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We recall for reference two basic contour-integral representations for a

positive-helicity field l(cf. e.g. [2)):
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where f is asuitably chosen analytic function of homogeneity kK, 2Z=(w , ﬁ;,),
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For a negative-helicity field, the roles of twistors and of dual twistors are

ABSTRACT interchanged.
ks 4
Whe peoresentation (1.la} was discovered earlier and has been studied more
3 i i istors in integral .
The option of employing twistors or dual twisto 8 extensively than {1.1b). E.g., techniques have been developed for incorporating

representations, ete., is considered. In particular, dual-space analyses

to the problem of background electromagnetic

iite (1.1a) the effect of a background anti-self-dual electromagnetic field.
are presented which relate . . .
in thisg nete we summarize these techniques, and we indicate how a similar modifi-

fields, and to the inverse transformation.
cation for (1.1b) could be derived. We illustrate some of the formulas with the
help of an example of a constant field. Furthermore, we adapt Lerner's construc-

, to (l.1b).

tion for the inverse transform, § — f 5
—n—

MIRAMART - TRIESTE One couid say that the formulas which we obtain for the case (1.1b) are fairly
August 1983 dlvact extensions {rom those for (1l.la). However, we felt that they complement
their (i.la} «counterparts to a sufficient extent, so as to justify the present note.
We remark that we express our conclusions primarily in terms ef integral
rervesentations, and we largely omit cohomological interpretations.
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2. Background electromagnetic fields.

We first summarize a twistorial approach to the background-field problem.
(This approach has been called the "twisted photen".) The following summary

is based on [3]. and it includes some supplementary remarks.

Let FAB be an anti-self-dual electromagnetic field, which is determined

by the twistor function f (Z), the two being related by the twistor-space ana-

~ oo )
a ~ Veiady o This

potential is trivial, i.e. a gradient, when restricted to an Xx~plane (cf. [Ed_],

[+
c
logue of (1.1b). Let &:}B be an asscciated potential: F

i . Cl 1
proposition 3.2}, We can therefore write &B = V;X for the components of the

potential @ which are tangential to the plane. The field X jis called & Hertz

potentlial.

We recall that an -plane consists of points y +'rrA, v, » where the compo-

AAT A
nents yAA' and 'IT'A‘ are fixed while the ;)A are variable. In general, X
depends on the TrA' + and this dependence could designate an {{-plane or planes

under consideration. We will look for ’X's which are homogeneous of degree zero

in the TTA'. and we will write ;((x. £) where SC: Tf'o_/'.f'fp. (The fixed point
(¥,,,
AA of an {¥-plane apparently plays no role in the present analysis.) Now,

the derivatives with respect to IJA' i.e. tangential to an jx~plane, are 17 VBIA
B

B' >
or TTB'VA' It would therefore be desirable to determine X (for a given CE)

which would satisfy the following equation,

WBJ UAB”K'[H T :Wi') = T!"B, VAB/'X(X, g) = ?T’B{ CE’f'(;() . (2.1)

It turns out that there is a convenient way of solving this equation, namely

(cf. [3e] and also the next section),
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W I ix,%) is the function P fD(Z). (It can be shown that the l.h.s. in
X

o
{2.1) is then a linear function of 5.) This seolution in turn enables us to gene-

ralize {1.1a) as follows. Set

oy

-4~ :
Nz (2 8 (arVexp CA e ), o b e

-n -2

i 17.1) yields directly
¢ a A \ 0 [y {
; . g, <y = O, 2.3b)
SN E ARG PRI RS

The representation (2.3a) seems to be part of the folklore of twistor theory [4},

but we have not seen it previously in print.

Kguation (2.1), its zolution (2.2), and the resulting representation (2.3a)
are strikingly simple. It appears that the corresponding analysis in terms of
dual twistors has to be rather more involved. In order to prepare for such an

analysis, we should like to describe an alternative method of selving {2.1).

C* )
Let us return to FAB and to fo. We determine @E through a relation

of the kind %(VC'A) F without summing over A. Observe that VC'A corres—

AR
ponds to the following action in the integrand of (1.1b) (transformed to twistor

space):

V.

‘ A .
AR VATl (2.4)

we set therefore,

FI ()= 2t §lam) (2im Y (920§ (). e

: . -1
This expression is not manifestly covariant, in view of ﬂ’C' , but nonetheless
it leads directly to the desired FAB' We will see in the next section that it

Cl
iss possible for different fo to yield the same F but different §B .

AB

In order to determine Z’ by this kind of procedure, we first set T'T;y =0

- 1v 11
= 5 in (2.1}, This equation then gives 'X as (VA ) éﬂ (without summing),

and
/ h A : - .
Vo) == (2eY'§ (ov) (2w, @ VL, (G, YL e
Jice ’ﬂll = v’{TO, and
4
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ATI’/WO,TT’{, = Clg/f , (2.7)

we see that {2.6) is in fact a special case of (2.2),

Next, to obtain Y(x,f) for a given ET 0, one can make a transformation

of the spin basis so that (TTO" TTl,) = (0, 'Tll}, and proceed as before. The

resulting ’X will clearly depend analytically on E So one obtains {in prin-

ciple) a sclution of (2.1) which is suitable for use in (2.3a). (It is not

clear if this scoluticn eguals that in (2.2).)

We now turn to the dual situation. First we note that in place of (2.4}

- Ot
we have here VC'Aﬂ - iTTAa/aGJ , so that the analogue of (2.5] is

;.go‘) :(:“L)‘1§;(bﬂ)(—2ﬂ‘1ﬁ’6 Fx SJ;“-C‘,* (\;ﬂ‘ ch') . {2.8)

. T -~ 1' _1 ]
(We might not have (_E = ¢ .) Furthermore, we may set ﬂl - (VA } @i , as a
— o

Hertz potential for the @.‘l\. Then, using Jl' =
Hofx)=- (WY’;Y{ b (M-ﬂ(),‘ SJL':‘-D; S:lf; f’%’l,% . (2.9)

By intreducing gz ﬁo/ﬁl and recalling (2.7), we can write this in a form

resembling (2.2} with ;: 0:
’,(1 (,() :-[411*&)4_%‘) (d ?/SE)E&X, S:) s (2.10a)

f[ﬁ,g)z T, 0 gdc'do' SJE)‘(QN [F, &3). (2.10b)

Next, let us allow ﬁ to depend on £, or on the TTA, and let us write the

dual to {2.3a) as an Ansatz:
G (o) (20 5 (o7) exp LAl Vo (0357
S (‘5/36:36!> Cn—g . (2.11)

By applying V? , we see that we can fulfill (2.3b) (Ffor the polentinl f )}

if in place of (2.1}, A satisfies

I—TH’ (?‘, ﬁ> V: (X[IX’FF} = TTA[X,,—')&EA kxj . (2.12a)

0, (x,7) = Ox (337 . (200N, ., , (2.12)

where we suppressed the dependence of the ﬂA' on the other indices. The T]—AI
are known functions if fn-2 is given. Therefore it 1s possible to make a change
of spin basis, so that ('ITO' I (O,le), and then to find the corresponding
ﬁl' as before, This is our proposed sclution to eq. (2.12a), and to the problem

of determining x in the Ansatz {(2.11) in such a way that @ fulfills {(2.3b).

3. Example: the constant anti-self-dual field.

The literature on twistors contains still very few explicit examples. For
this reason we feel justified in presenting the following trivial one. We con-

sider E -iH, given explicitly by
Fe-E (dbady ._adj,\o{z)’ E - const. (3.1)

We employ the standard spinor notation,

IINY:Ye N ot L fErx iz
()‘ b4 \ - 2 z < ‘j {3.2)

! i .
y e ¥ / 4" (Z £-x
. . : . . 1! 1'0r
{and the antisymmetric (€ B) with £ =1, etc., yielding ™ =¢ ’i‘ro' =
-4 oot 11’
_TrO" etc.). Then dx =2 (dx - dx ), etc., and
o0’ 4t o’ 1o*
woo g (dx® ade’ - de® ady : (3.3)
This form is symmetric under the inerchange 0«1, and skew under O'~~>1'. We
pv AB_A'B’
set therefore as usual (F } = (F & ) and have the correspondence

e (_F“‘ Fto:[: = \’ FH:FOO:O» Eo:E‘ {3.4)

The normalization FlO =E is consistent with subscquent formulas.

The contour-integral representations (1.1b,a} (but with 7 and W inter-
changed) can now be obtained by choosing the feollowing functions of twistor

variables, respectively:

Lm0 _ s 2
LO’:’:cJ w/n:},rr‘,, ¢ R = T S (3.5)




The contours have to separate the poles at T?’OI =0 and at Trl. =g for f , 4. The inverse transform.
o
and those at fT_=0 and at T, =0 for f i ‘ i i-
0 1 —4. Now, fo determines the Followe We consider the maps (.? -3 f-n—2' P - fn-2' inverse to (1l.la,b). An expli
ing petential compenents through (2.5}, cit and elegant construction of the first was given by Lerner [5), and we should
— A’ a; 1Al = af qﬁfﬂf on' , Y like to adapt it so as to obtain the second.
e - T T TiEx : =<£ ’zz‘:—x , (3.8) o
We recall a few formulas from loc. cit. Let (?A' o be a positive-fre-
' ’ : : : i 4 . :
which fulfil VA,BQ-EBC =0 ahg VA'(Bég) :FAB' One may also verify that if we quency field with n indices. It can be expressed in terms ofjits Fourier trans-
add e.g. ¢ /-?rll to fo, then § will be altered by a pure gauge term, and form in the following way,

. A
that here the potential components @ specified by (2.8) equal the preceding

e : Qoo ()= (V'S L Ld(apraf) ] pppe @ (poy > Pp)

. The total potential (fulfilling d¢ =F) now is:

B
'
"\.Bf X ex iy (D EE {4.1)
B L=/ —t ) . \ P pE Pg¥ 3
pad < = L - .
é; Z@ bﬁAB' ZLLM'H’ cf;t -rult[z thlj . (3.7)
where V+ is the future light cone. We assume that (P satisfies a conditicn
We turn to the Hertz potential. Equation (2.2) (with §' inside the contour) ~ iQ ~10.-
- of integrability {and of smoothness, cf. below), as well as: @ (e pD" e pD)
gives directly —inQ ~ _ " - _
. =e L'P([JD‘,p]:)). We choose a cut in V  in such a way that PyP, = rv,q‘ﬂ’g .
! I S PHREE
X(ng) = ZE(X N 4 " ch‘x.,a)(,. \‘ (3.8) r > 0. Then (4.1) becomes
- g _ ’ —
The verification of (2.1) is now direct, but the following points are worth not— (PA'--—(_',' (X} 1(2”‘-§ Cbﬁ'f‘bw) WA‘---Wc' F,u-z (xjf‘yp‘uwj))l (4.2a)
-1 1!
ing. Let us write A =X + £ ¥.. Then =% _ X , in accordance with {2.6), — o2 e oy ot i — v
A tp =V A, E,.. (4T, ) ANTRE )@(r’- i VA e (ot Wy Ty PP
However, for the 53 , (2.1) yields two separate contributions: - @ (4.2b)
of of 1 -~ 70! )
4 = - ‘ - i F .
\75 ’Xo = ch , VB A/f = gﬁB R (3.9a,b) One now cbtains f—n—2 by transforming _nep
~~
We see that the factors -"\T’B' in (4.2a} can be replaced by the ’WB' 1=
In fact, one can show, by extending slightly the analysis of sec. 2, that the . = EB' -1
a/d (17 _x }, provided that the additional facter (-ir) is supplied with
relation (3.9a) is a general one. ,E: %(n+2)
each WB" This replacement therefore entails replacing also
1,
{We may peint out, with regard to {2.2), that in other articles other con- {4.72b) by r-/Z(_n * 2}. The integral then diverges (if n 2> 4), and has to be
. -1 -1
ventions are used. One sees there (2ti) and (§'-¢) instead of our regularized. We write:
- -1
(4atri) and (§'-2%) .)
' AR ’ w, B v,
LP . ) = (2‘“’[_,\ (QWAAW Wi T Pl X, T, T 3 (4.3a)}
. C . [ N A [ DYy H o
We make a further comment. In sec. 2 we explained the origin of the rela- AL
con $L' gty ] ) ) _ peTpe, SEm2y gt 1 ietr W "PDJ):I
tion 8 =\7B 'Xo for an anti-self-dual field. It is therefore some:]:mt S:.'r— Fmg U’Wj}')wp) - 2L[5€ drr CP(F TTD,’F 'nb) @XP( 'y (-eg.
prising that in this example aone can also find ]'. " such that aﬁo :VO ff\" {4.3b}
A A' ! ) -
and él Evl X'". We see no clear interpretation for this fact. Let us set r'/;Z - s. We then find the combination ds-s +3. For regulari-

zation we employ techniques described in [6], and interpret the singular factor

A

in terms of the distribution s” ., This distribution has a pole when A 1is a
+




-n+3
negative integer, but the regularization s
+

{loc. tit.} is adeguate for us.
~ ~ A
(At this point further conditions on (' must be imposed. E.g., & ¢ is sor-

ficient,) Now, let
T, ) :L"fAs(S,'“J)cF(sTrﬁ s Y enp(-isti ;LD“W) (4.3¢)
-2 570D . 3> > ) ep L »THr A

The use of this expression can be justified by neoting that upon applying the ﬂ;.!
2 -
additional factors of 8 , or of r, will appear in the integrand. Then s
"
B(-n+2)
and r A can be identified with the coriginal functions, and one finds
+

agreement with egs. (4.2).

We now proceed as in Lerner's construction [5}. A variant of his argument
is as follows. The variables TTD_ and TTD define a complex bundle cver the

future tube of the Minkowski space. Alternately, we may consider x as fixed,

and restrict our attention to the spinor variables. Now, the function Fn 2 is
homogenous, of degree n-~-2 in the {TD' and of degree -2 in the TTﬁ‘. The

form Fn ZATT' is homogeneous of degree O in the 'ﬁbl, and its particular fun-
ctional form shows that it is weakly a-closed. Then, as in loc., cit., we write
Fn EbﬁT =3 Xj in a given coordinate patch Uj' By taking 33 -Yk in the inter-

sections, we determine f {cohomologically).

n-2

Let us still try to see how this construction of f o the original one of

£ ez’ and the twistor transformation (cf. [#},[a])
= ey AR -4 TA O C e Al
Qn-z UJ) '_g(aiz) Q-n—z (_Z) (Z L‘J_,() N A;A- B '(;i‘x.rsxs Z ‘JZ AAZ AJZ
(4.4a,b)
; . %(~n+2)
could be interreiated. Let us go back to {4.3b), replacing r
¥%{n+2
rz{n )(r A }, with the values A % -n being of interest to us. We may consider
+

— EE
F as depending on the variable S'z TTEITYE X {in addition tc the depend-

n-2
ence on the 1TD, and ﬂb), and then, heuristically, Fn 2( $,..) is a convolu-
tion, I.e., if A,)(') denotes the Fourier transform of r? , of. [6], then

Fn-z(sv“pwﬁ_p)“’(“’“’t-) Sf;dS'En_l{S-S',WD.)'.T—D)/\)(S')‘ . (a.5)

Ax-a

We will not investigate the passage from (4.5) to (£.4). However, a few comments

can be made. First, g can be identified with one-half of z“wi. after FX is

O

Apklied, Next, f\\(F‘> contains the combination H_Aul, and so the possibility

~f such a passage beccmes plausible. Furthermore, ,thg) containg the factor

{ A+ L1}, which becomes singular at A =-n. The need for such singular factors

1in (4.4} was pointed out in [7].

It is interesting to note that the preceding construction of f 2 depended
n-
ol a subtractive regularization, while in (4.4-5) a myltiplicative regularization

1S natural,
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