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ABSTRACT

A mode of 'disparitions brusques' 'sudden disappearance of eruptive

prominences) is discussed based on the Kippenhahn and Schliiter configura-

tion. It is shown that Kippenhahn and Schluter's current sheet is very

weakly unstable against magnetic reconnecting modes during the lifetime

of quiescent prominences. Disturbances in the form of fast magnetosonic

waves originating from nearby active regions or the changes of whcle

magnetic configuration due to newly emerged magnetic flux may trigger a

rapid growing instability associated with magnetic field reconnection.

This instability gives rise to disruptions of quiescent prominences and

also generates high energy particles.
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I. INTRODUCTION

It is well known that quiescent prominences are long-lived, slowly

changing phenomena with lifetimes ranging from days to months, and

which sometimes undergo a sudden disappearance due to an ascending

motion which is called as 'disparitions brusques' (see Tandberg-Hanssen,

1974). Their dimensions are generally taken to be of the order of 5 x

10 km wide, 5 x 10 km high, and 10 km long. The characteristic

temperature is of the order of 5 x 10 K and the electron number density

is in the range of 10 cm" . The magnetic field is not as yet directly

measurable, but limb observations give a line of sight magnetic field B,,

which is in the range of 0.5 to 30 or 40 gauss (Tandberg-Hanssen, 1974).

The cause of disparitions brusques generally is a flare-induced

activation and here the external perturbations have a profound influence

on the stability of quiescent prominences. Some temporary disturbances

seem to trigger an instability which causes the disparition brusque.

Skylab observations have shown that the filament disruptions

represent one of the most important mechanisms of solar activity (see

Svestka, 1980). Soft X-rays pictures show a brightening above the place

where the filament just disappeared (Svestka, 1976, p.230), which means

that there occur plasma heating and particle acceleration.

The filament activation has been discussed in connection with the

two-ribbon flare. After the disparition brusque, X-rays pictures show

that a system of growing loops has maximum brightness at their tops,

where temperature exceeds 10 K (Svestka, 1980). This loop system

grows and at the same time the two ribbons drift apart at the loop

foot points (Svestka, 1976, Fig.6). Hyder (1967) has presented a

phenomenological model for disparitions brusques based on the



- 3 -

Kippenhahn and Schuluter model (1957) and the Dungey model (1958). For

a comprehensive review of prominences and models the reader is referred

to Tandberg-Hanssen's book (1974).

Since the Kippenhahn and Schliiter model, several attempts of

explaining the structure of quiescent prominences have been made (Low,

1975; Lerche and Low, 1977; Heasley and Mihalas, 1976; Milne, Priest

and Roberts, 1979; Low and Wu, 1981) by the combination of magneto-

statics and energetics.

On the other hand, the problem of the stability of quiescent

prominences has been attacked by several authors (Kuperus and Tandberg-

Hanssen, 1967; Anzer, 1969; Nakagawa and Malville, 1969; Nakagawa, 1970;

Pustil'nik, 1974; Dolginov and Ostryakov, 1980; also see Tandberg-

Hanssen's book, 1974). However, the triggering mechanisms causing

disparitions brusques are still not clear.

In the present paper we propose a model of disparitions brusques

as an instability externally driven by MHD waves, based on the

Kippenhahn and Schluter equilibrium model which is generally accepted.

Except for Rayleigh-Taylor instability which may be important for

limiting the size of prominence (Dolginov and Ostryakov, 1980), the

Kippenhahn and Schluter configuration is stable against ideal MHD

perturbations with k-g = 0 (Miglivalo, 1982). In Sec.II, we present

the stability analysis for resistive MHD perturbations, especially

magnetic reconnecting modes which may be important for the explanation

of plasma heating and particle acceleration processes observed after

disparition brusque. It is shown that the Kippenhahn and Schluter's

current sheet is very weakly unstable against magnetic reconnecting

modes during the lifetime of quiescent prominences.

In Sec.Ill we discuss some temporary disturbances such as fast
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magnetosonic waves originating from nearby active regions or the

changes of whole magnetic configuration due to a newly emerged magnetic

flux nearby. We show that these disturbances may trigger a rapid

growing instability associated with magnetic field reconnection. It

is shown that the ponderomotive force due to finite amplitude fast

magnetosonic waves can induce an effective ascending motion which in

turn causes a rapid growing instability with broad band fluctuations.

In Sec.IV we discuss some nonlinear effects associated with reconnecting

modes and suggest the plasma heating and particle acceleration mecha-

nisms.

II. STABILITY OF KIPPENHAHN AND SCHLUTER MODEL

AGAINST RECONNECTING MODES

I I - l . Kippenhahn and Schiiiter Model

We briefly review the Kippenhahn and Schliiter model, which is a

most simple analytic model. A dense plasma sheet in the corona against

gravity is supported by the magnetic tension (Fig.1). The solution can

be obtained from the static equilibrium equation,

" 4 ¥ c u r l B o x B o =

and the equation of state,

Po = no<TQ , (2-2)

where p is the density, p the pressure, B the magnetic field, n the

number density, T the temperature and K Boltzman constant. The magnetic
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field and density distribution are given by the following relations,

Bxo(y) = B^tanhfy/a) , (2-3)

Byo = Bn = const- • (2"4)

P0(y) = P(0)sech
2(y/a) , (2-5)

where a is the characteristic width of the prominence, B^ the magnetic

field component far from the sheet, p(0) the density at y = 0 (Fig.2(a)).

From the force balance in the x direction, we have

^ (2-6)

where c is the sound velocity (temperature is assumed to be constant),

and E shows the measure of relative strength between B and B . In then x y
3 4corona, E is in the range of 1-1C, if we use a 'v 5>10 km, g % 10

cms"2 and T ^ 5 x TO3 K.

I1-2. Reconnecting Modes

We investigate the stability of the current sheet shown in Fig.2(a)

against reconnecting modes, namely current filamentation instability in

which magnetic field disturbances are schematically drawn in Fig.2(b).

This reconnecting mode has been treated (Nishikawa and Sakai, 1982) in

connection with tearing modes (Furth, Killeen and Rosenbluth, 1963),

because in the limit of E -*• 0, the Kippenhahn and Schliiter configura-

tion becomes an ideal neutral current sheet with completely anti-parallel

magnetic field.
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We present basic MHD equations including gravi ty,

!£•+ div(pv) = 0 , (2-7)| f

p(^r + v- v) = -vp + 7T- curl B x B - pge , (2-8)

2
| f = c u r l ( v x B ) + ^ A B , (2-9)

2
where the pressure is p = pc and o the conductivity. The plasma is

assumed to be incompressible, because the prominence plasma is low 3.

Introducing vector potentials <f> and A defined by v = curlcfie and B =

curl Ae , and furthermore l inearizing Eqs.(2-7)-(2-9) around the equi-

l ibrium solutions of Eqs.(2-3)-(2-5) leads to the following system of

equations,

3pn ~, dpm

3t[a7(po W + 37(po 37)] " ̂ -\o^] ~~^2~^

Bn

where Eq.(2-11) can be derived from the z component of the curl of Eq.

(2-8) and Eq.(2-12) is the x component of Eq.(2-9). The last term

3p,

g -5— in Eq.(2-11) gives rise to an effective acceleration on disturb-

ances which leads to strong stabilization on reconnecting modes. Taking

B •* 0, these equations reduce to those derived by Furth et al.(1963).
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We assume that a l l physical quantities vary l i ke f(y)exp[i(kx - u)t)]

and we normalize these quantities as follows: p, <j>, A, y , and t by o(0),

v.a, aB^, a and T . , respectively, where v.

a/v,. After some manipulations, we obtain

1/2v.a, aB^, a and T . , respectively, where v. = BOO/{4TTP(0)} and

^ | = EA + F ^ + G * , (2-13)
dy

^ f = P § + Q4 + R fy + VA , (2-14)

where coeff icients are given by

E = a2 - i5u> , F = -SEn , G = - isath(y) ,

P = {[2th(y) + - ^ sh(2y)[S - | sech2(y)])/T ,
o o

Q = ( ~ (SEn + iSash2(y) - 21 / [1 - 3th2 (y) ] } + a2)/T ,
o o

(2-15)

R = SEnch2(y)/T ,

V = ash(2y)[iS/2 - -1" sech2(y)]/T ,

sE2 .
T = 1 + i — - ch (y) , a = ka, w = urr. .

2 2
S = T R / T . ( in = 4waa /c ) shows the magnetic Reynolds number which is

7 8the order of S = 10-10 in the prominance. Alfven t ransi t time T. is
Q

T« = 20 s and the resistive diffusion time T R is about T R = 10 s. The

eigen-value equations, (2-13) and (2-14) have been solved for the even

A and odd <j> mode (Fig.3) which shows magnetic islands. The numerical
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procedure employed is referred to our previous work (Nishikawa, 1980).

The characteristics of the reconnecting mode are summarized as

follows:

(1) As shown in Fig.4, gravity, namely the normal magnetic field

Bp (see eq.(2-6)) has strong stabilization effect against the reconnect-

ing mode. The growth rate yr. is proportional to S" for E > 0.1 as

-3/5compared to yj. « S for the classical collisional tearing mode. It

7 8is difficult to compute the growth rate in the range of S = 10 -10 for

prominences, however, we find that the growth rate yi, is the order of

YT = 10" -10" by the extrapolation of computational results. This
Q

growth time is close to the diffusion time T R ^ 1 0 " s, which means that

the prominences are almost stable during their lifetime (several months

- 107 s).

(2) The growth rate versus wavenumber is shown in Fig.5. The

maximum growth rate occurs near ka = 0.2. The reconnecting mode has a

real frequency, which shows that the magnetic islands can propagate

along the vertical direction of the prominence.

From these results, we conclude that the prominence based on

Kippenhahn and Schliiter model is almost stable against the reconnecting

mode.

III. TRIGGERING MECHANISMS OF DISPARITIONS BRUSQUES

Observations indicate that the whole prominence rises in the

atmosphere at a steady increasing velocity and disappears. Since the

prominence often reform in the same location and basically with the

same shape, it is thought that the supporting magnetic field is not

destroyed, merely temporarily disturbed. This temporary disturbances
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seem to trigger an instability which causes the disparition brusques.

Some disturbances may originate from nearby active region or solar

flares.

We propose two triggering mechanisms leading to ascending motion

of prominences. One possibility is that if some disturbances may hit

the foot magnetic field supporting the prominence, to increase the

normal magnetic field B , the magnetic tension may exceed the gravity

force and in turn, give rise to ascending motion. Another possibility

considered here is the interaction between the reconnecting mode and

fast magnetosonic waves originating from other active regions or solar

flares.

We may imagine that the finite amplitude fast magnetosonic disturb-

ances propagate vertically along the prominence, because in the prominence

the main magnetic field is horizontal component, i.e., (B >> B ). If

we consider fast modes with the wavelength \x which is smaller than the

width, a of the prominence (\± < a ) , it is a good approximation to

neglect the diffraction effect due to inhomogeneity and also to treat

fast modes propagating almost perpendicular to the normal magnetic field

V

III-l. Ponderomotive Force due to Fast Magnetosonic Waves

We consider nonlinear fast magnetosonic waves propagating in the

prominence which originate below it. Recently the ponderomotive force

due to fast waves has received much attention, because it can produce

plasma vortex motions and excite forced tearing modes and ballooning

modes (Sakai and Washimi, 1982; Sakai, 1982(a)). The ponderomotive

force due to fast waves (sakai and Washimi, 1982) is given by
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where I denotes the wave intensity of the fast waves, I = \i>\ =

(AB/B ) . The y component of :':.e force means that it acts as a negative

pressure, while the x component acts as a usual pressure. From the fact

that curl F f 0, we can conclude that the pond-?romotive force creates

plasma vortex motions which may enhance che weakly unstable reconnecting

modes in the prominence. If we take into account the ponderomotive

force due to fast magnetosonic waves into Eq.(2-11), it should be read

as 2

J_ rD M^K\ _ d Bxo 3A .
3x

(3-3)

where the last term represents the effect of the ponderomotive force,

which comes from the z-component of curl F.

111-2. Wave Kinetic Equation for Fast Maqnetosonic Waves

In order to make dicussions self-consistent, we have to consider

the wave kinetic equation for fast magnetosonic waves, which describes

the wave intensity I, interacting with the reconnecting modes. The

wave kinetic equation (Sakai and Washimi, 1982) is given by

!L + „ .3L + JL T + _L r-L 2£ A _ s2ft

3t Vg 3X vg vg
 Lp Q 3x - 2,p0 ^ T
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where v is the group velocity of the fast waves and p the pressure

perturbation associated with the reconnecting mode, which is given by

P = P ^ . (3-5)

The basic equations describing the coupling between the fast magneto-

sonic waves and the reconnecting modes are Eq.(2-10), (2-12), (3-3) and

(3-4).

III-4. Forced Reconnecting Modes due to Fast Waves

If we assume that the external fast magnetosonic waves persist long
p

enough (> 10 s) during the interaction with reconnecting modes, we c?n

divide the wave intensity I into two parts,

K x , y, t) = IQ(x) + I^x. y, t) , (3-6)

where I is determined from the equation

which gives a solution

I0(x) = I(0)exp(-gx/v*) . (3-8)

I, represents the perturbation due to the coupling with reconnecting

modes. From Eq.(3-8), we find that the wave intensity gradually

decreases in the vertical direction, where its characteristic -cale-
2 7 - 1

length A is given by A = v /g. If we use v - v = 2-10 cm s ,
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g = 10 cm s~ , A becomes A = 4 x 10 cm, which means that the wave

intensity I is nearly constant in the prominence, because A is larger

than the characteristic height (5-10 km) of the prominence. Assuming

all perturbed quantities as f (y)exp[i(kx - o>t)] and linearizing Eq.(3-4)

around I , we find

y g y

where we used Eq.(3-5). As shown later, the real frequency part is

approximately given by OJ - kv = kv. , which shows that the dominant

terms in Eq.(3-9) are first and second terms and also the dominant term

in the denominator in Eq.(3-9) is the last term. From these considera-

tions and elimination of I-| in Eq.(3-3), we obtain

2
d3A B n k , ,. , dA
dy3 4rrpoiu [ ' 4 k f l V dy

s A , o} d

where the last two terms shows the modification due to the ponderomotive

force of the fast waves.

Here we consider the physical mechanism, why the slowly growing

reconnecting modes can be enahnced by the ponderomotive force of the

fast waves. We imagine the situation where there occurs weakly unstable

reconnecting modes shown in Fig.2(b). Near the X-points region the

plasma exhibits inflow into the X-point, while near the 0-type region,

the outflow occurs. Equation (2-10) gives us that the density enhance-
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ment appears near the O-type region, on the other hand the density

decreases near the x-point. The coupling eq.(3-9) between the

reconnecting modes and fast modes indicates that the density increment

gives rise the decrement of I, and vice-versa, because the dominant

term of Eq.(3-9) should be read as I-, = i(kl c /gp )p-,, which shows

that p, and I, are out of phase with each other. These interactions

cause the .,(homogeneous distribution of the intensity of the fast mode,

which was nearly constant in the prominence. The wave intensity can be

enhanced near the x-point region. Eventually, the ponderomotive force

of the fast mode can drive the plasma vortex motions near the x-point

shown in Fig.6.

We have confirmed by numerical calculations that the main term

contributing to the stability is the last one in Eq.(3-10), which

represents the acceleration effect due to gravity, if the ponderomotive

force does not exist, and furthermore the term including 9A/3y is not

essential for stability problem, only modifying the real frequency part.

If we take into account the ponderomotive force, and the intensity

I exceeds a critical value I given by

(3-11)

the sign of the last term in Eq.(3-10) can change, which means that the

effective gravity due to ponderomotive force exceeds the gravity, g.

It is easily understood that if the net gravity becomes inverted by

the lifting force due to fast waves, the system will be more unstable.

In order to confirm the above idea, we have changed the sign of gravity

in Eq.(3-10) and calculated the growth rate. The growth rate and real

frequency versus B /B are shown in Fig.7, with parameters, S = 10 3,
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a = ka = 0.5. From the numerical calculations, we find that the forced

reconnecting mode does not depend on S, which means that the instability

can be driven by the effective accelerating term due to the pondero-

motive force. The growth rate Y T . is about y^n - 0.3 in the region of

En - 0(1), which means that the typical growing time x is about T =

100 s and very rapid.

Another interesting character of this instability appears in its

eigenfunction of velocity shown in Fig.8. The eigenfunction <j> oscillates

across the current sheet, which means that the instability creates

multiple plasma vortexes across the prominence. Furthermore, fairly

broad band waves with shorter wavelength than the width of the promi-

nence can be excited. By making use of quasilinear approximation, we

can estimate the diffusion coefficient Dx across the prominence,

Di = I ; 2
l k • o l*k|

2 • (3-12)

ku> 2(a£ + Y2) K

We can estimate the total mass loss M. as

1& = pdxds = Dx J£ AtSQ , (3-13)

where At is the typical growth time, which is taken as At = 10 s, and
in p.

3p/3x = minQ/a = nu 10
 u/5 x 10° = 20 n^. SQ is the total area, SQ =

5-10 km x 105 km = 5 x 10 cm . On the other hand, the diffusion

coefficient D± is approximately given by

(3-14)

where we used uy » y in the case of E n = 0(1) and v. is typical random



- 15 -

velocity. As y - 0.3 x^ and ^ - T'^ , we find

(3-15)

Observations (Tandberg-Hanssen's book, 1974) show that prior to a dis-

persion brusque, the prominence material exhibits increased random

motions with velocities v. = 30-50 km s~ . If we use this value as v,

in Eq.(2-30), we obtain D± - 10
1 5 cm2 s"1. The total mass loss M^ is

about NL = 10 m.g, which is about 20 % of original total prominence

mass. Due to the mass loss leading to the unbalance of forces along the

vertical direction [p g < (B /<•

the observed ascending motion.

vertical direction [p g < (B /4IT)(3B /3y)], the prominence may exhibito n xo

IV. DISCUSSIONS AND CONCLUSIONS

We have shown that the current sheet prominence of Kippenhahn and

Schliiter is almost stable against reconnecting modes, however, it becomes

suddenly unstable with the time scale T = 10 s by the externally driven

nonlinear fast magnetosonic waves. The threshold of fast waves causing

forced reconnecting instability is given by Eq.(3-ll), which can be

estimated as Ic = 0.5(vA/cs)
2(kA)"2. If we take vA/cs - 10, and (Id) -

2 -210 , I is about I = 0.5-10 , which means that if the wave amplitudec c

ty = AB/B of fast waves exceeds i|i = 0.07, the forced reconnecting mode

can be excited by the ponderomotive force of the fast waves.

The fast magnetosonic waves with relatively high amplitude <JJ ̂

0.1 may be excited from other active regions or solar flares. It is

interesting to note that such finite amplitude fast magnetosonic waves

that excite reconnecting modes are modulational unstable (Sakai, 1982(b)),
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and decay into slow magnetosonic modes associated with local enhance-

ment of the amplitude. The modulational instability of which threshold

i>m is given by ip = c /v. = 0.1 gives rise to more effective interac-

tion between fast waves and reconnecting modes.

Besides the role of fast magnetosonic waves causing the effective

acceleration, the increase of supporting magnetic field B due to hil>

ting of the foot or whole magnetic field change by a newly emerging

magnetic flux nearby may give rise to the ascending acceleration, and

in turn there appear forced reconnecting modes.

It is important to consider the nonlinear stage of the forced

reconnecting modes, in connection with plasma heating and particle

acceleration mechanism, because as mentioned before soft X-rays

pictures (Svestka, 1976} show a brightening above the place where the

filament just disappeared. In the early stage of the reconnecting

instability, many current filaments are produced with currents all in

the same direction. Such a system will be unstable against nonlinear

coalescence instability (Wu et al., 1980; Leboeuf et al., 1981), which

leads to intense plasma heating and particle acceleration. It is

important to keep in mind that about 10 % of the magnetic field energy

sustaining current filaments can be converted to plasma thermal energy

as well as high energy particle acceleration. The nonlinear coalescence

instability is thought to an important mechanism for plasma heating

after disparition brusque as well as solar flares and X-rays brightening

in the corona (Tajima et al., 1982).

We have investigated the triggering mechanism of desparitions

Brusques by fast magnetosonic waves which leads to forced excitation

of the reconnecting mode. The reconnecting mode can also be externally

driven by the finite amplitude shear Alfven waves which may originate
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from the foot of the magnetic field sustaining the prominence. The

details of this mechanism will be published elsewhere (Sakai, 1982(c)
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FIGURE CAPTIONS

Fig. l A schematic configuration of a quiescent prominence based on

Kippenhahn and Schlliter model.

Fig.2 Magnetic f i e l d configurations, (a) The equilibrium state.

(b) Reconnecting modes and vortex motions.

Fig.3 Eigenmode structures of A and $ with S = 10 , E = B /Bm =

0.01, ka = 0.5, and COT. = 0.001806 + 0.010491. The amplitudes

of A and $ are plotted in arb i t rary uni ts .

Fig.4 Dependence of the eigenvalues on the values of E = B /B^ with

ka = 0.5 and S = 103, 104, and 105.

Fig.5 Growth rate and real frequency as a function of ka with S = 10

and E = B /B = 0.01.n n °°

Fig.6 The plasma vortex motions due to the ponderomotive force of the

fast magnetosoi.ic waves.

Fig.7 Growth rate and real frequency of the forced reconnecting mode

as a function of E n = B^B ^ with ka = 0.5 and S = 10
3.

Fig.8 Eigenmode structures of A and <f> with S = 103, Ep = B ^ B ^ = 0.1,

ka = 0.5 and OJT. = 0.02078 + O.H27i. The oscillating structure

of <i> makes a series of vortexes in the magnetic island. The

amplitudes of A an^ <|> are plotted in arbitrary units.
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