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ABSTRACT

We use a model for the ELMO Bumpy Torus as a bumpy cylinder with a
toroidally induced vertical drift imposed on the plasma. With this
model we obtain the neoclassical plasma-transport coefficients for ions
in both the banana and plateau resonant regimes. The problem of
solving the 1linearized bounce-averaged drift kinetic equation 1is
formulated as a varlational principle, which is shown to be valid for
both the banana and plateau regimes. We use limiting forms of this
principle to obtain a continuous collisionality approximation to the
energy-dependent flux. We then use this approximation to obtain
analytic formulae for the particle-and energy-diffusion coefficients,
These are shown to give excellent agreement with numerical results.



I. INTRODUCTION

Recent measurements! of the ambipolar potential in the ELMO Bumpy
Torus (EBT) have indicated that the potential drop is large (A¢ ~ 600
eV) and gives a radial electric field that over most of the plasma
points in a direction opposite to the radial magnetic field. In the
case of ions, this leads to cancellations between the E x B drift and
the poloidal components of the VB and curvature drifts. Consequently,
radial ion transport at low collisionalities 1is dominated by the
particle orbits near the resonance?'3 (i.,e., the regions of phase space
where the poloidal precession frequency becomes small). Two regimes
can be distinguished in this limit of low collisionality: the plateau
and banana regimes.3 In the plateau regime,* collisions are
sufficiently rapid to prevent completion of crescent orbits; however,
the losses are still dominated by the 1localized region of velocity
space where the resonant orbits occur. In the banana or crescent
regime, S particles complete their crescent orbits before scattering and
the diffusive step size then scales as the crescent width. The
parameter of interest in determining whether the ions are in the
plateau or banana regime is the collisionality v/ 8o (where v 18 the
90° deflection frequency measured at the resonance and g is the
average poloidal gradient-B drift frequency). For v/ Sy << 63/2, where
§ is the inverse aspect ratio (typically, § ~ 0.1 in EBT-S), the ions
are in the banana regime. In the opposite limit, the ions are in the
plateau regime. In the present EBT device it is difficult to
understand a large potential drop in terms of the plateau diffusion

coefficlents. Experimentally, hot ions are observed, and it has been



conjeotured that resonant particles in the hot ion distribution are
responsible for the large potential. 1In order to evaluate this, it is
necessary to have readily usable expressions for the diffusion
coefficients that span the banana to plateau regime,

In this paper, we present a calculation of the neoclassical
transport coefficients that spans both the banana and plateau regimes.
our diffusion coefficients are based upon a model of the EBT magnetic
field that is a bumpy cylinder with a small toroidal correction. This
is appropriate for the plasma core in a large aspect ratio EBT device
but would not be appropriate near the high beta electron rings;
however, the kinetic equation fer the distribution function was derived
independently of any model of the magnetic field., Qur transport
coefficients have a form that is convenient for use in computations of
the time development of the radial profiles of density and
temperature, &

In Sec. 1I, the basic equations are introduced. These 1include
the linearized drift kinetic equation and the bounce—-averaged vertical
and poloidal drifts. In Sec. III, we review the work of Ref. 4 that
is relevant Lo our work and correct a result derived there. We obtain
the diffusion coefficients as integrals over the energy-dependent flux.
In Sec. IV, we obtain the banana and Weiner-Hopf boundary layer?’
approximations to the energy-dependent flux and compare this result
with a full numerical calculation of the energy-dependent flux. We
then construct a continuous approximation to this flux valid for both
the plateau and banana collisional regimes, In Sec. V, we use this

" approximation to obtain analytic formulae for the six diffusion



coefficients and compare these with the full numerical calculations of

these coefficlents. Finally, in Sec. VI, we summarize our results.

II, BASIC EQUATIONS
A, Resonant particle orbit model

In order to calculate the low collisionality ion transport rates
it 1s necessary to have a drift orbit model that includes
crescent-shaped orbits. The motion of particles parallel to the field
lines in EBT is characterized either by circulation around the torus or
by trapping between adjacent mirrors. For most of the particles iu EBT
the bounce time scale is much shorter than the time scale over which
particles collide or drift off the flux surfaces. This being the case,
it is desirable to average the rapid bounce motion since transport will
occur on a much slower time scale. It has been shown® that if the
longitudinal adiabatic invariant J is introduced then the
bounce—-averaged particles move on surfaces of constant J.

Bounce-averaged components of the drift velocity Vd are given by

<(.!> = <v ] =_1._3_J
d Voo ZeT 98 (13)
and
<é> = <¢D o VB> = -Egj-r-g% . (1b)

where



J=mnd¢dev, , (2)
T= 4-%% , (3)
v, = [3)1/2(5 - leg ~ uB)V2 , (4)
E = -%mv2 + Zedp (5)
us= _'.n;B_zl , (6)

and a and B are standard magnetic field coordinates (eg., a could be a
flux variable and 8, a poloidal angle) such that E = Va x VB, Due to
toroidal periodicity our analysis can be confined to a single EBT
mirror sector; thus, the integrals in J and the bounce time t are to be
interpreted as being between mirror polints for trapped particles and
between coil planes for toroidally passing particles.

For our purposes We are interested in regions of phase space where
the bounce-averaged poloidal precession frequency 2 = <[.3> is small.
when § passes through 2ero, a precessing particle will change
directions and can, if in a sufficiently collisionless plasma, execute
banana~ or crescent-shaped orbits. Particles on such orbits will be

referred to as "banana trapped™ or simply "trapped." The notation



"untrapped™ or '"passing" will refer to particles that do not execute
banana orbits. There should be no confusion between poloidal and
toroidal directions since this analysis makes no distinction between
toroidally passing and toroidally mirror-trapped particles except in
the calculations of J and 1 mentioned above. The drift frequency {l as
well as the "radial" drift velocity V = <& can be caleculated from Eq.
(1) once a model magnetic field is assumed. We note at this point that
{® does not have the dimensions of a true radial drift velocity since
a 1s regarded as a flux surface coordinate ~ r2B. However, as in Ref.
5+ since o measures the minor radius of the plasma, we shall refer to
it as a "radial" coordinate.

The radial width of a collisionless orbit, Aa, 18 approximately

given by

Aa ~ :—‘: . (7)

For passing particles

Aa
— (L4
) 1, (8)

where § = r/Rp is the inverse aspect ratio and Aay is the equilibrium
length Scale. However, for particles that execute crescent-shaped
orbits such that for a fixed "radial" location ap, @ = 0, the "radial"
width in Eq. (7) may become very large.> This observation 1is of

importance in the linearization of the drift kinetic equation.



To obtain a model for J, <&, and <é>. vwe first make the
observation that particles move on drift surfaces (of constant J)
rather than on flux surfaces (of constant a). Thus, we shall later
want to transform from an (a,B8) coordinate system to a (J, B) coordinate
systenm, In what follows, we have been strongly motivated by the
analysis in Refs. 9 and 5. Let us first make the assumption that the
transport coefficients can be treated as local quantities and expand

the o-dependence of J about a fixed "radial" position a = ag:

2
Har) = Iag,8) + (BL)y (a=op) +5 EZ)g) (am o2 s cee o (D)
o

Since the poloidal variation of 2 on a flux surface is weak, we can

expand  about ay and neglect the g-dependence:

2€a,B) ~ 2%ag) + 2927 (ag)(a = o) (10)

Here, the supersecript zero means that 90 is evaluated in the infinite
aspect ratio (§ = O) bumpy cylinder limit; this accomplishes the
neglect of the pg—-dependence. The prime means an a-derivative. With
this approximation,

ad

(—-)ao = =Zetag,B) = -Zerﬂo(ao) (11

o

and



G“‘)ao ~ _ZeT@__)ao = -Zerﬂo‘(ao) ’ (12)

where we have also neglected the o-dependence of 1. Inserting Egs.

(11) and (12) into Eq. (9), solving for (a - ay), and then inserting

this result into Eq. (10), we find
0~ 1/2
aJ, ) = of(a0)2 -32‘;_1- [JCa,8) - Hag, 8 ]} . €13)

where o = /iQ} = %1,
For the B-dependence of J, we assume from symmetry that B enters

only as cos . Then, for a = ay, We write

J(ag, B) = Jg = xgcos B (14)

where xq i8 to be determined. Defining

v 1 3d

Y 57 Zet 3(cos B) (s
so that
3d( 8) X
1 99 0
= = - - 6
Vyo = Vylag) Zet 3{cos B) Zet (16

we see that xg = ZeTVyo. We note the following relationship between V

and Vy;



. 1 ad
< 2V z2z— ==Y .
* ez 38 ysin 8 . (17

We refer to Vy as the "vertical" drift due to toroidicity (i.e., finite
aspect ratio) but recall that neither V nor Vy has units of m/s. From

Fgs. (14) and (16) we can write
J(asB) ~ J(ag,B) = J ~ Jg + ZetVygcos B .

Then, Eq. (13) becomes

0~ 172

2, B = of(2°)2 —%%-T- [4 - Jp + ZetVyp(cos B)]} . (18)

Defining
oy2 _ 202

Ju = (27)° =~ 5=(J - Jo) (19)
and

Jg = 2sz°'vyo , (20)
then

1/2

2(J,8) = o(Jw - Jycos B) . (21



<a>=v=-l--3—‘;=vysine . G

We refer to Vy as the "vertical" drift due to toroidicity (i.e., finite
aspect ratio) but recall that neither V nor Vy has units of m/s. From

Eqs. (14) and (16) we can write

JCayB) = J(ag,B) = J = Jg + ZetVypcos B .

Then, Eq. (13) becomes

203, 8 = of(©)2 - ?_Zs_zft_ [5 = 39 + zexiyp(cos 8)]}° . (18)
Defining
0~
Je = (0902 - (5 - 1) (19)
and
Jo = 2207V (20)
then

QJ,B) = oIy - Jocos 8)1/2 . (21
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Equations (17) and (19) give the expressions for <& and <é> to be used
later.

So far all the "radial" information is contained in a. No mention
of a true radial coordinate has been made, For our later analysis it
will be convenient to deal with drift velocities that have the correct
dimensions of m/s8 and with fluxes with dimensions of particles/mz/s.
To this end we need to define a true radial coordinate system (p,9),
where p = radius in the midplane and 6 = poloidal angle. To calculate
the Jacoblan from (a,B) to (p,0) we assume large aspect ratios and make

the connections

a~y= fg Bp(p”)p~dp” (22)

and

B~806 , (23)
where By is the magnetic field in the midplane. Then,
+ +
- oy _
Vy » Vaz Vy 'Vp-a—E-VDme. (24)

Here, Vo is a true radial drift velocity. This gives

<V e Vo> ly >

v d pPBn

v - - = =4

‘Y = 8in 6 sin 6 sin o - Sy (25)
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vhere (vy> ] (vp>/sin ® is a true bounce-averaged vertical drift
velocity, To first order in inverse aspect ratio, <vy> has been given
as"
<vy> = Vyenwe(z) (26a)

where

kT

- kT _ 26
ZeBm(p)RT ( b)

Vyth( p) =

W:-é-kTI; ’ (27)

g = —— » (28)

and for ¢ < z_, g(z) is given approximately by
glg) =1+ %;2 (29)
with

I =— (1 - se=t) . (30)
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Here, we have assumed for simplicity that the poloidal electric field

Egis zero. From Eqs. (16), (25), and (26) we have

Vyo = vyowB( &) pgBy(pg) (31a)
where
~KT
= Z 1b
Yy0 = Vytn(P0) = Zgp( (310)

and pg 1s the true radial location corresponding to the transport
position a = ag.
The bumpy cylinder bounce-averaged poloidal drift frequency has

been given as?

2 = a[whz) =wg] . (32a)
where
kT
s - , 2b
%h = = ZeB, (o) pR, () (320)
Wo = -"-ﬂtih » (33)
E
9 = - -, (34)
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Rc(p) is the radius of curvature of the plasma, and Ep is the radial

electric field. For r < z_ the function h(g) is given approximately by

hg) = 1-bg2 (35)

where

b= ci ~2.33 . (36)

This expression for a° was derived in the 1limit r = 0, and,
consequently, the diffusion coefficients derived from it will be most
valid near the centerline of the device, We have concentrated on the
region of small pitch angle z because detailed analysis“ has shown that
the resonance region, @ = 0, occurs at much higher energies for
particles that are not mirror trapped (g x~ 1) than for mirror-trapped
particles (g ~ 0). Therefore, we shall assume that the primary
contribution to the neoclassical diffusion coefficients comes from the
mirror-trapped region of velocity space, and we shall concentrate our

analyses there.

B. The bounce-averaged drift kinetic equation
We begin with the bounce-averaged steady-state drift kinetic
equation as given earlier,10

<o OF
da

+ <§>%% = C(F) , (37

where C(F) is the bounce-averaged collision operator.
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In Eq. (37) we make the transport ansatz and expand the distribution

funotion about a Maxwellian. We then have

oF, .
M of of _
o (30, + -3—;) + <B>-5—B = C(f) . (38)

Since we want to be able to handle crescent-shaped orbits we must

assume
3Fy
af
% 3 (39)

this comes from a consideration of Eqs. (7) and (8). In order to
retain these wide crescent-shaped orbits we transform as anticipated in
the derivation of Eq. (21) from (a,B,e,u) coordinates to (J,B,e,n)
coordinates. This is motivated by the observation that particles move
on surfaces of constant J rather than on surfaces of constant a. We

evaluate the equilibrium 3Fy/3a at a = oy and designate it as 3Fy/dqy

to obtain
oF
- » 3, | oo .__M. 40
c(r) <p> aly * < 7o . (40)

Now, we transform from (J,g,e,n) coordinates to (J,B,¢,3) coordinates,
where s = <g>/8y and §y is a normalizing constant equal to Un

evaluated at the transport "radius" a = ay. That is,
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R = - KT

[ 2 u1
ZeB, (p0) poRa(pQ) 4

This transformation is motivated by the observation that the dominant

ion transport comes from the region around the 2 = 0 contour in phase

space. The variable s 1s a ~imensionless measure of the perpendicular

distance from this Q = 0 contour. The kinetic equation then becomes

Jo 1 Y
cif) -Qos-a—é--z—na sin B =Vys:|.n B-—a-; . (42)

At this point we must give an explicit form for C(f). This operator

may be significantly simplified by using the fact that the dominant ion

transport comes from the region near the resonance. Hence, we can

writelt

32f
C(f) = v(s.u)— . (43)

The form of v(e,u) was derived in Ref. 4 for EBT-I parameters with the

bunpy cylinder magnetic field. From Ref. 4 we have, on transforming

from (g,n) to (w,Z),

2
V(W) = Hug{UwhZ(D(W) + JEGWI/2(1 - 2)[n"(g) 2 L= /88 )
2 1-3m4g28=0

(4m)
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where, at resonance {i.e., where 20(a = ap) = [wh(g) - wg] = o},

ww,z) depends only un W since we can solve for

h= ;? R (45)
2= Q)0 -2, (46)
and
h* = =2[b(1 -"'—“?)]V2 . . (47
In Eq. (44),
D(w) = uw;/2E%F erf(w1/2) - wl/2exp(-w) |
““l§7§E€§ erf(vaw'/2) - Yau'/2exp(-am)] (48)

4 (11"

ANTE IR RN 14 | 172y 7 - w1/2ay0(~ 1/24p0( -
2{(1 Zw) [2 erf(w'/) ] = w'/Cexp(~w) + w'/“exp(-w)}

E(w)

K

1 1 7 172 1/2
5{(1 - m)[—z- erf( /a1w ) - /0.1\1 exp(-a1w)]

+ /a1w1/2e1p(-a1w)} ' (49)
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a1 = —)(—T—') ’ (50)

and

v = 22 nesn A
m11/2(kT1)3/2

. (51)

This collision frequency contains both ion-ion and ion-electron
collisions across the resonance region. In asymmetric systems 1like
EBT, both like and unlike collisions contribute to transport.

Finally, we transform from (J,B8,e,8) to (J,B,e,2), Where z =
[ww)/29]"1/3s. T™is 1is motivated by the observation that in the
plateau regime the width of the collisional boundary layer about s = 0

is O[(v/ﬂo)'1/3]. Then, the collision operator becomes

C(f) = vw(w)

——

QEE = v(“°)2/3.§f£ ,
382 v 32°

and Eq. (42) becomes

2

°f of of

- 2 — - i — = V_si
azz 28 ysnaaz 83in B

oF,
()13 M (52)

where
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Jo v(w) ]-2/3

y(w) = —[2=2 (53)
205 o

and is to be evaluated at resonance. From Eq. (20) for Jo, it is clear
that y has the sign of ﬂo'Vyo, whicn 1s positive for bananas located on
the inside of the torus and negative for bananas on the outside of the
torus. It is convenient at this point to make the choice no‘Vyo > 0 20
that y is a positive number., We follow the detailed discussion in Ref,
3 and observe that plateau behavior 1is obtained when the first two
terms on the left-hand side and the right-hand side are balanced
against each other so that the singularity at z = 0 i3 resolved by
collisions and that banana or crescent behavior is obtained when the
singularity at z = 0 1s resolved by balancing the last two terms on the
left-hand side and the right-hand side. In terms of the parameter y
(as far as this kinetic equation 1ic concerned), y << 1 gives the
plateau regime whereas y >> 1 gives the banana regime. To simplify Eq.

(52) we write it as

2 ”» ”~ rd
a°f zéf— y s8in 8 =— af =sin g , (54)
922 38

where

oF
£= £V, " 1( 1737 . (55)
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Finally, we write f° = f* 4+ f~ (the even and odd parts,

respectively, with respect to z) to obtain

20+
97f -zar-ysint?,eg:sins ’ (56a)
922 oB oz
and
%= _af* aft
L -2 _ysinpgZ—=0 ., (56b)
322 Y] 3z

These are the "stripped" drift kinetic equations on which we shall
perform our analysis, We remark that these kinetic equations were
derived without any assumptions about the magnetic field and so we
expect them to be valid for both the core plasma and the reversed
gradient region at the ring.

The domain of Eqs. (56a) and (56b) 13 z ¢ (=w,+2) and B8 € [=-n,7w].
For purposes of numerical calculation, this domain can be reduced. A
reduction in the z-direction to z ¢ [0,«) is obvious from the symmetry
properties of f* and f~ in z. A reduction in the pg-direction is
possible because a further decomposition of both f* and f~ into even
and odd parts in B reveals that f* can have no even part in g and that
f~ can have no odd part in 8. In summary, f* is even in z and odd in B8
whereas f~ is odd in z and even in B. Therefore, from these symmetry
properties, we only require knowledge of f* and f~ on the restricted

domain z ¢ [0,») and B € [0, x].
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It is also important to note that the transformation

f+(z,p) + -f*(z,p+m) ,

f=(z,8) +» -~ (z,B+7n) ’

and
y *=y

yields equations identical to Eqs. (56a) and (56b). That is, a choice
of ﬂo'vyo < 0 (such that bananas occur on the outside of the torus and
y 1s negative) corresponds mathematically to an 1inversion and a
translation along 8 by n. It will be shown later that the quantity of

interest for flux calculations is proportional to

fj“ dg swef’ = 2f; dg swpf* .

From the symmetry properties of f* and swg and the behavior of f* for
negative y, it 1s clear that this quantity is invariant under the
transformation y + -y, This result is very convenlent since it means
that we can perform all of our analysis upon the assumption y > 0 and
then replace y with |y} in the final formulas to allow for the

possibility that J, is negative rather than positive.
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III. THE VARIATIONAL PRINCIPLE
Spong and Hedrick“ show that a variational principle for Eqgs.

(56a) and (56b) valid for arbitrary y is

2
J_J
sirt, ] = - =2, (57a)
J -+ Wp+ ydp)
where
L ™
Jp= [dz [ dB sin Bf* , (57b)
- 00 -
T A
Jg = ;[wdz _f“ dB zf‘*a—s ' (57¢)
e ™
Jp = -_Ldz _f1T sin B dg - , (57d)
and
® T 20t
Je= [dz [ ap e T . (57e)
- - 322

There has been some confusion in the literature3 as to whether the
variational principle 83 = 0 does indeed apply for all y. We emphasize

that the kinetic Eqs. (56a) and (56b) contain all the information
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about the wide excursions of the crescent-shaped orbits. This was
retained by transforming from (a,B,e,u) to (J,B,e,n) varlables, and
since 65 = 0 does reproduce these kinetic equations for any y, it must
apply for all y. The confusion arises from the formal similarity of
Eq. (54) to the plateau equation for axisymmetric tokamaks.’ We note
that here the derivatives on g are to be understood as being at
constant J and not at constant a.

In Ref. 4, it 1is shown that when the correct solutions to the

kinetic equation are used then S reduces to

@ m

S=-Jp=-f dz [ dB sin gf* . (58)

-0 -1t

This quantity is related to the energy-dependent flux. In particular,

with the particle (TI,) and energy (Ig) fluxes given by

Fp=d 38 [ddv <ot (59)
and
- 4 48 3oL
g=d 5= [ 3wd(3 mv?)f (60)

if we transform from (B8,v) to (B,w,z) and integrate along the

resonance, we get
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I = _(ﬁ)m f" w2411 )1’3 f“a;; a3

v .
- — , dz<o?f
n m Wo h”(g) 's=0 ‘8 a -
(61
and
%T\3/2 [ _1/2 1 v1/3 T > .
e = =(==2)7" [ s7™Vedw[—r=] (=) “wkT [ dg [ dz<&f .
m wo h (C) s=0 - Lo
(62)

When we substitute for <& from Eq. (17) and Eq. (22) and for f from

Eq. (55) and convert from flux in units of a to flux in units of p, we

obtain

o 2
1 (2kTy3/2 —172 %Fu vy
f‘;‘) J dw w Ve [ y

1 -
3pg h‘(c)]s=o{wkr}[ Jplw) ] .

wo

(63)

Hence, we can calculate the particle and energy fluxes once we obtain

Jp as a function of energy. For y(w) << 1, Spong and Hedrick

calculated a second-order accurate solution for Jp by using the

variational principle 8S = 0.“ We note some errors in their equations.

Their Eq. (79) should be
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/ rg) @)
B r(%) 4(32/3)

Iy =

while their Eq. (81) should be

As a result, their s(1) becomes

3(1) = __._12...._

1 + 0.511y2

Hence, for y << 1, a second-order accurate solution for JD is

1II2
1 + 0,511y¢(w)

IV, THE ENERGY-DEPENDENT FLUX
In this section we will obtain a variationally accurate solution
for Jp(y) in the banana limit y >> 1 and éompare our analytical results

with the numerical solution of the kinetic equations. We start by

defining a variable u by

= Ju-2y cos B . (65)
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From a physical viewpoint, u is related to the g-independent part of

<é>. We then have

o8z _ 1 _"’_E.-Lé_i.!'_é (66)
u 2z ' 38 " z *

We see that the tips of the crescent orbits occur for

Be = 1003‘16§§) . (67)

We note that

af” Y af”
z?ﬁ; (u,B) = Zjﬂ;(z.ﬂ) +y sin 8.75;(2'8) (68)
and
2 -
cf ) 9 ]
2, = 4z Z 2= ¢~ ’ o
- (z:8) = 422z £7(u,8) ] (69)

The kinetic Eq. (54) then becomes

9(,9 af~
] ] - — = .
zsa(zsaf ) z 38 sin B (70)

We take out the particular solution f° = =z/y to obtain the homogeneous

equation



3 - 17238y _ ,of _
4 zo ((u = 2ycosp) au) Z3g ° 0, (71
where
t“=—-z-+f’ . (72)
y .

The banana limit (y >> 1) occurs for v + 0, In order to solve Eq.
(71) in this small collisionality limit we return to the homogeneous
form of Eq. (54). Since ysing is not uniformly large for all values
of B and large y, we must balance the last term on the LHS of Eq. (54)
against either the first or second terms on the LHS., If the first term
is chosen then the only solution which is regular everywhere in z and
periodic in B8 is zero. Hence, we choose to balance the second and last
terms on the LHS of the homogeneous form of Eq. (54) against each
other. If we return to Eq. (42) and Eq. (43), we see that this
corresponds to dropping the collision term C(f) which is consistent
with our assumption of y + =@ because v + 0, In addition, we will see
later that a full numerical solution of Eqs. (56a) and (56b) for y >>
1 shows that the second derivative term in Eq. (54) 1is small
everywhere except for the trapping boundary u = 2y. With these
obServations. we approximate Eq. (71) by expanding in the
collisionality.

i

b f’o +* f".' . T'1 = O(vro) o (73)
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o,
-~ Ze— =0 (74)
9B
and
u a - — = ]
Z5e (P50 ) 28 (75

From Eq. (74), we have

Ty = glu) , (76)

where g 1s an arbitrary function of u but independent of B. We can

obtain the form of g by deriving a constraint equation from Eq. (75)

in the following manner: for untrapped particles we must have single

valuedness in 8 so that

w

/ -g; Fi=0 . 448!
-7

From Eq. (75), this gives

48 31,3 =
4 f > au[aSE gw]=0 , (78)

which implies
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- _ constant
g (u) = T-Z-E_B— . (79

To evaluate the constant, we impose the condition that af~“/3%z + 0 for

z + © to obtain from Eqs. (72) and (65)

constant

0=--1-+
y K

which gives

1
“(u) =3 for u ~2y . (80)
; y § =8 Y
For particles that are on crescent orbits and do not sample the whole
of the poloidal space we apply the operator

g
(z,'a- f dg
-Bc

to 3Fy/3p in order to obtain

'y
g - = - -
zsf dp zo['ﬁ(Bc.u) F1(=Bge0)] (81)

where o = 2z/izl. We note that as we integrate 3T,/3p are integrating

around the banana orbit.
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Since particles must be conserved at the banana tips we have

f’(ch.U = "'1) = f‘(tBC.a = -1) ' (82)

Hence, g(u) must be even in o for trapped particles, and from Eqs.

(81) and (75)

Be 9 -
0=3g¢g [ dsg Ea[zg (w ]
o ~Bo
BC
=2{/ " zdg[g"(u,0 = +1) + g tuo= -D]} . (83)
-BC

This implies that g“(u) 1s odd in o so that g(u) 1s odd in o. Hence,

for the trapped particles lu! < 2y, we must have

glu) = 0 . (84)

Now, since our perturbed distribution function must be continuous, we

integrate Eq. (80) from u = 2y:

u
£ = =2 o TH - 2y) . (85)
y + v u 2Y fzy 4z‘d8

where H(x) is the Heaviside unit function and Eq. (85) is accurate to

lowest order in collisionality. We now show that we can recover the

banana constraint Eqs. (77) and (81) from the variational principle in

Eq. (57a).
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In the low collisionality regime (v + Q) it 1s easy to see from

Eq. (85) that £~ to lowest order is odd in z. Hence, we must have

* ¢ o(vf™) . (86)

It is easy to show that the variational principle 65 = 0 is true if and
only if

6Jp + &Jg + yd&dy + %(GJ_ - 6J+) =0 . (87)

From the definitions of the J”s and using Eq. (86) we see that to

lowest order in v

65=0++68J_=0 . (88)

Hence, for small collisionality the variational quantity is J_, It is
easy to show from the kinetic equations that when J_ is evaluated on

the correct solutions and evaluated to lowest order in v JD is

obtained. Now, we have

o n
0=6_= [ dz [ dp &f"
-0 - 9z

3%~
2

. (89)

In Eq. (89) we change variables to (u,B). From Eqs. (72) and (76) we

can write 6f” as a function of u alone; hence,
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0 [zy ( g % 8710 e
= du &£~ (u) g ’é‘ [ 2—8:‘-[2—8—"- glu ] B
_2y -8B
z T 3.9
+ [ du &f~(uw) [ dp2=[z= g(uw ]d8 . (90)
2y o du”- 3u

In Eq. (90) we can vary &§f (u) independently on the range u e [-2y,2y)
and u ¢ [2y,»). Then, it is easy to see that we recover precisely the

banana constraint equations.
Since we have shown that the variational quantity for small v is

J_, we evaluate this to obtain a variationally accurate estimate of Jdpe

We use Eq. (85) in J_ and obtain

4x Iw T 22 ” " 3 ( z
J_=-=L1[ duJ 6(u—2y)3———d8+[ du [ dB z— 3———)
yo =2y - 28 2y -7 au 28
= _“_;‘_;.'yV? - 0.193yV/2) | (CRD
y

In Eq. (91), the first term on the right-hand side arises from the §
function, which comes from differentiation of the step function H and
physically manifests those particles that are on the boundary between
being trapped in crescent orbits and untrapped. The second term was
evaluated numerically and comes from the untrapped particles. The

trapped particles give no contribution to this order.
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We note that Eq. (19) can also be written as

u e
y UPb® = v
8 1(0.69)
PR A LA L2 L A, 2
y3/2 92)

The Heaviside unit function arose because we did not treat the boundary
layer at u = 2y adequately. In order to remove this we use a
Weiner-Hopf approach as in Ref. 7. We proceed as follows: in Eq.

(70) we define functions h, by writing

h,’; + h_
f* = —5 (93)
and
h, - h_
R oH)
then, the functions h, satisfy
9(,9 9
= = + — .

The boundary conditions for f~ are



and
u=2ycos B f7(o=+1, B= #8,) = £°(g = =1, B = *8,)

When written in terms of h, these reduce to

u= 2y cos 8: h, =h_ , (96)

u > 2y: hy(u,8 = 0 = hylu,B = 2m) , 97
and

u << {2yis hy +0 (98)

We wish to examine Eq. (95) near the trapping boundary u = 2y. We

introduce a boundary layer variable x by

Uz 2y = AX . (99)

Then, x < 0 measures into the untrapped region and x > 0 measures into
the trapped region, By the proper choice of A, we can keep the highest
derivative in the equation. Physically, this is appropriate since we
expect tha“ particles that go almost zll the short way around the torus
before reir.ecting and that spend a long time at the reflection points

Wwill be very susceptible to collisions. If we define
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¢=-1reos§ ’

> (100)
then for Ax << 1 we obtailn
172 oh sh
g3’-—-sin(e’)—g—--h_4_.-—2-—1—2 A —a—(x—a-—::‘)=:t:%'sing’—E .
A ax 22 y1/ sin(EB) X X 8
(101)
The choice of A = (u/n1/2)y1/u allows us to write
Py, (102)
= % 0 (0]
with these boundary conditions:
(Trapped) x > 0: h, = h_for ¢ = tn , (103)
X + o hy +0 , (104)
and
(Untrapped) x < 0 hy(=m = h,(x) . (105)
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We have now written the problem in exactly the same form as the one
solved in Ref. 7 by a Weiner-Hopf technique. We follow their analysis
and obtain the same result; l.e,, that the major effect of the boundary
layer at u = 2y is to add a constant (1.21)A/2rn to f* for u > |2y} so
as to correctly match the boundary layer region. The constant A is
determined by matching 3h /3x as x + = with 3/9x E; + f’) as u + 2y,.

This gives

32
y5/4

’ (106)

such that for u > {2y|

1/2 u -
-__z, Q.20 1 du
£° = y+ ) ys/u"' é(y -3—;,—(1—8 . (107

If we now substitute this new form for f“ into Eq. (92), we obtain the
variationally accurate form for JD with the boundary layer correction

as

(81€0.69) _ 2(1.21)w3/2]

L
y3/2 yI/4

y(w) >> 11 Jp = - . (108)

We now have a variationally accurate solution for Jp for y << 1 [Eq.
(64)] and for y >> 1 [Eq. (108)]. In order to evaluate the accuracy
of these expressions, we have numerically solved the coupled Egs.

(56a) and (56b). Typical results are shown for y << 1 in Figs., 1(a)
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and 1(b), In Figs. 1(a) and 1(b), we have y = 0 and see that most of
the structure of f* and f~ is concentrated at z = O, where collisions
smooth the resonance and produce a boundary layer. 1In Figs. 2(a) and

2(b) we have f* and f~ plotted for y = 10. Now, we see that f* << f~

as predicted and that the structure in f* occurs for u = 2y, i.e., z
Y2y(1 ~ cos 8). In Fig. 3(a) we have plotted -J; against vs = y‘3/2 =
v[ﬂ%(ﬂ°1vy0]‘3/2]. where Jp was evaluated four different ways. First,
we evaluated it numerically using the numerical solutions f&r f*. This
was compared with Jp given in Eq. (64) (the plateau result), with Jp
as given in Eq. (92) (the banana result), and with Jj, as given in Eq.
(108) (the banana result with a Weiner-Hopf correction). Figure 3(b)
shows the relative errors in the three approximations to -Jp as
functions of y. We see that the corrected plateau result obtained in
Ref. 4 gives a very good approximation for y § 2. The banana result
is accurate for y 2, 8. When the boundary layer correction is included,
Eq. (108) is good for y 2 1.8. With this good agreement we can obtain
an analytic approximation to -Jp(y), which has at worst a 15% error (at
y = 1.93) and is continuous if we write
2

~py) = —T 0 < iyl < 1.93 (109)

1 + 0,511y2

and
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81(0.69)  2(1.21) n3/2 o
- = - 1. < < @™ ’ 110
IpCy) 372 o 93 < iyl (110)

where we have replaced y with |yl because of the arguments at the end

of Seec. II.

V. THE DIFFUSION COEFFICIENTS

If we write the relationship between the fluxes and gradients as

dn dT
I‘n = -Dn'a—p- - DT dp unnEe (111)
and
dn dT
I‘E = ~Kn dp KT —_— DTHE » (112)

then with the use of Eq. (63) we can write the six

transport
coefficlents as
D 2 =
Dy = <+ 1) [ xtwaw (113)
m Wo
n n
f—a(—"' 1) f x(w)[w——;dw , (118)

Yo
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A

D [ J
z kT—E(l + 12 [ dw wy(w)

K =z
n
2 2b vo
sn 1 2 o 3
KT = kn—E(-a—b + 1) f dw w(w - E) X(W)
n Wo
e
Mp = ﬁDn'
and
e
T 5g

In these equations, we have

.9
bn = GR)E

1/2
55 )

and

(W) = __exp(-w) al

0 2
y172 v = wo + T7zp 7y iy}

(115)

(116)

(i

(118)

(119)
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From Eqs. (20), (31), and (53), we can obts '\ by evaluating Vy0

and 20 at the resonance to give

YA v(w) 1=2/3 Yo
y(w) -EZb"- 1)[90 ] (H Wo +T/-§-E;—+—-—1) ’ (120)
where
0 KT Ro
A= =28 95=0 (%Z—) = 'a GWO ° (121)
e
PO
§ = —
RT !
and
Q
0” E
Q=0 = =~ 37—+ (122)
320 © 7 2rypoBp(po)

Here, rq is the length scale over which ? varies at the resonance,
The function v(w) is obtained from Eq. (44)., With the Ffull w
dependence of v in Eq. (120) the integrals in Eqs. (113)-(116) are
analytically intractable. In order f{oc make some progress, we

approximate y(w) in Eq. (120) by

yw) = yi(w-wy + oq) , (123)
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where
Yo
aq = ’
1
(55 + 1)
1 = ~2/3
=g NG
and

= [ e~(W=Wo) y(widw .
wo

(128)

(125)

(126)

The collision frequency o is clearly the weighted average of the full

collision frequency along the resonance,

observation that for y(w) >> 1 and from Eqs.

® . (W - Wy + 0)1/2

D, ~ | e viw)dw

W (w = wp) /2

This is motivated by the

(120), (119), and (113)

If wg << 1 so that aj << 1 and since vw(w) is an increasing function of

energy,

[ 4
Dy ~ [ e v(wldw = e™™0V .
o

‘This is precisely what is obtained by taking the approximate form for



41

y(w) in Eq. (123). To allow for the possibility of y < 0 we simply

insist that yy > 0 by placing absolute value signs around A in Eq.

(125).

Let us define the integrals

Ln(WOv G1UY1)

[ dw exp(=w) (w = wg)=1/2
o

X

(w - Wy + 0.1)2 (~plyqw = wg + apd ]} (127

Here, we have formally treated wg and a; as independent variables.

Now, the four diffusion coefficients can be written as

and

D 2
n 1
n
D 2
n “n¢1 3
ﬁ;ﬁ('2-5+ 1) [Lq + (W - 3)o] (129)
D 2
ne1
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K =nﬂ_1_+1)2[1. + (209 = 2) Ly + wglwg - 3)Lg] (131)
T30 2 0= 3/ "~ +¥WolWg = 35)%0) -

In Eq. (127) we transform from w to a new variable z = Yi(w = wg):

W, hd
e "0 -1/2 2
ey | dz exp(-z/yy)2" (z + ay)€[-Iplz + ayp)]
Y1 0
(132)
For ajyq > 1.93 we can use Eq. (110) and write
-W,
o= 0 (M = Man) (133)
v
where
Mip = 81(0.69) fo dz exp(-z/y()z2"/2(z + agy)1/2 (134)
and
[ -]
Moy = 2(1.21) 72 f dz exp(-z/y1)z"'1/2(z + a1y1)'1/u . (135)

0

From Ref. 11, the confluent hypergeometric function U(a,b,z) is

defined as
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Ua,b,z) = —— [ =2t ¢8=1(1 4 t)b=8-14t , Re b > Re a > O ,
ra) g4

and has the asymptotic expansion for |[z{ >> 1:

U(a,b,z) ~ z™3[1 ~ a(l+a- b, OGJ—)] .
z z2

We can now write "1n and M2n as

Min = 87(0.69) (ary )™ 'r(n + 2)u(n + 2y n+ 2, o) (136)

and

n+1/4 1

Moy = 201.21)73/2(aqyq) r(n + %)U(n +Zen+ %. @) . (13D

Now, we use the asymptotic expansion for the confluent hypergeometric

function for a; >> 1 and write for aqyq > 1.93

Lo x €0 [

/2 172
811'3 (0.69)0,1 (1 . 1 ) _ 2(1.21)172 1 (1 _ )] .
y3/2 Hay IR A

For y; << 1 and for aq ~ 0(1) we use Eq. (109) and write
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2
dz exp(-z/y1)z1/2(z + a1y1)2 u

1+ 0.511(z + aqyq)?

. (139)

Since y; << 1 we can use Laplace's method!Z to asymptotically evaluate
this integral as

ng'wo o (-1.01)k(a1y1)k+2

Ly ~ T
© TR0+ 0s11yD) KO (g . 0.511a3y5)¥

p) k
k-1/2 -z z .
" c{ dz exp(-z/yq)z (1« u1v1) (1 + 2°1Y1)

We now assume aq >> 1 and linearize in z/aqyq. This is justified by

noting that most of the contribution to the integrals comes from the

neighborhood of z = 0. Then L,y becomes

2. =W
LO - r<e” "0

1 + 0.511a3y7

w  (-1,01)KH+2y 2K
L G MEA x T(k + l)[1 +L (2 +.§)(k - %)] .
k=0 (1 + 0.511afy§)K 2 o

(140)
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We take k = 0 and k = 1, which gives the Pade approximant!3 Pa(y?). and

construct the P?(y%) approximant. Finally, we add the term arising

from 22 in Eq. (139) so that Lo approaches the correct plateau limit

for a3 ~ 0(1), and we obtain for y; << 1

Lo 15/ 2e=Mg (@ + o +3) 1 (1 + 15/8qq)
1 + 0.51108y% 4 o (0.51Maqy3 . 1+ Vay)
+ 0L
1 + 0.511a9y§

(141)

In Eq. (138) we have an approximation for Ly for yq > 1.93/a¢, and in
Eq. (141) we have an approximation for Ly for y1 K 1.

We introduce a smoothing function

1
falyq) = . (142)
3t
1+ (y1/(1.93/a1))3

This has the properties that

£f(0) = 1 ,
1.93 1

f == ,

( G1 ) 2

and

f(e) = 0
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and allows us to smoothly join the two limits for Lp. Hence, we write

w5/2(u§ + aq + 3/4) £3(yq)
1+ 0.511 ofy? 1 @1€0.511)yF (1 + 15/8aq)
+
1 + 0-511(1%Y? (1 + 1/(!1)

LO = e'"O {

3/2(0.69)(1 L Vyo20.2n ARy 1 )

8
+ [1 - 3ty 1[
y?/2 Haq y?/u c,‘}/u Baq

(143

The diffusion coefficient D, is then given by Eq. (128). In a similar

manner we can construct L1 and Ly, and we obtain

/2(af + 3aq + 15/4) f3(yq)
2(1 + 0.511a3y9 1 309(0.511)y5(1 + 24/4qq)
+
(1 + 0.511a3¥D (1 + 3/ay)

Ly = e7o{

3/2 /2
Yu (0.69)31 (1 . 3 ) _ (1.21)“2 (1
y3/2 Koy 174,978

+ [1- 130 ] -8—30:;)]}

(144)

and
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31/2(f + Saq + 35/4) £3(yq)

L2 = e-w(){
4 (1 + 0,511 oy 1 (0.511)5aqy§ (1 + 35/80q)
<+

1+ 0.511a3¥3) (1 + 5/ay)

673/2(0.69) a}/2 2
- [ S5y .3U.2Dn g | 5
(145)

The diffusion coefficients DT' Kn. and Ky are then obtained from Egs.
(129)-(131).

In order to assess the accuracy of these analytic approximations
we have computed the diffusion coefficients numerically and compared
them to the analytic approximations., For these numerical computations
the full functional form of v(w) was used as given in Eq. (44). In

addition, aq was evaluated from wy using Eq. (124). The parameter y,

was written as

o, &1 Vo -2/3 Vo ,=2/3
Y1G§6] -'5655 + 1]6;6] ;%) (146)

and A was evaluated from Eq. (121) by taking &

0.1 (the inverse

aspect ratio typical of EBT=S) and choosing (Rc/rd)

1. The diffusion
coefficients were then plotted against collisionality (vp/0g) for

several values of wWy. The range of collisionality was chosen to span

the range of experimental interest for the hot ions observed in EBT.

The values of wy were also chosen to span the .range of experimental
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interest. Typically, this is in the range wg = 3 to wg = 7. For wy =
3 we would expect that our analytic approximations might begin to break
down since they were derived for o >> 1.

In Figs. 4(a)-4(d) we plot

Dn Dy Kn

]

N 1 2,=2,.W ! n 2 1 2 _ ! a 1 2_2
[Pn (g5 + V5%e"0]  [B 5L+ )70 2e¥0] [k1 By ok + 1) 72e%0]

Ky

~ 2
[nDn [—21—b + 1) ﬂ'ze"O]

respectively, against (vo/ﬂo) for wg = 3. We compare our analytic
approximation with the diffusion coefficients computed numerically in
two ways: (1) from the numerical evaluation for Jply) as given in Fig.
3 and (2) by using the analytic approximation to Jp(y) as given in Eqs.
(109) and (110), For each diffusion coefficient we see a plateau
regime for large collisionality and a banana regime, where the
diffusion coefficients increase with collisionality, for small
collisionality. From Figs. U4(a)-4d) we see that the analytic
approximation reproduces the plateau results exactly. This is not
surprising since here the diffusion coefficients are independent of
collisionality. For the lower ranges of collisionality we see that the
analytic approximation 'is worse for Dn' and even here it is only 6%
larger than the numerically computed values, For DT and KT the
analytic approximation is so good that it is hard to distinguish

between the nimerical and analytic curves. In Figs. 5(a)=5(d) we do

3T
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the same set of plots for wy = 7. Here, we do not see a plateau regime
for the range of collisionality we consider, We note that the analytie
approximations have the correct functional form as a function of
(vg/9p) but are slightly larger than the numerical calculations for all
four diffusion coefficients. We attribute this to the fact that our

approximation for v(w) is breaking down for these large values of Wo.

Finally, we show that we can recover the familiar banana and
plateau scalings from the analytic approximations. For simplicity, we
shall concentrate on Dn.

We note that

Re W0, 1 v2/3
e s GOREL - NET

hence, the limit yq >> 1 corresponds to

Y Ry, Wp 3/2
— < (67 Gy 7

The banana regime ¥1 << 1 is then

172 1/2 ~W,
p 8720691612 /2372 vt (147)

n p1/2 W

This has the familiar 61/2 scaling with aspect ratio, the 1linear
scaling with collision frequency, and the e~vo Scaling with Wy or

electric field. The plateau regime y; << 1 is
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p, ~—2— &%(R,)

2 et 1 3.1 2
no 172 o [W§ + wo (—2—5+1)+74-(———+1)] . (148)

2 2b

This has the familiar &2 scaling with aspect ratio, is independent of

collisionality, and has the e~W0 scaling with electric fleld.

We note that the banana result is dependent on the scale length in
O (i.e., rq)s and thus, when ambipolarity is imposed (i.e., Ty, =
relectron)' a differential equation in the electric field will result,
in contrast to the more well-known algebraic relationship for the
electric field.2 This is the subject of further study and will be
reported on in a later paper. Preliminary results using these
transport coefficients for the ions and improved trasnport rates for
the electrons!” indicate that large potential drops are possible

although with somewhat larger ion tails than observed experimentally.

VI. CONCLUSIONS

For the bumpy cylinder magnetic field evaluated near the magnetic
axls, we have solved the linearized drift kinetic equation for the
banana and Welner-Hopf approximations to the energy-dependent flux. We
have used these with a corrected version of the plateau
energy~dependent flux and have constructed analytic formulae for the
particle and energy diffusion coefficients., For the ranges of electric
field and collisionality of experimental interest we have shown that
these formulae give excellent agreement with numerical results and can

be used to compute the radial profiles of density and temperature.
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FIGURE CAPTIONS

FIG. 1. =f* and f~ are plotted against z and g for y = 0 in (a) and

(b), respectively.

FIG. 2. -f* and f~ are plotted against z and 8 for y = 10 in (a) and

(b), respectively.

FIG. 3. =Jp is plotted against y'3/2 for four different approximations
to Jp in (a). Solid line is the numerical computation of Jp. Dashed
line is the Spong and Hedrick corrected plateau approximation. Dotted
line i3 the banana result, and dot-dash line 13 the banana result with
Weiner-Hopf boundary layer correction, The relative error of the three

approximations as compared to the numerical result is shown in (b).

~ A 2
FIG. 4. (a) Dn/(Dn'n'a(-z-% + 1)2%M), (b) DT/(%D,,(E‘E + 1) x%%0),
1

A 2 - 2
(c) Kn/(kTDy (5 + 1) " n"2e%0), and (d) K-r/[nDn(gE + 1)°12 %) are

plotted against collisionality (vg/fg) for wy = 3.

Ar=2(_1 2 w n 1 2 2w
FIG. 5. (a) D/ (Dn £2b + 1)e¥0), (b) D1/(z Pnlzg +21) *"%e%0 ),
8 (] -2 5 () -2
(e) Kn/(“mn(gg + 1) n%e"0). and (d) KT/(-nDn(z—d + 1) n7<e%¥0) are

plotted against collisionality (vg/fg) for wy = 7.
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