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Abstract:

Thi. is the second of a series of reports on FINELM, the E.I.R.
finite element multigroup neutron diffusion code. Only the axi-
symmetric case in cylindrical coordinates is presented here.
Furthermore, the numerical acceleration schemes incorporated
viz. The Lebedev extrapolations and the coarse mesh rebalan-
cing, space collapsing, are discussed. Examples which display
the benifits of each of these schemecs and their combination

are presented.

Abstrakt:

In der Reihe der Berichte {iber FINELM, den "Finite element
multigroup neutron diffusion code” des E.I.R., ist dies der
zwelte,

Nur der achsial-symmetische Fall in Zylinder Koordinaten wird
dargelgt. Die eingebauten numerischen Beschleunigungsmethoden,
ndmlii~h die Lebeder Extrapolation und die "Coarse mesh re-
balancing” werden diskutiert. Es werden Beispiele behandelt,
die neben der Avawirkung der einzelnen Methoden auf die Kon-
vergenz des Problems auch den Einfluss bei gleichzeitiger An-
wendung zeligen.



Contents

Introduction

Problem Definition

The Variational Method

The Trial Functions

The Functional in R-2 Geometry
Chebyshev Accelerations

Coarse Mesh Rebalancing

Space Collapsing

The Actual Scheme used

Current Capabilities of the Code
Conclusions and Recommendations
Examples

References

12
17
17
20
20
21
26
48



Introduction

Enough has been said about the history of FINELM in reference

{1). Here, we wish to restrict ourselves to only the R-2Z
geometry, the consequences and to the acceleration schemes
used. As in the previous report a few benchmark computations
are presented as validation of the code. They are fewer than
before because there is a lack of suitably defined benchmark
problems in this geometry. The R-Z geometry destroyed the
rotational invariance of the T matrices used to compute the
sources. This lead to a redesign of the iteration s-heme
which was slower. The incorporation of the rebalancing
scheme also doubled the work done in a iteration which also
increased the cost of an iteration. However, this makes the
incorporation of both direct and adjoint solutions into one
overlay acceptable, In retrospect it may be remarked that
had the code been originally developed as an R-Z code the
X-Y geometry would have been a by-product.



Problem Definition

The current trend at E.I.R. towards H.T.R. pebble-bed
reactors made it imperative to extend our multigroup finite
element diffusion code, FINELM, to handle, both, X-Y and
R-Z geometries. Lagrangian elements of degrees one through
four are offered. Dissections permit the problem size to

be independant of core memory and dependant only on peri-
pheral storage. The problem definition is identical with
that defined in ( 1 ) and is repeated here only for the
sake of completeness.

We consider a domain Q with boundary 3. The equation to be
solved is the diffusion equation given by:

IGM IGM

R 1
7.D ()T (0)+I (D)9 () 3 g (B0, 00+ 1 2. Xg (VEQ) (008 () 1.1
[] eff
g'=1 g'=1
g'#qg

|

for reQ, g=1,2... 1IGM the total number of groups. The
boundary conditions are given by:

¢g{r) - fg(r) =0 reQQD, (Dirichlet) ' 1.2a
2 (r) . ‘
T ﬂ¢g(r} + 94 = 0 reaﬂc, (Cauchy) 1.2»

Equation (1.1) is the multigroup eigenvalue problem with
fission and up- and down~-scattering.

Additionally, the solutions are required to satisfy

(a) ¢g(r\ must be continuous in {I, the closure of 0.



3¢ _(x)

{b) Dg T

» the neutron current must be continuous
across material interfaces.

{c) ¢g{r)_30 for all refl.

Dirichlet conditions of Eq. (l.2a) simply imply that the keff
problem be solved for a reduced number of degrees of freedom.
Conditions (a) and (b) are not difficult to satisfy by poly-
nomial approximations. However (c) cannot always be satisfied
by peolynomial approximations so that we should expect the flux
to become negative, at least locally, in the approximate

solution.

The variational formulation necessitates conversion to a self
adjoint elliptic boundary value problem which in turn dictates
power iterations. Hence Eg. (1.1} is rewritten as

{n) R {n), . {n) {n-1)
-v.0_(n9s'" (1 +EL (N0 ()= 9. gD égh sy, Leag(Be ()
g

'<9 g':g
h{e ]
{n~1) {n~1)
+ §1 xg.(vtf)g,(rw (r)]/ L {1.3)
for g=1,2,...1IGM
or
-v.D v +I = 1,2,...1GM 1.4
g(r) ¢{x} q(r)¢g(r) Qg(r) g=l, <, ( )

where Qq(r) is the combined source in group g due to up
and down scattering and fission.



The Variational Method

The advantage of the variational method over residuval methods
is that the trial functions need satisfy essential boundary
conditions only. Natural boundary conditions which occur at
symmetry boundaries or at material interfaces are taken care
of by the functional itself. FPurthermore, boundary conditions
of the Cauchy type may also be made natural by extending the
element functional to include an extra term, a line integral
along the sides of an element which lie on the part of the
external boundary of the region on which Cauchy conditions
are specified. As far as reactor physics is concerned this

leaves only Dirichlet conditions as essential.

i The Trial Functions

As in the X-Y geometry case we triangulate the region and
introduce simplex coordinates, defined by

szz{tsl,az):al,gzxo. 51+52s1}

A third, dependant variable is added so that £1+ £2+ £3=1.
Bivariate polynomials in these variables, complete over an
element are constructed as follows:

We defined recursively
Pm(£)=Pm_1(E)'(NProxE-m+1)/m
with Po(g)al.

At each node, defined in the triple subscript notation,
(i,9,k) we construct aijk‘ €1 &p0 Ea)BPi(El)Pj(ﬁz)Pk(Ea).

{2.1)

{2.2)



3.

It is easily checked that the aijk.s constitute Lagrange

node influence functions. By placing an appropriate number

of nodes the continuity of the flux across material inter-
faces can be assured irrespective of the direction of the
interfaces in space. This is achleved because the polynomials
are so constructed that their degree is invariant with respect
to rotations. The functional may then be written

5
Jlul=3 o° [u]=§ 1;1 3 [u] (2.3)

where the superscript denotes a finite element and the element
functional is now split into five instead of four parts.

The Functiocnal in R-2Z Geometry

*n any orthogonal curvelinear coordinate system (xl,xz,x3)

we define elementary lengths 21, 22 and 23. These are related
to the ccordinates through the metric coefficlients, hl'hz'h3'
An elementary volume dv3=£1£2£3=h1h2h3dx1dx2dx3. Specializing
to cylindrical coordinates

dV3=drrd9dz=h h

1 2h3drd0dz.

=h_=1 and h,.=r.

Hence, h1 3 2

328, 2100, 5 2
v¢_ar3r * 8y 30t 2 9z

where Er, ;0 and ;z are unit vectors in the directions r,6,z.

All partials of unit vectors are zero except

sa_ bag _
3™ "% 2 5w T A



3.1 Leakage
Since the functional remains invariant in any coordinate
system
D _D du, 2, du .2
Jllul=§ j {VU.VU)dV3-2(23) j. r(dr) +r(dz} drdz {(3.1.1)
vE a®

where Ae is the area of the element in the R-Z plane. Dis-
regarding the factor 27 the result is analogous to the X-Y
geometry except that we compute the first moment about the
z-axis. It is easily checked that the Euler equation of (3.1)
is

13
—(; EF(rur)+urr) (3.1.2)

The negative Laplacian of the axisymmetriccase in cylindrical
coordinates.

Introducing the simplex coordinates {51,52,53) with £1+§2+§3=1
a point within the trianqgle is represented by the triple
(€1,£2,£3) in a local coordinate system. If (r1,21)1=1,2,3
represents the vertices of the triangle and (r,z) any peoint
inside

r=r1€1+r2£2+r3£3 (3.1.3)
and
2=2,61%226,%238;

The flux, ¢, is expressed in terms of the point fluxes at

the element nodes. Thus
N N-j Nodel



where i+j+k=N, the degree of the approximating polynomial

and Nodel is the number of nodes in the element. Inserting
these into (3.1l.l)and performing the variation as in reference
{ 2), all details are omitted here,we get

3 Nodel
32® 3a 3a 3a da
1 1 m m q q
—-—=DE cotd | E ¢ -— - - (r £ +r E_+r_£_}drdz
At IgEl AN, I\ %y, 122
{3.1.5)

m=1, Nodel, 61 i=]1,2,3 are the angles ¢of the triangle and

the subscripts on the £'s are computed cyclically. The left
hand side of the equation represents the sum of moments of
three matrices M,, i=1,2,3 about the 2Z-axis., Thus the discrete

i
negative Laplacian is represented by

3
(3) (3) (3)
21D Eéacot@j (Hl r1+uz r2+M3 r3) (3.1.6}

(2) (3)
i and Mi
by permutations as in reference (2).

where the j is merely a superscript and where M
are generated from Hil)

Again it is noted that both row and column sums of the dis~
crete Laplacian sum to zero to ensure the singularity of

the composite matrix and enables the reference potential

{Scalar flux) to be outside the element and posess any arbi-
trary value. Further the Laplacian depends only on the shape

of the element and the distances of the vertices from the z~axis.

The results are displayed in Fig. (1).



3.2 The Removal Term

1R
Y

After introducing cylindrical coordinates, transforming these
to simplex coordinates, using the polyncomial approximation
for the flux and performing the variation with respect to a
point flux ¢m there results

Nodel
e

aJ R
2 _ 2:_ z A€ 808 0a (8, 6, 8 (r & 41 £ 0T £ ) drdz, m=1 Nodel
9, 2 =1 A

(3.2.2)
This defines the sum of first moments about the Z-axis of
three matrices and is denoted by:

T=T1r1 + T2r2 + T3r3 (3.2.3)

The sum of all the elements of the T1 matrices sum to unity.
Note that the invariance with respect to rotations which per-
mitted the separation of the graph theoretic structure of

the matrix from the numerical energy depeniant values which
obtains in X-Y geometry does not carry ove:. into R-2Z geometry.

The result~ are displayed in Fig. (2).

3.3 The Scource Term (External)

As in the X-Y (see 1 )} case the external prescribed source G
is expanded as a polynomial over the element and after per-
forming the variation with respect to a point flux ¢m we arrive at

e Nodel
Ny 1
5;;-2ni=1 Gi A(umuj)(r151+r2£2+r3£3)drdz m=1, Nodel {3.3.1)



The results are similar to the removal term. The results are
displayed in Pig. (2).

3.4 Cauchy Boundary Conditions

In the R-Z case we are forced to distinguish between boundary
conditions prescribed on the top and bottom discs and those

on the cylindrical surface. As before we consider a one-simplex

Slz{El; OsElcl} {(3.4.1)

and introduce a slack or dependant variable such that
£1+£2=1. Then the conditions on the discs lead to the functio-
nal

e 1 2
gy [u]= 28 5 u‘av, + f quav, (3.4.2)

e
2 V2

where Vg is the surface of the element on the disc and

8 = 1 (l-Albedo)
~ 2,131338'1+Albedo

(3.4.3)

Inserting the flux approximation and performing the variation
with respect to the point fluxes vields

. N+l a2 %2
334 (9]
———m ) ¢ Ba.a_rdr+2n ga_rdr (3.4.4)
a¢m j=1 3 r i m g m
1 1

Here (N+l) are the number of nodes along the side of the
element on the disc ie (NPROX+l), and

r=r151+r2£2 (3.4.5)
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The first term in Eq. {(3.4.4) results in the sum of two
first moments of matrices {BCOEF)1 and (BCOE:F)2 about the
z-axis, while the second is the sum of two moments of
vectors QCOE‘.F1 and QCOEF2 about the same axis.

Boundary conditions of the cylindrical surface yield the
functional

<

=3 3
J< |:u:|= nr,B uzdz + 2nr qudz
5 2 2

z

2 Z2

After performing the variation the first term yields moment
of a single matrix, BCOEF, which is identical to the matrix
from X-Y geCmetry. The second term is the moment of a single
vector which (the vector) is identical to that from the X-Y
geometry. In passing it may be noted that the matrix BCOEF
is the sum of (BCOBF)1 and (BCOEF)2 and a similar statement
applies to the vector QCOEF and (QCOEF)l and (QCOEF)Z.
For the results consult Fig. (3).

Dirichlet Boundary Conditions

Since these are prescribed fluxes no variation is taken
with respect to these fluxes and the final result is a re-
duction of the degrees of freedom. The situation is identi-
cal to tnat which obtains in X~Y geometry.
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4. Chebyshev Acceleration

The Chebyshev acceleration (extrapolation) scheme is known
to work well for systems of equation which have real and
positive eigenvalues, & situation which is assured by the
variational formulation.

If we denote by F, the iteration matrix of the system we have
for the power method,

(ntl)_ 1 {n}

$ = ;TE:TT F ¢ (4.1)
ekk
The extrapolation scheme used is:
LU (i-l) m(n)N(n-l)Hl_m(n))¢(n-1)=m(n)¢(n}+(1_w(n)]¢(n-1)
Kett
(4.2)

Here, the first term of the right hand side is actually w(n)¢(n)'

(n}) is the flux which results as a solution at the n th
{n)

where ¢
iteration, and ¢ is the extrapolated flux at the end of
the n th. iteration. The keff
prior to extrapolation, by the Rayleigh quotient., It is known

is computed from the fluxes

that for hermetian symmetric matrices, the convergence rate
of the Rayleigh quotient is twice as fast as that computed
from the (production/distribution)-ratio, even through the
latter may have more physical meaning.

Dencte the true eigenvalues of F are by

0<uN<uN_1 ceeenely <Hg (4.3)

and the eigenvectors by u n=0,1,...M,
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For matrices of large order u, may be taken to be zero and

N
after an appropriate number of iterations the current keff
is sufficliently close to UO.

We normalize the second largest eigenvalue to unity by intro-

ducing
H,y=u U,
vy, = 2(=-F) 1224 - (4.4)
3 S ™ ¥

Hence, —lévjsl l<3<N and ?0>1

The initial flux guess may be expressed as a linear combina-
tion of the eigenvectors. Because the matrix is real and
symmetric, the algebraic and the geometric multiplicity

of an eigenvalue are equal and a full compliment of eigen-
vectors exist. We assume that the eigenvalue of maximum
madulus N is unique. Hence,

N
(0) _ (0)

07 = Y al) (4.5)

i=1

and a current solution ¢‘t’ as
N
(n) {n)
(n) _ (0) (0)

¢ = ﬂ(Yo) a,  u, + = ntTi) a, by (4.6)

(n)
where n(Yi) is a n~th degree polynomial in Yy defined by

n
{n) {(y,+1)
= (p)_ 1 - uiP)
niy,) -H-[% o (B My +1-w ] (4.7)
p=1 eff

We assume that kigzllis suf ficiently close to y,. Under these

circumstances the above equation may be rewritten as
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n
M (y= -ﬂ- L‘P’ 03-422 +1 - u‘P’] (4.8)
p=1
where o is the dominance ratio (ulfuo)cl. In equation (4.6)
the first term on the right hand side is the contribution
from the fundamental mode and the second term is the sum of
contributions of higher modes or residuals. Convergence,
then, implies the reduction of the residuals to a sufficiently
small acceptable magnitude for some n. The problem is then
reduced to the minimization of

(k)
n (Tn)

(4.9)
n(k)

max
(vy)

after a preselected number of iterations denoted by K. This
means that a set of t.u(j) 's have to be conatructed for j=1,2,...FK
to minimize the ratio depicted in (4.9) - at the K th step.
Since the eingenvalues, the uj's and the yj's defined by

them are not individually known it is usual to assume a con-
tinuous spectrum for y in [-1, +1], and restate (4.9) as

minimize

(k)
max n {(v)

— {4.10)
1<y<+l n(k)(7o}

The problem is a classical one and the result is to select
n{k)(w) to be a K th degree Chebyshev polynomial.

Tk(y)=cos(Kcos-11) (4.11)

whose j th root is given by

zj-=cos(ﬂz%ﬂ?-; j21,2,...K (4.12)
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Hence, the parameters m(J} are @~ termined as the solution to

z . +1 .
(3, —%— sl - w3 2y (4.13)
which yields

(3) 1
w'd= (4.14)
1-(3) [cos(l(-m—) + 1]

The above method assumes that the dominance ratio is known.
In practice ¢ has to be estimated during the run. We have

510 z a, (4.15)
1=0
B B
¢(n) u }[: a ( 1,n = agug+ }[: (_l)n u
1=1 o
{eo0) 1 n

~ b + a,{==)" u) assymptotically (4.16)
¢(n)_¢(n-1) n—l(o-Lj i} (4.17)

¢(n~1)_¢(n-2) n-2(°_1’

The estimation is done by

{n) _ (n-l)l>
(n= 1)_ (n-Z)l>

< w,lé

< w,l¢

n
< w,error‘ ) >

{n=1}),

where G = (4.18)

< W,error

and w is some weighting function. For wel, a vector of all
one's,
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{n-1)
1,

_ llerror

0 {(4.19)

| lerror

This is the estimate used in the code. A better estimate., One

(n)

that converges twice as fast is to use w=¢ . However, this

requires the storage of two error vectors whereas in (4.19)
we require the storage of only two scalars, There are two
drawbacks of the one parameter Chebyshev method. If the cycle

length i3 large some values of m(t) (t)

(t)

are large, so that w
and l-w are similar in mannitude but have opposing sign.
If the problem has almost converged ¢'%) is close to ¢{t~1’
(B)_ L8 e (6] (e-1)

determined largely by round off. Furthermore, the error is

and the extrapolated flux ¥ is

minimized at the end of K iterations. Hence it is a good
practice to choose K reasonably small and use it cyclically.

We found K=6 adequate.

Lebedev extrapolation (3), (4)

The Lebedev extrapoclation used in FINELM is essentially a re-
arrangement of the single parameter Chebyshev extrapolation.

For a cycle length of six the Chebyshev seguence would give

(t) 1
[1}] = P =
1-(3) [cos (75m) +1]
with m'¥=1,3,5,7,9,11.

{t)

In the Lebedev case the sequence m is rearranged to give

n® = 3,9,5,7,1,11

The above cycle contains a subcycle of length two, B0 that
it is quite possible to reach the converdgence error criterion
at the end of a subcycle.
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4.1 Coarse Mesh R=balancing

The Lebedev extrapolation worked well on all the benchmark
problems that we had to date. Once, the nineteen group

Proteus computations with strong upscatter, the LehLedev
extrapolations introduced instability. If the extrapolations
were switched off, the results converged, albeit slowly, with
the rate dictated by the power iterations alone. This lead to
the introduction of coarse mesh rebalancing. Both, space
collapsing and group collapsing were tried out, but only

the former retained. Por a given right hand side the flux
solution computed is exact due to the use of a direct solution
method. The error in the ké?} and the flux at the n-th itera-
tion is due to errors in the fission and scatter sources. These
errorgs come due to the use of delayed fluxes. The group
collapsing method lead to rebalance within one or two itera-
tions hence was abandoned.

4.2 Space Collapsing

Here, the idea is to reduce the region to a single point.
For the sake of conciseness we consider a three group eigen-
value problem with both up and down scatter. The discretized
problem may be depicted as

B B Al % p Enn v Eazxa Laalih
I S
Aoy By R %2 < K i X3 E11 X2 Ea22 X2 E33 {42
231 A3z Ai] |3 X3 E1y %3 Eaz X3 E3q]¢;
{4.2.1)

The fluxes depicted are group fluxes and the overall matrices
are partitioned into blocks according to groups. The matrices

zhi are those constructed by using uzf for the 1 th group.
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Matrix A Ay incorporates the leakage, removal and boundary
value components for the i th group. Equation (4.2.1) does
not reflect the iteration scheme used. The actual computational

scheme is:

(n) _ (n-l) (n-1) (n-1)
2)1%=1 k(n-l) EP * &12%2 213%;
eff J
(n) _ {n-1) {n) (n-1) ,
R22%g=2 (n-l) 2"13"3 73301 * B3t (4.2.2)
Keff  4=1 ‘
vy O
(n) _ (n-1) {n) {n)
B313%=3 = (n-l) zpjj¢ tAinh t 232%2
eff j=1

and from the solution k(?; is determined. The use of delayed

fluxes introduces errors in the group fluxes and the error
propagates down through the various groups. Thus even in the
last, the third, group even the down scatter terms are not
error free because the fluxes ¢. and ¢2 were not error free,

1
To remedy this, the following recipe is used. At the end of

the n-th iteration k(gj and ¢{n)' 1=1,2,3 are known. We denote
by
(n)
Iij = (Leakage+Remval+Boundary)1(r)¢j(r)dr
red(r)
and (4.2.3)
MY, = j vi (), 0™ (r)ar
11 . 171
refi(r)

where the leakage, removal, boundary and the production
operators are integrated over the closure of the domain.
Since the discretized scheme may contain an arbitrary number
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of points only the crudest spatial integration scheme may

be used. We used the trapezoidal rule neglecting the halving
of the values at the boundaries of the spatial blocks. This
leads to the redefinition of Fq. (4.2.3) as

N

g=i_ g=m
=3 (a ) ]
k,j=1

and N {4.2.4)

g=i_ g=1
Bii 2 (x4 93
X, 3=1

where the fluxes that are used are those at the end of the

n-th iteration, where j and k run over the points in space and

Ig=i and H?Ti are scalars. This leads to:

im
1 1 1 cfm Xy My, + M, +x, M
11 12 "13 1 1 11 T A1 Tez 1 33
(n) }_ 1
g 122 I;alc2 F Ly | X2 My * Xy My v Xy My,
(n) eff
Iy) I, Ia37 'cy X3 My ¥ X3 Myy + X3 My,

(4.2.5)

The =oluticon determines the coefficients c;n)

with which the
(n}
g

are unity the system is in

fluxes are weighted. Balance is achieved when all the c
are unity. Once all the c;n)'s
balance and from this point onwards the converdence is

that solely due to the power iterations. In the 19 group
Proteus case mentioned previously, which is about the most
difficult case, we have handled,it required about 10 iterations
for the system to come into balance, after which the con-

verdence is slow,
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4.3 The actual scheme used

The scheme used is as follows:

(n) . (n)
g {r)'s and from them the keff

b) We use the coarse mesh rebalancing alone till a suffi-

a) We determine the ¢

ciently accurate estimate of the dominance ratio has
been achieved. Thereafter, the ¢ is kept fixed and the
procedure is changed to

{n)
elf

b')Extrapolate the fluxes by the Lebedev method

a')Determine the ¢(;)(r)'s and the k as in (a)

c) Determine and apply the group weights.

This scheme has worked well since April 1979. We have in
sections 4.1 and 4.2 only considered the direct solution.
Due to the fact that the adjoint solution also has to be
computed we do not use xg/ké:; as the fission source in Eq.

(4.2.5).

5. Current Capabilities of the Code

The current capabilities and highlights of the code are
summerized here as a matter of general interest.

1) X-Y and R-Z geometries are offered. R-& will become avail-
able in the very near future

2) Direct and adjoint solutions are available

3) Triangular and rectangular Lagrangian elements or a
mixture of the two may be chosen, It is recommended, how-
ever, that tringular elements be used when symmetry boundaries
may be exploited or when material interfaces do not run para-
llel to the coordinate axes.



1)

5)
6}

7)

8)

9)

10}
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Degrees of approximation, one through four are available.
The introduction of general degree subroutines will extend
this range. A practical bound on the maximum degree of
approximation, dictated by the word length of the computer
is about eight or so.

The solution is by a variable band Choleski decomposition.

Cuts may be specified by the user in order to run the
problem in reduced core. It should be brought to the

users attention that cuts introduce no numerical approxi-
mation. They merely sequence partial problems. The size of
the problem that can be handled is limited only by peri-
pheral storage which is virtually unlimited.

The acceleration method used in the outer iteration is
the Lebedev extrapolation with coarse mesh rebalancing ~

space collapsing.
A restart option is available.

A very efficien: inout subroutine, requiring a minimum
of key punch effort has been provided by C.E. Higgs.

Both external source problems and ke £ problems may be

f
solved,

Conclusion and Recommendations

Till now, the single parameter extrapolation has sufficed.

If it is necessary to go over to a two parameter Chebyshev

mathod, or its Lebedev variation the dominance ratio should be

estimated by using w=¢(n’ in (4.19). There is also every

indication that R-8 geometry will adversely effect packing

density. This may be remedied by applying renumbering algorithms

to the section graphs.
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6-n‘§’=0/0.1/0.-1.1/ with nil’an‘l‘-n‘l’

2 k|
P = (1,2,3)
Linear Approximation
1
30‘H(l]=0/0:3/0:1:3/0t“2:2'24;0:‘4:”40008/002:-::‘2400t24/

(1)
2

;)=0/0r3/0!2:9/0:'1r-303/00“50“11'4p16/0,1,3,‘8;‘4.8/

30'" =0/0.9/0:2:3/003:1:3/0"111'5:'4;16/0,-3,-1.-8,4.8/

JO'H[

P = (1,2,1){4,5,6)

Quadratic Approximation

3360*!‘1’

=0/0, 200/0,~-38,200/0,198,-198,4373/0,-234,-90,-972, 2430/
0,-324,162,0,162,810/0,162,-324,0,162,-648,810/
0,-90,-234,972,486,162,162,2430/0,-198,198,-4374,972,
0,0,-972,4374/0,324,324,0,-2916,-324,-324,0,~2916,
5832/
3)=0/0,1028/0,-128,200/0,-117,-45,648/0, 477 ,-153,81, 2430/
0,-1503, 369,81, -648,3078/0,603,-44i,81, 324,-1944,1792/
0,117,~117, 243, 324,-486, 486,810/, 117,45, -648,-81,-81,
-81,-243,648/0,-594,270,-324,-2754,1134,-810,-1134,324,
3988/
;)-0/0,200/0,-128,1028/0,45,117.648/0,-117,117,-243,810/
0,-441,603,-81,486,1782/0, 369,-1503,-81,-486,-1944, 3078/
0,-153,477,-81,324,-648,2430/0,-45,-117, -648,243,81
81,81,646/0,270,~594,324,-1134,-810,1134,-2754,-324,
3888/

P = (1,2,3)(4,5,6)(5,7,9)

3360*H(

3360'H{

Cublic Approximation

a1} {1} (1)
Q1 = ("1 r1+n2 r2+u3 r3)

ol 1.7
Q.= Phg )

Fig. (l): The lower triangular part of the Q1 matrices used to

construct the negative Laplacian of an element
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120-rl=5/2.2/2,1,2;
120‘T2=2/2.6/1.2.2/
120‘1'3=2/1.2/2.2.6/

P = (1,2,3)
Lingear Approximation

2520°T.=30/-4,b/-4,1,6/12,-8,-12,96/-4,-4,-4,32,32/12,-12,-8,48, 32,96/

2520*T,=6/-4,30/1,-4,6/-8,12,-12,96/-12,12,-8,48,96/-4,-4,-4,32, 32,32/

2520°T,=6/1,6/-4,-4,30/-4,-4,-4,32/-12,-8,12,32,96/-8,-12,12, 32,48.96/
P = (1,2,3}(4,5,6)

Quadratic Approximation

13440'T1=60/5.8/5,1.8/36,15,21,324/-18.-12,3,81.162/3,-6.3,-27,54,54/
3,3,-6,-27,~27,-27,54/-18,3,-12,-81,0,-27,54,162/36,21,15
le2,-81,-27,-27,-81,324/0,18,18,162,0,0,0,0,162,648/

13440*T2=3/5.60/1.5,8/*12.-13,3,162/15,36,21.-81,324/21,26.15,-81.162,324/
i,-18,-12,0,-81,-81,162/3,13,~6,-27,-27,-27,54,54/-6,3, 3,54,-27,
-27,-27,-27,54/18,0,18,0,162,162,0,0,0,648/

13440'T3=8/1.B/5.5,60/-6,3,3,54/3,-6,3,-27,54/3,-12.-18,—27.54;162/
21,15,3,-27,-27,-81,324/15,21,36,-27,-27,-27,-81,162,324/-12,3,-18,
54,-27,0,-81,-81,162/18,18,0,0,0,0,162,162,0,648/

Pp=1(1,23){4,6,8)5,7,9)

Cublic Approximation

e
T =Tlr1 + T2r2 + 73r3

we Y% ehT 1

Pig. (2): The lower triangular part of the ¥ matrices used to
conatruct external source, fission, scattering and

removal terms for an element
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12*BCQEF1=3/1,1/0,0,0/
12*BCCEF2=1/1,3/0,0,0/

6‘QC05P1=*3.-3,0
6'@-\:@?2:"‘1 '-230

Linear Approximation

GO*BCOEF1=8/-2,8/0,0,0/4,4,0,32/0,0,0,0,0/0,0,0,0,0,0/
60*BCOEF2=1/-1,17/0,0,0/0,4,0,16/0,0,0,0,0/0,0,0,0,0,0/

G*WP.I"].,0,0.-?:0.0.
G.NFQ-O'-I,O;-er:Oo

Quadratic Approximation

3360*BCCEF1-237/19,19/0,0,0/189,9,0,891/-81,9,0,-81,405/
J360*BCCEF2=19/19, 237/0,0,0/9,-81,0,405/9,189,0,-81,891/

120*QCCEF1=-13,-2,0,~36,-9,0,0,0,0,0.
120W?2="2:"13,0;-9p-36r0;0’030p0a

Cubic Approximation

ice)® = Beta* (x, *BCOEFLS r *BCOEF2)*L

(cv)® = QU(r, “QCOEFL+r_*QCOBP2) *L .

Fig. (3): (cB)®, the contribution to the element matrix and (cny®
the contribution to the element vector for Cauchy Boundary
conditions D%% +89+q=0 prescribed on a disc
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12*BCOEF=4/2,4/0,0,0/

6"QCOEP=-4,-5,0

Linear Approximation
60*BCOEF=9/-3,15/0,0,0/4,8,0,48/0,0,0,0,0/0,0,0,0,0,0/
6*QCOEF=-1,-1,0,-4,0,0
Quadratic Approximation
3360*BCOEF=256/ 38, 256/0,0,0/198,-72,0,1296/-72,190,0,~162,1296/
120*QCOEP=-15,-15,0,-~45,-45,0,0,0,0,0

Cubic Approximation
(e = Beta*r,* (BCOEFF) *L,

cn® = QU*r., (QCOEF) L,

Fig. {(4}): ICB)e. the contribution to the element matrix and

{CV)e the contribution to the element vector for
Cauchy boundary conditions D%% +8¢+g=0 prescribed

on the cylindrical surface
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Some Benchmark Problems

This was selected from the Argonne National Laboratory bench-
mark problem book ANL-7416. The problem with identification
number 8, was submitted in January 1973 by H.L. Dodds Jr.

(U. of Tenn.), adopted in June 1977 by E.L. Fuller (E.P.R.I.)
and W. Werner (GRS-Mlinich) and has as a descriptive title:
Two dimensional (R-2) reactor model.

The composition of the reactor is displayed in Fig. ( 5 ) and
the cross-sections in Fig. {( & ). The suggested function of the
prcblem is to test two dimensional neutron kinetics. We have
used it for only computing the initial keff' The benchmark

book presents two distinct solutions all using finite differen-
ce codes with common step sizes in the radial and axial direc-

tions.

The first solution presented by Savannah River Laboratory,
Jan. 1973, is computed using single precision, on an IBM-360,
Model 195 machine with the code TWODTA.

The second solution is presented by Chalk River Nuclear labo-
ratories with the code ADEP utilizing an alternating direction
explicit method with exponential transformations.

We also present the results computed with FEM2D, the fin: .e
element code from the Institut fir Kernenergetik und Energie-
systeme, University of Stuttgart by courtsey of Prof. F.A.R.
Schmidt.

The above and the FINELM solutions are displayed in Table ( 1 }.
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Initial Two-Group Constants

. . . ) | -1 -1
|
Material Region Group i Di {cm} Zi(cm ) uzfi{cm ) 21+2{cm }

1 1,15 1 1.0684+0 2.8-2 0 2.6-2
2 0.32051+0 3.3-3 )] -

2 2,14 1 1.3495+0 1.201-2 0 l1.2-2
2 8.7032-1 1.9-2 (i) -

3 3,4,11 1 1.3052+0 1.0475-2 1.1776-3 8.0351-3
2 8.8857-1 1.3063-2 1.3268-2 -

4 5,12 1 1.3052+0 1.0475-2 1.1776-3 8.0351-3
2 8.8857~1 1.2623-2 1.,3268-2 -

5 6,13 1 1.3052+40 1.0475-2 1.1776-3 8.0351-3
2 8.8857-1 1,2183~-2 1.3268-2 -

6 7.8 1 1.3052+0 1.0475-2 1.1776~-3 8.0351-3
2 8.8857-1 1.3453~-2 1.3268-2 -

7 9 1 1.3052+0 1.0475=-2 1.1776=-3 8.0351-3
2 8.8857-1 1.2973-2 1.3268=-2 -

8 10 1 1.3052+0 1,0475-2 1.1776-3 8.0351-3
2 8.8857-1 1.2933-2 1,3268-2 -

9 lé6 1 1.2997+0 1.0470-2 1,2875-3 7.9061-3
2 8.7951-1 1.3065-2 1,4246-2 -

Xl"l XZ’O

Cross section data for Argonne R-Z
Benchmark problem ID-8-AI.

Pig.

{6)



Table (1)
Code Type Machine Lab. Computed Initial | Remarks
keff
THODTA | Finite IBM Savannah .867053 AR=8ecm A2Z2=18,75cm
Difference| 360/195 River
§.C, USA
ADEP Finite CDC6600 Chalk River .866861 AR=8cm AZ=]18.75cm T
Difference Canada
Diff2D | Finite CDC6400 EIR
Difference Switzerland .867101 AR=8cm 42=18.75cm, 20 Iterat
Diff2D - CDC174 EIR
Switzerland .86769 AR=8cm AZ=18.75cm, 39 Iteraf
FEM-2D | Finite CDC6600 IKE
Element Stuttgart .86690 Quadratic approximation
FEM-2D | Finite CDC6600 IKE Quadratic elements, more ace
Element Stuttgart .86711 computation
FINELM | Finite CDC6400 EIR 84 Triangular elements. Quac
Element Switzerland .867135 Approx. 34 Iterations, keff
ce 4E-6 Max flux dev. 2E-4
FINELM | Finite CDC6400 EIR 84 Triangles.Quadratic Apprc
Element Switzerland .8673011 Iterations keff convergence
. Max flux dev. 5.4E-9
FINELM | Finite CDC6400 EIR 42 Rectangles.Quadratic App1
Element Switzerland .86717 Iterations keff 4E~-6 Max £l
FINRELM | Finite CDC&400 EIR 42 Rectangles 4 th Order. 7¢
Element Switzerland .86718 keff convergence 2.8E-9 Max

1,3E-7

—
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Example 2.

As - simple example we chose a bare homogeneocus two group
cylindrical reactor of total height 96 cm and radius 48 cm.
The boundary conditions imposed were zero flux on the top and
bottom discs as well as on the cylindrical surface. The cross
sections used are given below in Table (2).

Cross section Group 1 Group 2
D 2.68000451313 1.57876722277
Ig 5.45770376B091E-2| 1.449608761E~2
uz? 3,0834481E-2 2.521E-2
Lgeg - 4.079207068311E~2
X .575 .425
g
Table (2}

The analytic solution for k £ is given by

ef

x. L vk X VL x.vE
121 f2 b2 f2 71 ;1 — = 1.265260034

k =
eff 2 R 2 R 2 _R
(Dla +£1IGDZB +£2) (Dza +£2} (Dln +21)

where Bz=(%)2 + (%9-)2 and H is the total height, R the maximum
radius and Yo the first zerc of Jotr). Both, the radius and the
half-height were divided into 8ix egqual intervals resulting in
a total of thirty six, 8 cm x 8 cm rectangular elements in the
R-2 plane. The results for linear, gquadratic, cubic and fourth

order approximations are displayed in Tables 3,4,5 and 6.

In all cases the stopping criteria demanded an error of less

than 1E~5 on the ke and an RMS flux error of less than l.E-4.

£t
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I;z;;::on keff keff error ::z;ngi;::izgn
1 2.000578 5.00E-1 -5.85E+0
2 1.332267 5.02E-1 -1.10E+0
3 1.306932 1.94E-2 -4.,70E-1
4 1.287940 1.47E-2 -2,17E-1
5 1.276640 8.85E-3 -1.06E-1
10 1.263670 3.22E-5 ~5.32E-4
11 1.263627 3.42E-5 =3.96E-5
16 1.263625 9.11E-9 -3.53E-7

Four iterations were required to estimate the dominance
ratio 0=,5229+,026. A six cycle Lebedev extrapolation

with coarse mesh rebalancing was used.

Table (3)

rectangular elements

Bare Homogeneous reactor 36 Linear
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Iteration

Max.Rel.Point

Number keff keff error Flux deviation
1 1.956195 4.89E-1 -1.16E+]
2 1.322131 4.80E-1 -2.21E+0
3 1.303545 1.3:3E-2 -7.28E=-1
4 1.287569 1.24g-2 -2.94E-1
5 1.277461 7.91E-3 -1.37e-1
6 1.271671 4,55E-3 -6.90E-2
11 1.264924 1.61E-5 -3,98E-4
12 1.264902 1.81E-5 -2.82E-5
17 1.264901 2.93E-9 -2,.80E=-7

Five iterations were required to estimate the

dominance ratio 0=.5415+.027. A six cycle Lebedev

extrapolation with coarse mesh rebalancing was

used

Table (4) Bare Homogeneous reactor 36 guadratic

rectangular elements
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I;:;;:ion keff keff errox :::;R;:;fgi::n

1 1.934462 4.83E-1 -2.04E+1
2 1.318210 4.67E-] =3.013E+0
3 1.301011 1.32E-2 -7.90E-1

4 1.286065 1.16E-2 -3.01E-1

5 1.276607 7.41E-3 -1.39E-1

6 1.271197 4,.26E-) -6,94E-2

11 1.264927 1.45E-5 ~4 .05E-4

12 1.264907 1.61E-5 -2.95E-5

17 1.264907 1.90E-9 ~-2.98E~7

Five iterations were required to estimate the

dominance ratio 0=,.5401+.027, A six cycle
Lebedev extrapolation with coarse mesh rebalancing
was used

Table {(5) Bare Homogeneocus reactor 36 cubic
reactangular elements
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Tamber | Xetr | ®arr T | p1L G i ation
1 1.930750 4.82E-1 =-3.03E+1
2 1.316341 4.67E-1 -3.66E+0
3 1.300033 1,25E-2 -8.43E-1
4 1.285525 1.13E-2 -3.10E-1
5 1.276305 7.22E-1] -1.41E-1
6 1,271029 4.15E-3 -7.04E-2
11 1.264926 1.38E-5 -4.12E-4

Five iterations were required to estimate the

dominance ratio ¢=.5395+.027. A six cycle
Lebedev extrapolation with coarse mesh rebalancing
was used

Table (6) Bare Homogeneous reactor 36 fourth order

reactangular elements
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Four to five iterations are required to estimate the domi-
nance ratio, 0=11/12. During this time only the coarse mesh
rebalancing is active. Thereafter, both the six-cycle Lebedev
extrapolation and the rebalancing are active. The tables
display all the iterations, prior to the activation of the
Lebedev extrapolations and only the first and sixth (the
lagt} iteration of a particular Lebedev cycle,

Example 3

This example is not a benchmark problem.'lt was chosen, how-
ever, to illustrate the effect of the acceleration techniques.
Fig. (7) depicts a simplified sketch of the Proteus experiment.
The division into elements and materials is indicated in the
diagram. The problem boils down to the computation of a
nineteen group three material, keff problem in R-Z geometry.
Linear approximations were used in order to keep costs low
since the example is included for illustrative purposes only.
The cross sections are displayed in Tables (7)), (8), (9).

The homogenized LEU2 cell corresponds to material 1, LEU2+
Aluminium to material 2 and the Reflector to material 3. As
the tables are prints out from our RSYST data system a word
of explanation is perhaps not superfluous. Spalte implies
column and Zeilen rows. Thus the statement: "Zelilen 24 bis

35 sind gleich”, indicates that rows 24 to 35 both inclusive
are identical.
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Fig.(7) A simplified model for the Prodeus 19 Group cose
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Iteration

Max.Rel.Point

Number keff keff error Flux deviation
1 3.813053E+40 7.38E-1 1.50E+4
2 1.027808E+0 2.71E+0 2.91E+2
3 6.314833E-1 6.28E-1 2.87E+1
4 7.549026E~1 1.63E~1 ~-8.07E+0
5 8.618629E-1 1.24E~1 2.17E+0
6 9.069265E~-1 4.97E-2 6.47E-1
7 9.239355E~-1 1.84E-2 -4.65E-1
8 9.310134E~-1 7.60E-13 -6.00E-1
9 9.34599E-1 3.84E-3 -8.80E-1

10 9.368233E-1 2.37E-3 -2.09E+0
11 9.383904E-1 1.67E-3 2.67E+0
16 9.429147E-1 1,.70E-4 -2.77E-1
17 9.431306E-1 2.29E-4 -1,70E-1
22 9.432230E-1 1.55E-6 ~1.34E-2

Table (10) PROTEUS-19 Group case. 18 Linear triangular

elements. Ten iterations were required to
estimate the dominance ratio o=,7546+.038.

Coarse mesh rebalancing on throughout.

Lebedev extrapolation with cycle length
six switched on after the tenth iteration.
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I;E;;;ion keff keff error giz;nsiaggt:;n
1 1.813053E+0 7.38E-1 1.50E+4
2 2,.278383E+0 6.74E-1 -5.84E+1
3 2.351700E+0 3.12E-2 -1.82E+1
4 2.088541E+0 1.26E-1 5.08E+0
5 1.960709E+0 6,52E~2 -2,80E+0
6 1.829166E+0 7.19E-2 -4.02E+0
7 1.726901E+0 5.92E-2 1.42E+0
8 1.637616E+0 5.45F-2 5.28E-1
9 1.562142E+0 4.83E~2 2.90E-1

10 1.496698E+0 4,37E~2 1,74E-1
11 1.439960E+0 3.94E-~2 ~1.44E-1
16 1.243139E+0 2,46E-2 -3.36E-1
17 1.215773E+40 2,25E~2 -4 ,.57E-1
22 1.114746E+0 1.47E-2 3.74E-1
23 1.099918E+0 1,.35E-2 2.57E-1
28 1.043603E+0 8.88E-3 ~-1.16E-1
29 1.035142E+0 8.17E~3 ~1.18E~-1
34 1.002602E+0 5.39E-3 -1,39E-1

Table (11} PROTEUS-19 Group case. 18 Linear Triangular
elements. Both, Lebedev extrapolations and

coarse mesh rebalancing switched off.
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Iteration

Max.Rel.Point

Number keff keff €rXor! plux Deviation
1 3.813053E+0 7.38E~-1 1.50E+4
2 1.027808E+0 2.71E+0 2,91E+2
3 6.314833E-1 6.28E~-1 2.87E+1
4 7.549026E~1 1.63E-1 -8.07E+0
5 8.618629E~1 1.24E-1 2.17E+0
6 9.069265E~1 4.97E-2 6.47E-1
7 9.239355e-1 1.84E-2 -4.65E-1
8 9.310134E~1 7.60E-3 -6.01E-1
9 9.345995E-1 3.84E-3 -8.80E-1

10 9.368233E-1 2.37E-3 -2.09E+0
11 9.383904E-1 1.67E-3 2.67E+0
16 9.420115E-1 4.11E-4 -3.06E-1
17 9.423055E~1 3.12E-4 -3.03E-1
21 9.429220E-1 1.03E-4 -2.79E-1

Table (12) Proteus-19 Group case, 18 Linear Triangular

elements. Only coarse mesh rebalancing

switched on.
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Igﬁzgzion keff keff error :iﬁ&agi;igt:;n
1 3.813053E+0 7.38E-? 1,50E+4
2 2.278383E+0 6.74E-" -5.84E+1
3 2.351700E+0 3.12E-2 -1.82E+1
4 2.088541E+0 1.26E-1 5.08E+0
5 1.960709E+0 6.52E-2 -2.80E+0
6 1.829166E+0 7.19E-2 -4,.02E+0
7 1.726901E+0 5.92E-2 1.42E+0
8 1.637616E+0 5S.4SE=2 5.28E-1
9 1.562142E+0 4,83E-2 2,90E-1

10 1.496698E+0 4,37E-2 1.74E-1
11 1.439960E+0 3.94E-2 -1.44E-1
16 1.192367E+0 2,59E-2 ~1,89E+1
17 7.156629E~1 6.66E-1 3.17E+1
22 -1.772160E+1 2.33E-1 -3.51E+2
23 -1.599682E+1 1.08E-1 9.BlE+1
28 -6.787647E+0 1.75E~-1 -1.07E+1
22 -5.568387E+0 2.1%E-1 3.02E42
34 -2.234791E+0 1.74E-] ~6.5TE+0

Tvble (13} Proteus-19 Group case. 18 Linear Triangular

elements. Ten iterations were required to
estimate the dominance ratio 0=.8942+.04,
without ueing the ccarse mesh rebalancing.
A 8ix cycle Lebedev extrapolation was
ewitched on after the tenth iteration.



IHM denotes the length of the table i.e. the number of cross-
sections specified for a given material in a specific group.
IGM indicates the total number of groups, IHT and IHS the
position, (the row label), containing the total and the self
scatter cross sections, respectively.

Tables (10), (11}, (12) and (13) display the results. Table
(10) displays the results for the case where both the coarse
mesh rebalancing scheme and the Lebedev extrapolation are
activated. Ten iterations are required to estimate the domi-
nance ratio to within + 5 % and during this time only the
coarse mesh rebalancing scheme is active. Thereafter, both
the six cycle Lebedev and the rebalancing are active. Only
the first and the last iteration of a particular cycle are
displayed. Table (10} is used as a reference. Tables (11},
(12) and (13) display identical iterations, whenever possible,
for the sake of comparison.

The dominance ratio, ¢, is a property of the iteration matrix.
The result from Table (5) indicates 0=.7546+0.038 and Table
(13) indicates ¢=.83942+0.04. In practice the dominance ratio

is computed via the flux which is the solution. Table (13}
reflects a situation where no precautions are taken to ensure
that the system is in neutronic balance. The rebalancing has
greatest beneficial corrective effect on the upscattering
which 1is predominant in this example. These, scattering sources
are corrected, in Tables (10) and (12) and hence the difference
in the estimated o. The de~stabilizing effect of the Lebedev
extrapolations in the absence of neutronic balance may also

be noted. Table (11) displays the results of the situation
where neither the rebalancing nor the extrapclations are in
operation, It is to be noted that the convergence is very

slow, but still, no instability results; Table (12) displays

the results with only the coarse mesh rebalance active.
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Unfortunately, the rum terminated one iteration short. Comparing
Tables (l1) and (12) we see that the error in the keff reduces
by a factor of approximately 0.92 every iteration, or by 0.66
over a cycle of six iterations in the absence of neutronic
balance and by a factor of approximately 0.76 per iteration

i.e, 0.25 for a cycle of six iterations when neutronic balance
obtains. Note that these numbers correspond within a tolerance
of + 5 % to the dominance ratios estimated in Table (10) and

(13).

The reason for discussing this problem at any length was to
demonstrate the importance of the coarse mesh rebalancing in

the presence of strong upscatter,

Example 4. 2D-IAEA Benchmark problem for L.W. reactors

This probhlem is an X-Y problem and has been discussed in detail
in (1). It is a two group problem with no upscattering. Figs.
{8) and {(9) display the error in average power against the
number of iterations for a cubic and a fourth order approxima-
tion with and without the Lebedev extrapolation. No coarse

mesh rebalancing was used. In both cases the standard 9x9

mesh which results in sixty nine triangular elements was used -
vide Fig. (13) in reference (l). The benefit of the Lebedev
extrapolations is evident. The inclusion of coarse mesh re-
balancing brings no additional tangible improvements. This

is due to the absence of upscattering. The rebalancing, as
implimented here, brings most benefit when upscatter is present.
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