shell generalized oscillator

strengths and related quantities for a selection of atoms, based on

virtually the same wethod as that of Manson and Inokuti. McGuire
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(1977, 1979) carried out similar woik as well. But his method contains

an additional mathematical approximation; he divides the full r-range

(0 < r < °°) into several intervals, in each of which the potential V(r)

2 1

is approximated by a Coulomb potential -Z.e /r with a suitable effective |

charge number Z . This allows one to write down the solution in that j

interval as a linear combination of regular and irregular Coulomb functions j

and then to determine the coefficients of the linear combination by require- -\

•• i

ment of smooth connection of the wavefunctions PTs. This procedure may \
very well be more efficient than the straightforward numerical solution j

i
of Eqs. (17) and (21), done by Leapman et al (1980) and ty Manson and \

Inokuti, but has a definite possibility of generating spurious results. \

Finally, calculations more accurate than the Hartree-Slater potential I

field method are indeed possible, for example, by the use of the Hartree- \

Fock method, the random-phase approximation, or the method of configuration 1

mixing. Yet, as far as the properties of deep inner-shell are concerned,

more accurate calculations are unlikely to alter drastically the results

of the Hartree-Slater calculations. The reason for this expectation comes

from the well-known notion of the perturbation theory; the possible correc-

tions to the Hartree-Slater calculations must arise from the perturbative

contributions from virtual excited states, but these states are located at

very high excitation energies when one deals with a deep inner-shell state.

3.2 Generalized Oscillator Strengths for Inner Shells of Atoms: Results

The most suitable way to show the data of the generalized oscillator

strength is the plot first given by Miller and Platzman (1957). By use
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of Eqs. (4), (7), (9), and (10), one can readily see that it is suitable

to plot df(K,E)/dE at fixed E as a function of In (Ka^.^ EquivaJ .itly, one

—1 2
may plot Q~ |r) (K) J as a function of In Q. Then, the area under the curve

represents the integrated cross section over a range of the momentum trans-

fer hK (or over a range of the scattering angle). To show this point pre-

cisely, we may rewrite Eq. (7) as

8ira 2R R df(K,E)

d[ln (Kaori. (24)E ^ o

mv E dE

For fixed incident electron speed v and fixed energy loss E, the

momentum transfer is uniquely calculable through kinematics. Therefore,

the Miller-Platz^an plot is a graphical representation of the angular

distribution of inelasticially scattered electrons at fixed v and E. Yet,

it takes some tine and experience for anyone to become fully familiar
2

with the relation between 0 and (Ka ) . As an aid to this end, we present

here Fig. 6, which shows the relation for energy-transfer values correspond-

ing to the K-shell threshold (E = 1.57 keV) and to the 2s-subshell threshold

(E = 127 eV) of aluminum. The figure illustrates several points. First,

2
(Ka ) varies over a wide range with varying 9. Second, the range of the

2
variation in (Ka ) becomes greater and greater with increasing incident

2
speed v. Third, (Ka ) depends weakly on 9 for sufficiently small 9, but

2
becomes roughly proportional to 9 at large 9; the transition between the

two kinds of dependence occurs at smaller and smaller 0 with increasing v.

Following figures are examples of the Miller-Platzman plot showing

the results of calculations by Manson and Inokuti for selected atoms. These
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figures also show the corresponding results of the hydrogenic approximation.

Mancon rnd Inokuti have actually calculated and plotted the generalized

oscillator-strength density df(K,E)/d(E/R) for the ionization from the Is,

2s, and 2p orbits of all atoms through 2a (Z = 30). We shall respond to

any reasonable request for providing any of the numerical or graphical

data we have at hand.

Figures 7-11 concern aluminum. Let us discuss each of them in turn.

Figure 7 shows results for the ionization of the 2s-subshell, which has

the binding energy B = 127 eV according to Shirley et al (1977). Each

curve represents the density df(K,E)/d(E/R) of the generalized oscillator

strength per mit range of E/R = (e + B)/R, where e is the kinetic energy

of an ejected electron. Hot (1) shows results for the lowest £ values,

i.e., e/R = 0, 0.5, 1.0, 1.5, and 2.0. In particular, the solid curves

represent Hartree-Slater results, and the chained curves hydrogenie-

approximation results. In either case, the curve lying highest at

smallest (Ka ) corresponds to e/R = 0; the curve lying next highest at

2
smallest (Ka ) corresponds to e/R =0.5, and so on. In other words,

the optical limit df(0,E)/d(E/R) is monotomically decreasing with e, ass

is always the case for the hydrogenic-approximation.

Nevertheless, Fig. 7, Plot (1) illustrates a sharp difference

of the Hartree-Slater results from the hydrogenic-approximation results.

2

First of all, the magnitude at (Ka_) •*• 0 is more than twice the hydrogenic-

approximation value at e/R = 0. Second, the same magnitude stays virtually

constant for the range 0.5 5 e/R ^ 2.0, while the hydrogenic-approximation
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value decreases steadily with increasing e/R. Finally, in the same £ range,

the Hartree-Slater results show the gradual development of the maximum at

2
a high (Ka ) value, i.e., the emergence of the Bethe ridge.

In Fig. 7, Plot (2), one begins to observe the approach to the

hydrogenic behavior. Here, the solid curves represent the Hartree-Slater

results for e/R = 3, 4, 5, 6, and 8, in the order of decreasing height

2
at low (Kafl) ; the chained curves represent the hydrogenic-approximation

results for the same e/R values also in the order of decreasing height.

Throughout the e range of Plot (2), the Hartree-Slater results indicate

the full development of the Bethe ridge. In contrast, the hydrogenic-

approximation results begin to show the Bethe ridge only belatedly with

increasing e.

In Fig. 7, Plot (3), one sees the virtual agreement with the

hydrogenic-approxlmation. The curves show results for e/R = 10, 15, 20,

25, and 30 in the order of decreasing height; this applies to both the

Hartree-Slater results (shown by the solid curves) and the hydrogenic-

approximation results.

Figure 8 concerns the ionization of the 2p-subshell, which has

the binding energy B = 81 eV. Plot (1) shows results for the same set

of the lowest e values, e/R = 0, 0.5, 1.0, 1.5, and 2.0. The chained

curves are based on the hydrogenic-approximation, and show the monotonic

decrease of the generalized oscillator strength with increasing e. By

Sharp contrast, the Hartree-Slater values (shown by the solid curves) are

increasing with increasing e: the lowest solid curve shows the Hartree-
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Slater value for e/R = 0, which is less than one-tenth the corresponding

hydrogenic-approximatxon value. Plot (2) shows results for e/R = 3, 4, 5,

6, and 8. Both the Hartree-Slater results (shown by the solid curves)

and the hydrogenic-approximation results (shown by the chained curves) are

decreasing with increasing e. Plot (3) shows the close approach to the

hydrogenic behavior, realized for e/R = 10, 15, 20, 25, and 30; the highest

curve corresponds to e/R = 10, the next highest to e/R = 15, and so on.

The peculiar behavior of the 2p-geheralized oscillator strengti

at low e and low K, in sharp disagreement from the hydrogenic-approximation

results, is attributable to the phenomenon of the delayed maximum in

photoabsorption cross sections.

Detailed interpretation of the delayed maximum in the 2p ionization

of aluminum was given by Manson (1972b). Briefly, this arises from the

e-dependence of the d-continuum final state, which is the dominant

contributor to the generalized oscillator strength. [See Fig. 3 of

Manson (1972b)]. At e/R = 0 and small e/R, the centrifugal potential

keeps the d-continuum wave out of small distances at which the initial 2p

wavefunction has appreciable magnitudes, and therefore the radial matrix

element [Eq. (16)] must become small. At higher e/R, the d-continuum wave

begins to reach the small distances and to attain appreciable overlap with

the initial 2p state. According to Eq. (21), the total effective potential

U(r) = V(r) - fi2Ul + D/2mr2 (25)

with £ = 2 determines the d wave. As Fig. 9 shows, U(r) gives rise to a
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shallow, but wide-ranged attractive region. As a result, properties of

the d-wave changes markedly between e/R = 0 and e/R = 2.0 (see Fig. 10). For

example, the phase shift 6 (with respect to the Coulomb wave) increases con-

siderably with e. [See Fig. 3 of Manson (1969).] The change of 6 here is only

about 0.7 radians, and the situation is different from a typical resonance

which is associated with a change of 6 by almost V and implies the presence

of a quasi-bound state. Nevertheless there is significant e-dependence of

some d-wave properties, most notably the d-wave amplitude, which is

defined as follows. According to Eq. (21), the continuum wavefunction

P .(r) behaves near r = 0 as

££ e£ ( 2 6 )

where C is a number, depending on e and £, to be determined so that the

normalization relation, Eq. (22), is satisfied. The determination requires

knowledge of the unnormalized wavefunction over the entire r domain.

2
Analysis snows that |C j is the major factor that determines the

e-dependence of the matrix element over a small £ interval. It should

9
be also noted that jc | is virtually the same as the notion of the

density of states, often used by solid-state theorists.

Figure 11 shows results for the ionization of the K-shell (Is shell)

of aluminum. For simplicity, we include here results for two values of

ejected-electron energy, i.e., e/R = 0 and e/R = 0.5. The hydrogenic-

approximation results (shown in the chained curves) are decreasing with e:

the upper curve refers to e/R = 0 , and the lower one to e/R = 0.5. The
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Hartree-Slater results (shown in the solid curves) are opposite in the

order: the lower curve refers to e/R = 0, and the upper one to e/R = 0.5.

Here again, the non-monotonic behavior in e is attributable to that of

i<w2-
Before concluding this Subsection, we point out the generality of

many observations we made above. First of all, the non-hydrogenic behavior

of the generalized oscillator is seen in all atoms we studied, whenever

the kinetic energy e of an ejected electron is small or comparable to the

atomic potential in the relevant spatial region. Second, the delayed

maximum is common to many instances of p + d transitions, where the final

d-wave is governed by the effective potential U having a well-and-hump

structure. Actually, the case of d-waves for aluminum is not the most

clearcut. The d-wave potential for chlorine, argon, or potassium shows a

much more pronounced hump, and the delayed maximum is much more prominent (see

Fig. 12). Third, the near-threshold structure of Che kind we saw in the K-shell

ionization of aluminum is common to all the atom (Manson and Inokuti 1980,

and Holland et al 1978). To illustrate the common occurence of the r.ou-

hydrogenicbehavior, we present Figs. 13-15, which show selected results.

We should also note that there are many other ways for showing

data than the Miller-Platzman plot (which is the most fundamental). For

instance, one could show the generalized oscillator strength as a function

of e, either at fixed K or at fixed 0. We may call tb~ j.esult a spectral

plot. Figure 16 is an example. A spectral plot of the differential
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cross section da_/du) at a fixed 0 is often called an electron energy loss
E

spectrum. Often one sees in the literature an energy loss spectrum of a

slightly different kind, i.r.,

rQ
A6E "V ( d aE / d w ) dW ' (27)

plotted as a function of E, for a fi;:ed apperture angle. Inokuti (1978)

gave some general remarks on this quantity. Leapman et al (1980) and

Rez and Leapman (1981) have presented extensive results on this quantity

of frequent reference in electron microscopy.

3.3 Molecular and Solid-State Effects

In many instances we have seen much evidence for the role of atomic

fields in governing the motion of an ejected electron, especially when

its energy is low. For E. molecule, the field of force seen by an ejected

electron is in general nonspherical because of the molecular geometry.

This is so even though the electronic structure of deep inner shells is

affected only modestly by the molecular binding, as seen by the chemical

shifts of core binding energies [See Shirley et al (1977) and Carlson

(1975).]

Molecular effects on the optical oscillator strength, i.e.,

G. (K,E)/dE at K "*" 0, have been recognized both experimentally and theore-

tically, and much of the understanding here should be pertinent to the

generalized oscillator strength at finite momentum transfer. (However,

there has been no extensive calculation specifically for molecules.)

Figure 17 illustrates a dramatic example of molecular effects.

This figure shows the photoionization cross section (the same as df(K,E)/dE
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at K *• 0, apart from a universal constant) for the K-shell of molecular

nitrogen, as calculated by Dehmer and Dill (1976). The calculation is

based upon a single-electron picture (like the calculation on atoms we

saw in Subsections 3.1 and 3.2), and upon a potential that is manifestly

non-spherical. Because of the molecular geometry, one must distinguish

four final-state classes designated by symbols o* , <? - IT , and ir , as

g u g u

opposed to the single class (the p state) for an atom. Whereas three

of the classes show a smooth behavior for lever energies e of ejected

electrons, the a symmetry gives rise to a sharp peak at about e/R = 1.2,

and causes a marked difference from the atomic case. According to Dehmer

and Dill (1976), the origin of the peak is a shape resonance, i.e., the

appearance cf a quasi-bound state in the molecular potential field.

Roughly speaking, an electron in the a state at that energy is temporarily

trapped by the field before escaping out eventually. The shape resonance

is a general occurence for many molecules. Indeed, a review article by

Dehmer and Dill (1979) shows many other examples.

In solid-state contexts, effects analogous to the shape resonance

are often called XANES (x-ray absorption near-edge structure), and have

been the subject of many recent studies. Examples of theoretical studies

include Durham et al (1981) and Durham et al (1982).

One sees another feature that distinguishes the molecule from the

atom. That is to say, there are undulations at higher energies e S 10 R

in all the four symmetry classes. These undulations were recognized

much earlier, and are known as EXAFS (extended x-ray absorption fine

structures) [See Teo and Joy (1981) for example.] Briefly, the undula-
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tions result from constructive and destructive interference of ejected-

electron waves with those scattered from different atoms. The variation

with energy is roughly represented by sin(kD), where k = (e/R) /a is

the wave number of the ejected electron and D is the internuclear distance.

Because of the origin, it is easy to see that the EXAFS is in principle

universal to all molecules and solids, even though the size of the undula-

tions is often small and the pattern is more complicated for cases in-

volving many and different atoms. Indeed the notion of the EXAFS is

so well-known and prevailing in solid-state physics that Holland et al

(1978) adapted an EXAFS theory to interpret the near-threshold structure

of atomic K-shell spectra.

The shape resonance and the EXAFS are two well recognized molecular

effects. In reality, there are further effects contributing to the

near-edge structure of inner-shell spectra of molecules and solids.

Indeed, the electron energy loss spectrum obtained experimentally by Wight

et al (1973), shown as Ixg. 18, indicates peaks additional to the shape-

resonance peak. [Note that the energy loss spectrum in the forward

_3
scattering is roughly E df(K,E)/dE, plotted as a function of E and is

thus distorted from the optical oscillator-strength spectrum. See Sec. 3.1

of Inokuti (1971).] Some of the additional peaks are attributed to

effects beyond the single-electron picture, e.g., simultaneous excitation

of another electron with the inner-shell ionization.

In conclusion, we may reiterate that there has been no calculation

of the generalized oscillator strength of inner shells specifically

including molecular or solid-state effects. Yet, the developments
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described above suggest that there is already enough groundwork for

such a calculation, in both concepts and techniques and that the time

may be ripe for a major undertaking.
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Captions for Figures

Fig. 1. Differential cross sections for collisions of 25-keV electrons with

a neon atom.

The horizontal axis represents the common logarithm of the

scattering angle 9. The vertical axis represents the logarithm of

the cross section per unit solid angle da/du measured In the squared

Bohr radius a = 0.280 x 10 cm . The curve labeled "elastic"

shows the elastic-scattering cross section. The curve labeled

E = 16.9 eV represents the cross section for the excitation to the

2p 3s state. The curve labeled E = 20 eV represents the cross section

for the excitation to 2p 4s and all higher states combined. All the

above are based on data given by Geiger (1964). The curve labeled

"K-shell ionization" is based on the theoretical generalized oscillator

strength calculated by the present authors. The broken straight

_2
lines are drawn to show the 0 -dependence of the cross sections,

valid at a range of intermediate 8 values.

Fig. 2. The Bethe surface for atomic hydrogen.

2
The horizontal axes for E/R and In (Ka ) define the base plane.

The vertical axis represents Rdf(K,E)/dE. The fourteen plates are

placed at E/R = 3/4, 8/9, 1, 5/4, 3/2, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

2
The broken curve on the base plane shows the location (E/R) = (Ka)

of the Bethe ridge, which is the main feature for E/R » 1; collisions

represented by a point near the Bethe ridge occur as though the

incident particle were to strike a free electron, the electron binding

2
being of secondary importance. The optical region (Ka ) « 1 is
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conspicuous only for small E/R. View (a) shows the gradual spreading

of the Bethe ridge with decreasing E/R, and eventually its merger with

2
the optical plateau at the region of small (Ka ) and E/R- View (b)

2
shows in front a cut at In (Ka ) = -4, i.e., a curve that closely

approximates the photoabsorption cross section. This figure is taken

from Inokuti (1971).

Fig. 3. The Bethe surfaces of carbon dioxide . and ammonia, after Lahmam-Bennani

et al (1979, 1980), reproduced with permission by the authors and the

i
publishers.

The base plane is defined by E/R (the energy transfer measured

2

in the Rydberg energy, 13.6 eV) and by In (Ka_) (in the notation of the

present article). The dashed curve indicates the Bethe ridge for

valence electrons. Notice the K-shell ionization contributions near

the threshold energies of carbon, nitrogen and oxygen atoms.
°2

Fig. 4. The total inelastic-scattering cross section a (measured in A ) for
tot

50-keV electrons, plotted against atomic number Z.

The solid line shows the result of calculations that incorporates

relativistic kinematics for the incident electron. For comparison,

the dotted line shows the results of calculations that disregard rela-

tivistic kinematics. The figure is taken from Inokuti et al (1981).

Fig. 5. The mean energy transfer E per inelastic collision (measured in eV)

for 50-keV electrons, plotted against atomic number Z.

The general features of the curve are the same for all charged

particles incident with sufficiently high speed. The dotted line

shows the limiting E. for any extremely relativistic particle. The

figure is taken from Inokuti et al (1981).
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2
Fig. 6. The relation between 0 and (Ka.) .

Suppose that the incident electron has kinetic energy T and

2 2 2 2 ̂5
momentum p, then T + me = [ (cp) + (me ) ] . Suppose that the

scattered electron has kinetic energy T' and momentum p', then

2 2 2 2 %
T1 + me = [(cp1) + (me. ) ] . The energy loss E is defined by

2 2
T' = T - E. The squared momentum transfer is given by (Kft) = p +

2 2
p1 - 2pp' cos0. These relations enable one to calculate (Ka ) ' for

2

a given set of T, E, and 8. Here we show log..- (Ka_) as a function

of log 9, for fixed T and E. Part (a) shows the relation for

E = 1.57 keV, corresponding to the threshold for K-shell ionization

of aluminum. Part (b) shows the same relation for E = 127 eV, corres-

ponding to the threshold for the 2s-subshell ionization of aluminum.

In each case, five curves refer to different kinetic energies T of

the incident electron: 10 keV ( ), 50 keV ( ) , 100 keV

( ), 500 keV (— •] — • ) , and 1 MeV ( ). For the

lowest T (10 keV), the curve for each E starts highest et small 0

and ends lowest at large 0. For higher and higher T, the curve covers

wider and wider ranges. Comparison of Part (a) and Part (b) readily

indicates that, for fixed T and for the same 0 interval, the range of
2

(Ka ) values is wider for smaller E [i.e., in Part (b).].

Fig. 7. The generalized oscillator strength ,for the ionization of the 2s-

subshell of aluminum. ''

2
The horizontal axis represents In (Ka ) and the vertical axis

represents the density df(K,E)/d(E/R) of the generalized oscillator

strength per unit range of E/R - (e + B)/R, where £ is the kinetic
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energy of an ejected electron, and B is the binding energy of the

shell, or the threshold for the ionization from that shell. In

this case, B = 127 eV, according to Shirley et al (1977). Plot (1)

shows values for e/R = 0, 0.5, 1.0, 1.5, 2.0. Plot (2) shows values

for e/R = 3, 4, 5, 6, 8. Plot (3) shows values for e/R = 10, 15, 20,

25, 30. The three sets of e/R values are standard and common to

man}- of the figures to follow. In all plots (including the figures

to follow), the solid curves represent Hartree-Slater results, and

the chained curves hydrogenic-approximation results. In Plot (1),

2
the curve lying highest at the smallest In (Ka ) values corresponds

2

to e/R = 0, the curve lying next highest at the smallest In (Ka )

values to e/R = 0.5, and so forth.

Fig. 8 The generalized oscillator strength for the ionization of the 2p-

subshell of aluminum.

The threshold energy B is 81 eV according to Shirley et al

(1977). The standard sets of e/R values are used for Plot (1),

Plot (2), and Plot (3). Most of the captions to Fig. 7 apply here.

As an exception, in Plot (1) only, the Hartree-Slater results (shown

by solid curves) are increasing with increasing e; in other words,

the lowest-lying solid curve corresponds to e/R = 0, the next lowest

curve to e/R = 0.5, and so forth.

Fig. 9 The total effective potential for a d electron (J£ = 2) emerging from

the aluminum atom.

The potential U is defined by Eq. (25) of the text, and its value

measured in R is here plotted against distance r measured in a..
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Plot (1) shows the Hartree-Slater potential over the wide range of

r. Note the hump around r/a_ =3.3. Even though the top of the hump

is below zero energy, the potential gives rise to the marked difference

in the behavior of the radial functions for e/R = 0 and e/R = 2,

shown in Fig. 10. Plot (2) shows the Hartree-Slater potential (plotted

as the solid curve) at small r. It also shows the potential used in

the hydrogenic-approximation (plotted as the chained curve). Note the

logarithmic vertical scale. The two potentials are similar in the

small region r/a < 0.3 (except at the close vicinity of the nucleus

not shown here), but differ greatly for large r; in particular, the

hydrogenic potential stays positive throughout, and approach V_/R = 6.82

[See EG. (23).]

Fig. 10 Radial vavefunctions for the 2p state and the d-continuum states for

aluminum.

The chained-dot curve (— • — •) shows the d-continuum wave-

function for e/R = 0, and the chained -dash curve ( -) the

_\^
same for e/R = 2. The plotted values correspond to it 2 P (r) with

!i = 2 in the notation of the text. The solid curve shows the normalized

2p bound-state. Notice that the d-continuum wavefunction for e/R = 2

has a much greater overlap with the 2p state than for e/R = 0.

Fig. 11 The generalized oscillator strength for the ionization of the ls-shell

(or K-shell) of aluminum.

The threshold energy B is 1.57 keV, according to Shirley

et al (1977). Most of the captions to Fig. 7 apply here. An

exception is Plot (1). In a deviation from the standard set, we
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show here results for e/R = 0 and e/R =0.5 only. The Hartree-

Slater results are shown by solid curves; the lower one corresponds

to e/R = 0 and the upper one to e = 0.5. The hydrogenic-approximation

results are shown by chained curves; the upper one corresponds to

e/R = 0, and the lower one to e/R = 0.5. Another exception is Plot (2),

in which the upper curves (both solid and chained) correspond to

e/R = 3 and the lower curves to e/R = 8, other curves being

removed.

Fig. 12 The total effective potential for a d electron emerging from the:

chlorine atom.

The potential U is defined by Eq. (25) of the text, and its

value measured in R is plotted against distance r measured in a .

The hunrp around r/a_ = 2.5 stands out to positive energy, and causes

a prô ir.er.r delayed maximum for the 2p •+ d transition.

Fig. 13 The generalized oscillator strength for the 2p-subshell of chlorine.

The threshold energy B is 210 eV according to Shirley et al

(1977). The standard set of the five lowest e values (e/R = 0, 0.5,

1, 1.5, 2) is used. The Hartree-Slater results (shown as solid curves)

are much lower than the hydrogenic-approximation results (shown as

the chained curves), owing to the effects of the effective potential

for the d-continuum final states (shown in Fig. 12). Indeed, the

Hartree-Slater results are lowest for e/R - 0, highest for 0.5, and

then decreasing for larger e/R, while the hydrogenic-approximation

results =ua decreasing steadily with increasing e.
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Fig. 14 The generalized oscillator strength for the 2s-subshell of chlorine.

The threshold energy B is 278 eV according to Shirley et al

(1977). The standard set of the lowest e values (e/R = 0, 0.5, 1,

1.5, 2) is used. The Hartree-Slater results (shown as the solid

curves) are increasing with increasing e, and indicate the emergence

of the Bethe ridge, while the hydrogenic-approximation results (shown

as the chained curves) indicate no sign of it.

Fig. 15 The generalized oscillator strength for the 2s-subshell of sodium.

The binding energy B is 71 eV according to Shirley et al

(1977)= Plot (1) shows results for the five lowest e/R values of the

standard set. The Hartree-Slato.r results (shown as solid curves)

are decreasing with increasing e, while the hydrogenic-approximation

results are decreasing with increasing e. Plot (2) shows the results

for the five intermediate e/R values of the standard set.

Fig. 16 The generalized oscillator strength for the 2p-subshell of sodium,

plotted as a function of ejected electron energy at fixed momentum

transfer.

Basically the same data shown in Fig. 15 are plotted, but in

a different way. The horizontal axis here represents e/R, i.e., the

2
ejp.cted-electron energy measured in R, at a fixed value of (Ka ) .

In all cases, the solid curve shows the Hartree-Slater results, and

the chained curve the hydrogenic-approximation results. Plot (1)

2 _4
represents (Ka_) = 10 , i.e., at the optical limit. Plot (2)

2

represents (Ka_) = 4, showing an approach to the hydrogenic-approxima-

tion results and the emergence of the Bethe ridge.
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Fig. 17 |Photoionization cross section of the K-sb-j" of molecular nitrogen.

The figure is reproduced here witl /ermission from Dehmer

and Dill (1976). The horizontal axis re\ resents the kinetic

energy of an ejected electron measured in Rydbergs, and corresponds

to e/R in the text of the present paper. The vertical axis represents

the photoionization cross section a measured in Mb = 10 cm ,

which is related to the density of the optical oscillator strength

by a = 4TT2(e2/nc) aQ
2 df(0,E)/d(E/R) = 8.067 x df(0,E)/d(E/R) x 10~16 cm2.

Each of the solid curves shows contributions from the indicated class

of final-state symmetry. The dashed curve shows twice the photo-

ionization cross section of the K-shell of atomic nitrogen.

Fig. 18 Electron energy-loss spectrum of molecular nitrogen in the neighborhood

of the K-shell threshold (409.9 eV).

The figure is reproduced here with permission from Wight et a?

(1973). The vertical axis represents the intensity of electrons

scattered into the forward direction, the incident energy being 2.5 keV.

The strongest peak (labeled as A) corresponds to the shape resonance

discussed by Dehmer and Dill (1976).

-43-



•o
o 0

-I

-2h

= I6.9 eV

Elastic

K-Shell lonization

- 2
log |O0

0





UJ
QJ







CM
o<

O

b

0.25

0.20 -

0.15 -

0.10 -

0.05 -

0.00
0 10 20

Z
30 40



J o

O

-4 o

o
CD

O
CM

O
00



801



CuO
O



CO

I I

o
d

to

§
O
q
d

(H/a)p/(a'M)jp



CM

d
CO
O
d

CO
Q
o

oo
d



o
d

CO
O

d

CO
p
d

o
d

C\2
O

d

- CM

- O

CM

cd

CD
I

00

o



(H/a)p/(afM)jp



CM

- O

CM

CO

00

o

q
d

(H/a)p/(a'x)jp



(H/3)P/(a'50JP



L2

1.0

0.8

0.6

0.4

0.2

0.0

• • i •

(i)

-

- \

t i i i 1 1

f i | • i i | i • i | i i i | i i i

Al d effective potential

-

-

-

-

7 "—- •—r ~—"~i ~~~
I t l l l l 1 1 1 t l t l l l l | B

0 8 10 12



(2) Al d effective potential

o



Radial wavefunctions

b b

P



wq
d

oCM
O
ci

T I

q
o*

(a/a)p/(a*M)jp



§
O

p
d

p
d

o
p
d

ID

8
d

- O

CO

CO

CO

o
I

oop
d



(H/a)p/(a'M)jp



0.8 -

0.4 -

0.0 -

-0.4 -

-0.8 -

-1.2

Cl d effective potential

0 8 10 12



5
d

q p
d d

q
d

CO
O
d

C\2
o
d

o
d

o
q
o



-/ i l l

(H/3)P/(3'M)JP



I • • • I '

lO O LO
CO CO <M
o d d



(H/3)P/(a'M)lP



CM

i

p
c\i

i

o
o5 o

CD

O

d



I . I • I • I , I , I • I • I • I •



10' 1 I I I I I I I I I I I I I | I I I 1 I

10 '

N

10r2\
0.1

I I I I I [ I 11 I I i I I I I [ I I I ) I I I

I 10
PHOTOELECTRON ENERGY (Rydbergs)

100



N2

=3

O

CO

LLJ

fe 0.5-

400 410 420 430
ENERGY LOSS (eV)


