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In twistorial description of fields, cne sometimes has the option of con-

"TiitUng integral representations, etc., in terms of twistors [ZJ ), or in

t̂ r-TiS cf dual twistors (w1^ )• The difference is not always a trivial one, once

the basic conventions have been made. (One could say that this difference • «

f.'ikral in some recent speculations [±\ , which, however, dealt with a different

aspect of the subject.)

We recall for reference two basic contour-integral representations for a

positive-helieity field (cf. e.g. [2^ ) :
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where f is a suitably chosen analytic function of homogeneity k, Z = (cO ,tT ,) >

-A'
) , and

y > p ^ ^ j - + (_̂  ir uc,» 5 {1-2a)

"^

For a negative-helicity field, the roles of twistors and of dual twistors are

interchanged.

V!;f cearesentation (1.1a) was discovered earlier and has been studied more

extensively than (1.1b). E.g., techniques have been developed for incorporating

.u;to (l.l.'i) the effect of a background anti-self-dual electromagnetic field.

in this note we summarize these techniques, and we indicate how a similar modifi-

cation for (1.1b) could be derived. We illustrate some of the formulas with the

help of an example of a constant field. Furthermore, we adapt Lerner's construc-

tion for the inverse transform, if to (1.1b).f ,

One could aay that the formulas which we obtain for the case (1.1b) are fairly

;Ursct extension;; from those for (1.1a). However, we felt that they complement

their (i.la) -counterparts to a sufficient extent, so as to justify the present note.

Vs remark that we express our conclusions primarily in terms of integral

'-rTTeseritaUons, and we largely omit cohomological interpretations.
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2. Background electromagnetic fields.

We first summarize a twistorial approach to the background-field problem.

(This approach has been called the "twisted photon".) The following summary

is based on [3], and it includes some supplementary remarks.

Let F^^ be an anti-self-dual electromagnetic field, which is determined

by the twistor function fQ(Z), the two being related by the twistor-space ana-

logue of (1.1b). Let t£ be an associated potential; F = V i
B AB C (A '

i C'V i
C (A ' B)

This

potential is trivial, i.e. a gradient, when restricted to an Jo-plane (cf. [3dj ,

proposition 3.2). We can therefore write ^ = V ° V for the components of the

potential <£ which are tangential to the plane. The field % is called a Hertz

potential.

We recall that an 0(-plane consists of points y + n u , where the comoo-
AAr A1 A

" e" t S yAA' a" d ^A1 a r e f i X 6 d W h i l e t h e 'Jk a r e v a r i a b l e- I n general, f

depends on the T^,, and this dependence could designate an 0£-plane or planes

under consideration. We will look for /'s which are homogeneous of degree zero

in the TC^ , and we will write JT(X, f ) where 1 = ̂ , / ^ , . (The fixed point

(y.y ,
AA1 of an Of.-plane apparently plays no role in the present analysis.) Now,

the derivatives with respect to \) , i.e. tangential to an jc-plane, are tf
—• B' B'

°r T ' B , 7 ' A -
 It; would therefore be desirable to determine J (for a given <§

which would satisfy the following equation,

_\ rB'/ \

- "V
,B'.

It turns out that there is a convenient way of solving this equation, namely

(cf. |_3eJ and also the next section),

•„:..!-.- i" ix,>, ) is the function n f (Z). (It can be shown that the l.h.s. in
O ' X O

(2.1) is then a linear function of %.) This solution in turn enables us to gene-

ralize (I.la) as follows. Set

'-.l) yields directly

The representation (2.3a) seems to be part of the folklore of twistor theory j_4j,

but we have not seen it previously in print.

Kquation (2.1), its solution (2.2), and the resulting representation (2.3a)

Tire strikingly simple. It appears that the corresponding analysis in terms of

dual twisters has to be rather more involved. In order to prepare for such an

analysis, we should like to describe an alternative method of solving (2.1).

let us return to F and to f . We determine $ through a relation
AB o B

of the kind XCV ) F > without summing over A. Observe that V corres-
C' A AB ^ A

ponds to the following action in the integrand of (1.1b) (transformed to twistor

space)

We set therefore,

(2.4)

(2.5)

Th.is expression is not manifestly covariant, in view of 1T t but nonetheless

it leads directly to the desired F . Ule will see in the next section that it

IE possible for different f to yield the same F but different <£ ,
o AB a

In order to determine

in (2.1). This equation then gives

by this kind of procedure, we first set V* = 0

(V ) <f> (without summing),

and

§ (W xr) . (2.6)
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(2.7)

we see that (2.6) is in fact a special case of (2.2),

Next, to obtain '/(x.f) for a given f T 0, one can make a transformation

of the spin basis so that (IT ,, IT ,) ~* (0, '"'',,). and proceed as before. The

resulting "jf will clearly depend analytically on £ . So one obtains (in prin-

ciple) a solution of (2.1) which is suitable for use in (2.3a). (It is not

clear if this solution equals that in (2.2).)

We now turn to the dual situation. First we note that in place of (2.4)

we have here V : •* - itT d/3cJ , so that the analogue of (2.5) is

(2-8)

(We might not have <£ = <k . ) Furthermore, we may set JJf = (V

Hertz potential for the <J> . Then, using oi = O ,

) $

(2.9)

By introducing C = If /fT and recalling (2.7), we can write this in a form
J 0 1

resembling (2.2) with J = 0:

(3.10a)

(H.lOb)

Next, let us allow Jff to depend on {, or on the TT and let us wri

dual to (2.3a) as an Ansatz:

By applying \J , we see that we can fulfill (2.3b) (for the

If in place of (2.1), 7 satisfies

(2.12a)

- 5—

where we suppressed the dependence of the TT , on the other indices. The XT

are known functions if f is given. Therefore it is possible to make a change
n—2

of spin basis, go that (TT ,IT ) -> (0,Z ), and then to find the corresponding

f, , as before. This is our proposed solution to eq. (2.12a), and to the problem

of determining Jt in the Ansatz (2.11) in such a way that cp fulfills (2.3b).

- Example: the constant anti-self-dual field.

The literature on twistors contains still very few explicit examples. For

this reason we feel justified in presenting the following trivial one. We con-

sider E_-iH, given explicitly by

F ~-

We employ the standard spinor notation.

00' = Z
-L î t-iZ

t-jc
(3.2)

1' l'O'
(and the antisymmetric ( £ ) with £ = 1, etc., yielding fr = £ fr | =

- TT , , etc.), Then d ic - 2 ' (dx - dx ), etc. , and

(3.3)

This form is symmetric under the interchange O H I , and skew under 0' •-* 1'. We

set therefore as usual (P*"" ) •*> (F £ ) and have the correspondence

The normalization F =E is consistent with subsequent formulas.

The contour-integral representations (l.lb,a) (but with Z and W inter-

changed) can now be obtained by choosing the following functions of twistor

variables, respectively:

(3.5)
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The contours have to separate the poles at -TT̂  i = 0 and at V -= Q for f ,

and those at fr =0 and at TT =0 for f
0 1 -4. Now, f determines the follow-

o
ing potential components through (2,5),

)

BCwhich fulfil V <£ =0 and V.,
•AB-

(3.6)

One may also verify that if we

add e-g- CJ /fr , to f , then <f will be altered by a pure gauge term, and

that here the potential components $ specified by (2.3) equal the preceding

i . The total potential (fulfilling d £ = F ) now is:
D

A
"

(3.7)

We turn to the Hertz potential. Equation (2.2) (with g" inside the contour)

gives directly

(3.B)

The verification of (2.1) is now direct, but the following points are worth not-

ing. Let us write /J =^ Q+ % X- • Then ^ =7l'j

T-01 ° B

However, for the <£ , (2,1) yields two separate contributions:
D

' i n accordance with (2.6).

•f

-0'

•3 '
(3.9a,b)

In fact, one can show, by extending slightly the analysis of sec. 2, that the

relation (3,9a) is a general one.

(We may point out, with regard to (2.2). that in other articles other con-

ventions are used. One sees there (2<i"i) and ( £ ' - ? ) instead of our

(4-lTi)"1 and ( l'. - 2 f r 1.)

We make a further comment. In sec, 2 we explained the origin of the rela-

tion <S =O 7 for an anti-self-dual field. It is therefore somewhat sur-

a D O
^-A' A'

prising that in this example one can also find J', y " such that tj -\J ^'

rA 1 A'
and <J - y yt "' ^ e s e e n o c^- e a r interpretation for this fact.

4. The inverse transform.

We consider the maps Cp -» f , f -» f , inverse to (l.la,b). An expli-
J -n-2 ' n-2

cit and elegant construction of the first was given by Lerner ^5J, and we should

like to adapt it so as to obtain the second.

We recall a few formulas from loc. cit. Let <$> ( be a positive-fre-

quency field with n indices. It can be expressed in terms oijits Fourier trans-

form in the following way,

where V is the future light cone. We assume that ^ satisfies a condition

iQ —
p )of integrability (and of smoothness, cf, below), as well as: Cp(e Pn,i

= e ^(p >P ). We choose a cut in V in such a way that p p = r TT t fr

r > 0. Then (4.1) becomes

V- .c- ( 4' 2 a )

(4.2b)

One now obtains f by transforming F
-n-2 -n-2

We see that the factors TT in (4.2a) can be replaced by the V :=
B o

C-n p ^ ^

d/dC(T x ), provided that the additional factor (-ir) is supplied with
~ ^(n+2)

each fr T. This replacement therefore entails replacing also r in

(4.?b) by r ! ° , The integral then diverges (if n J 4), and has to be

regularized. We write:

(4.3b)

Let us set r ! = s. We then find the combination ds-s . For regulari-

zation we employ techniques described in [~6J , and interpret the singular factor

in terms of the distribution s^ . This distribution has a pole when A is a
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negative integer, but the regulariaation s (loc. cit.) is adequate for us.

(At this point further conditions on (f must be imposed. E.g., vf t ii i-s suf-

ficient.) Now, let

W V H ' V 5 ^ t4'3c)
A

The use of this expression can be justified by noting that upon applying the <T
B

2 -n+3
additional factors of s , or- of r, will appear in the integrand. Then s

and r can be identified with the original functions, and one finds
+

agreement with eqs. (4.2).

We now proceed as in Lerner's construction [_5j . A variant of his argument

is as follows. The variables TV and TT define a complex bundle over the

future tube of the Minkowski space. Alternately, we may consider x as fixed,

and restrict our attention to the spinor variables. Now, the function F is

homogenous, of degree n-2 in the TIT and of degree - 2 in the TT , - The

form F A.V is homogeneous of degree 0 in the PTT , and its particular fun-
n-2 D1

ctional form shows that it is weakly 5-closed. Then, as in loc. cit., we write

F £i1T = c) J , in a given coordinate patch U ., By taking J, -V in the inter-
n—2 j j j k

sections, we determine f (cohomologically).
n—2

Let us still try to see how this construction of f , the original one of
n-2

f , and the twistor transformation (cf. [lJ,[aj )
-n-2

(4.4a,b)

could be interrelated. Let us go back to (4,3b), replacing r by

r2 ((r ̂  ), with the values /S ̂  - n being of interest to us. We may consider
+

gr i
F as depending on the variable C* - TT •tr x (in addition to the depend-
n—2 J E' E

ence on the TT and TT_)> and then, heuristically, F (£.-.) is a convolu-

tion. I.e., if Ai(.) denotes the Fourier transform of r^ , cf. fs |, then

applied. Next, /\^(p.) contains the combination |j. ' " , and so the possibility

•:' such a passage becomes plausible. Furthermore, A\((*) contains the factor

'( ̂ tl), which becomes singular at f\ =-n. The need for such singular factors

in (4.4) was pointed out in I7j.

It iis interesting to note that the preceding construction of f depended
n-2

on a subtractive regularization, while in (4.4-5) a multiplicative regularization

is natural.

ACKNOWLEDGMENTS

The author thanks Profs. R. Penrose and E. Witten for useful remarks. He

expresses his appreciation to Professor Abdus Salam, IAEA, and UNESCO for hospi-

tality at ICTP, Trieste. A part of this work was done while the author was a

guest of 5ISSA, Trieste, and he thanks Profs. P. Budinich and L. Fonda for hos-

pitality there.

(4.5)

We will not investigate the passage from (4.5) to (4.4). However, a few comments

can be made. First, can be identified with one-half of , after is
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