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Abstract 

Within a constrained Hartree-Fock calculation we investigate 

the effects of left right asymmetric degrees of freedom associated with 

the channel T) + He «-» Ne. We find a large softness of Ne against 

octupole deformation. The optimal solution after restoration of the 
Ifi 4 parity fay means of a projection shonsa pronounced 0 + He clustering. 

A generator coordinate calculation along the collective path confirms 

this conclusion. Once center of mass motion effects are taken into account 

j good agreement with experiment is found. 
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1. INTRODUCTION 

The energy of the oc decay threshold of Ne is remarkably 

low (4.75 MeV). This distinctive feature which is a consequence of the 

magicity of both of the decay products has been studied in several cluster 

model investigations. Those were able to reproduce the spectrar the 

B(E2) values and o( width of the ground state band and of some excited 

bands of Ne (for a recent review see ref.1). The interplay between 

shell model and cluster configurations has been studied by Tomoda and 

Arima [2J. Combining wave functions of two different model spaces they 

were also able to reproduce most of the characteristics of the spectrum 

of Ne. Surprisingly the same quality of results has never been achieved 

in projected [3-5] or cranked Hartree-Fock calculations [6,7]. The moment 

of inertia of the ground state band is in general overestimated by a 

factor two. This discrepancy has sometimes been attributed to a wrong 

velocity dependence of the nuclear interaction [5,6]. However only left 
20 

right symmetric configurations of Ne were considered in these calcula­
tions. The successes of cluster model calculation on the other hand 
suggests that this restriction of the variational space is unphysically 
drastic. The aim of this work is to investigate the influence of additional 
asymmetric degrees of freedom on the results of self consistent calcu­
lations. 

In section 2 we present a constrained Hartree-Fock calcula­

tion which describes the collective path from the symmetric configuration 

of Ne to the asymptotic channel with twc well separated 0 and He 

fragments. The collective path is defined in terms of a combination 

of quadrupole and octupole moments and the self consistent equations 

are solved on a three dimensional rectangular mesh. In section 3 we 

investigate the effect of restoring the parity by a simple projection 



and discuss the results of a variation after projection. In section 

4 we perform a generator coordinate calculation which mixes the slater 

determinants along the collective path. Finally In section 5 we estimate 

the uncertainty associated with the spurious relative motion of the 

center of mass of the fragments in the asymptotic channel. 

2. CONSTRAINED HARTREE-FOCK CALCULATION 

2 0 Method 

Since a detailed account can be found elsewhere [7] we 

shall malnlv outline the method, introduce the notations useful for 

the rest of the paper and insist on the aspects specific to the present 

calculation. 

The interaction energy between the 0 and He nuclei 

has been calculated as a function of their interdistance. To do so we 

minimized the energy associated with a hamiltonian composed of a constrai­

ning operator, a one body kinetic energy operator, and a two body effective 

interaction. For the latter we choose the BKN force [8] supplemented 

by the coulomb interaction. The corresponding Hartree-Fock energy reads 

In formula (1) t o, t,, a and V are parameters of the BKN force, e Is the 

electron charge and p and z are respectively the total density and the 

kinetic energy density defined as 

p<?> = A L I iH(*,?)\ u) 
-<:<?) = «£ | v* $>,?)!* u> 

The index c*. which appears in the definitions of p arid Z. labels the indivi­
dual orbits ^ (z T?) associated with dn interdistance z. Since we assumed 
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spln-isospin symmetry only the spacial part need be considered and a 

degeneracy factor 4- must be introduced. 

We want to study a collective path leading from the H-F. 

ground state of Ne to the asymptotic channel with two well separated 

nuclei 0 + He. In most H.F. calculations [3-7) the He ground state 

is described as an axially symmetric Slater determinant with an additional 

left-right plane symmetry. In the present work we intend to study the 

effects resulting from the breaking of the latter symmetry. For technical 

reasons we did not enforce axial symmetry and imposed only symmetry 

with respect to the two perpendicular planes x = 0 and y = 0. The indivi­

dual wave functions Ç ^ are therefore characterized by two quantum numbers 

(with values + 1) associated with these symmetries. It is easy to check 
20 that the description of the symmetric Ne wave function and the asymptotic 

0 • He channel requires the same set of quantum numbers. 

The constraining operator must ensure a smooth transition 

between Ne and the 0 + Ke system. As such a transition involves 

both quadrupole and octupole deformations we selected a linear combination 

of Q.g and Q,,. as operator of constraint. Asymptotically the values 

of Q20 a n d Q30 a r e simple functions of the interdistance 2 between the 

fragments . When the two nuclei come into contact the interdistance z 

and therefore its relationship to Q ? n and Q 1 ( 1 are no longer unambiguous. 

We therefore relied on a schematic model to provide us with a reasona­

ble definition of the interdistance. We consider a system of twu non 

overlapping sections of spheres (figure 1). The volume of each section 

is kept constant as a function of the interdistance z between the centers 

and proportional to the masses of 0 + He. The quadrupole and octupole 

moments of the total system assigned to a given value of z are then 



easily calculated. In addition we take into account the intrinsic deforma­

tion of the H.F. ground state or Ne, by modifying the value of Q_ n 

with a linear interpolation which varies from 0 for the non overlapping 

and touching spheres (z ,̂ 5 fm) to the intrinsic mass quadrupoie moment 

of symmetric Ne (Q a 100 fm1 ) for z = 0. This procedure determines 

the collective path in the (Cjo'^ô* P * a n e as a parametric function 

of the interdistance z. It then remains to adjust the strength of the 

constraining quadrupoie and octupole operators so that their expectation 

value in the self consistent solutions follows the same path. From the 

above discussion it is clear that the interdistance z provides only 

a convenient parametrizatlon (although it recovers physical meaning 

asymptotically) and that the Hartree-Fock results will depend only an 

the collective path and not on its parametrizatlon. 

The solution of the Hartree-Fock equations was performed 

on a three dimensional cartesian mesh by means of the imaginary time 

step method [?]. 

2.2 Resuits 

The critical importance of che octupole degree of freedom 

is apparent from figure 2 which displays the constrained Hartree-Fock 

energy curve. The minimum corresponds to z. = 0 (the results for the 

symmetric H.F. solution (z = 0) are summarized in table 1 ; they compare 

well with experiment) but the energy varies by less than 1 HeV for inter-

distances up to 3,5 fm. For larger values of z the energy rises to a 

maximum attained for z = 7 fm at which point the nuclear forces cease 

to be active. For larger values of z the behavior of the energy is that 

of a pure monopole coulomb interaction. Compared to the asymptotic 

energy (z =oo) the height of the barrier is 3 MeV. The unrealistic value 

for the threshold energy <8.5 MeV compared to ^.73 MeV experimentally) 

Ls due to our incomplete correction for the center of mass motion. Indeed 

it is effected by subtracting from the kinetic energy operator the kinetic 
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energy associated with the motion of the center of mass of the complete 

system. In the asymptotic channel this correction does not take into 

account the relative motion of the centers of mass of the individual 

ions. In the section 5 we show that most of the discrepancy is removed 

when one evaluates the energy associated to this relative motion by 

means of a simple projection. 

Contour lines of the density of the system are plotted 

in figure 3 for three different values of the interdistance. One can 

note the significant octupole deformation of the density for the value 

2 = 3.5 fm, which as we have seen corresponds to an H.F. energy less 

than 1 MeV above that of the symmetric solution. 

3. PROJECTION ON PARITY 

When the value of z differs from zero the determinantal 

wave functions are no longer eigenstates of the parity. This symmetry 

can be restored by a simple projection. If we denote \ z ) (z > 0) the 

constrained Hartree-Fock solution we define i-z> <z > 0) as the left 

right symmetric state of | z > . The positive and negative parity 

projected states I I + (z)^ are then defined as 

ïî±fe)> = ( l*> ±l-*>)/fT 

and the parity projected energy curves as 

E±U> = <t±(z>lHl t±< z )>/<t±«l t±fe» 
We have plotted on figure 2 the values E as a function 

of /. The mi n imum of the posi ti ve par i ty curve no longer occurs for 

z = 0 but at z = 3.6 the gain in energy equals 1.27 MeV. The state 

l^ +(z=3^)^ can be considered as the result of the (restricted) variation 

along the collective path after projection (VAP). Some of its properties 

are given in table 1. The minimum of the curve E occurs at a larger 

interdistance z = 4.6 fin. The difference between the energies of the 
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positive and negative parity minima is 5.48 MeV which compares well with 

the energy difference between the 0 ground state and the first 1 state 

of Ne {5.8 HeV). Before comparing these results with those obtained 

in earlier works we note that the energy E increases rapidly when z 

deviates from the optimal value z = 4.6 fm in constract with the curve 

E which except for the shallow* minima at z =±3.6 fm is rather flat 

for values of z between -4 fm and + 4 fm. Finally as expected, at large 

distances the curves E and E_ become identical with the constrained 

Hartree-Fock curve. In our calculation the ratio 1E -E I / I E I becomes 

less than 10 when z is larger than 6 fm which is slightly larger than 

the value z = 5.86 fm found in ref.[10]. In our opinion this difference 

can be explained by the too rapid decrease of the gaussian tail of the 

wave functions used in ref.[10]. 

Two different studies of the left right asymmetry properties 

of Ne are available which in some of their aspects bear a strong resem­

blance to our calculation- In the first calculation Nemoto and Bando 

investigate a two cluster model consisting of 0 and He nuclei built 

from properly antisymmetrized oscillator shell model wave function 

with fixed oscillators parameters [11]. Their result (figure 3 of ref-[1.1] 

is remarkably similar to ours . The optimal interdistances for the 0 

and He clusters are z = 3.5 fm and 4.5 Fm for the positive and negative 

parity states. At smaller interdistances however their positive parity 

energy curves exhibit a strong repulsion not present in our calculation. 

# 
Due to the simple properties of the oscillator wave functions the 
authors of refs.[11,12] can also perform the projection on good states of 
angular momentum. In this chapter we compare our results for the intrinsic 
states to those obtained in refs [11,12] for the 0 + and 1" states. 



a. 
This is due to a deficiency of the two cluster model which for 2 = 0 leads 

to a promotion of the He wave function to an highly excited spherical 

orbital rather than a deformed orbital of the 1d shell. This feature 

is not present in the o( cluster model used by Nemoto et al. in ref.[12] 
20 which describes the left right symmetric state of Ne by a regular 

hexaedron. Their results (figure k of ref.12) are qualitatively similar to 

ours. The positive parity state of lowest energy corresponds to a left 

right" "asymmetric configuration and the negative parity minimum occurs 

far an even larger asymmetry. The symmetric state of Ne (fig.4a, 

b=a=3 fm) is less bound by about 1 MeV compared to the absolute minimum. 

We could not however compare the location of their minima with ours 

because we could not find a relationship between our interdistance z 

and the set of parameters used in the geometrical description of the 
16 4 five oL cluster. Finally we note that the height of the 0 + He barrier 

relative to the minimum in their model is about twice higher than ours 

(see fig.4c of ref.[12]) which may indicate a deficiency of the 5 o< 

cluster description of asymptotic channel. Indeed this feature is absent 

in ref.[11] which for the same quantity finds a result very similar to 

ours. 

4. GENERATOR COORDINATE METHOD 

In the preceding section we showed that a significant 

improvement on the description of the ground date of Ne is achieved by 

projecting on parity a left right asymmetric determinantal wave function. 

On the other hand we noticed that the curve E (z) does not snow prjnounced 

structures over a large interval of values of the interdistance. It 

seems then appropriate to investigate the effects of a mixing by means 

at d generator coordinate calculation (C.C.M.) of all the states along 

the collective path. 
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In order to solve the GCM equations we used the techniques 

exposed in ref.[13]. The continuous variable is discretized and the 

Hill Wheeler integral equation is replaced by the generalized eigenvalue 

problem 

N 

J" 1 

We checked the stability against a change in the number N and the range 

of the collective coordinate z of the eigenvalues E ^ and the collective 

wave functions f (z) defined below. The functions g (z) associated with 

different eigenvalues are not orthonormal and cannot be interpreted 

as collective wave functions. For this reason it is convenient to transform 

the equation 4 into an ordinary eigenvalue problem. To do so one first 

performs a diagonalization of the overlap kernel 

j = * 
hamiltonian 

N /*-* v 
<HLv = U?Z i ^ ( * jH(Z; /9 'h te> %* (6) 

reduces then to the eigenv, 

and introduces the hamiltonian 

The GCM equation reduces then to the eigenvalue problem 

and the functions 

Fte = Z. f~ l u j 

(7) 

(8) 

which form an orthonormal set can be interpreted as collective nave 

functions, in fact the equations >-7 provide also a practical algorithm 

for solving the CCM equation. The well known redundancy of the GCM basis 

associated with any continuous variable like z shows up in the appearance 
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of zero or close to zero eigenvalues 0*1 in the spectrum of the operator 
N (eq,5). The subspace corresponding to these eigenvalues can therefore 
be neglected and the eigenvalue problem (6,7) solved in the subspace 
of vector TV with a non negligible collective norm. 

The calculation of the overlap and energy kernel 
N ( z r z . ) = < Z i l Z j > 

H(2 i,z j> = < z i l H |zj > 

is easily performed on the rectangular (and fixed) mesh used in all 
the calculations of the Hartree-Focfc solutions. The set of states ) z.> 
(z. >,<©) used in our CCM calculation included the constrained Hartree-
Fock solutions as well as the states l-z.> resulting from *Ke action 
of the parity operator. For a simple interaction like BKN the tncigy 
kernel can be written as the integral of a local functional of a density 
P(?) and a kinetic energy density x(r*) [13] formally identical to 

the Hartree-Fock functional (1 ) with an appropriate definition of the 
densities p and Z. 

In the above definition the matrixes* is given by 

The overlap kernel <i, I z. > u ^ d e c c r n i l n a n t o f t h e m a t r i x ^ . 

The results are shown in table 2 and figure 2 for the 
eigenvalues and figure 4 for the collective «iiqenfunctions of the first 
two elgenstates. Due to the symmetry of the kernels under the change 
(/-,z.) —» (-z.,-z.) the eigenstates can be sorted according to their 



parity. Compared to the positive parity projected Hartree-Fock energy 

the CCM ground state energy is lowered by 0.2 MeV. Its collective wave 

function spreads over an interval zlz *<• 5 fm Indicating a strong admixture 

of left right asymmetric components. The overall energy lowering compared 

to the symmetric Hartree-Fock ground state equals 1.6 MeV. The first excited 

state has a negative parity. Its wave function is peaked at larger inter-

distance . The energy lowering compared to the optimal negative parity 

projected Hartree-Fock is 0.5 MeV which leads to an excitation energy 

of 5.IS HeV (5.8 HeV exp. ). The position of the second positive parity 

state is also in reasonable agreement with that of the first 0* excited 

state having significant otdecay width (9.65 MeV calculated / 8.6 MeV exp.) 

In ref.[12j the collective CCM wave functions are plotted 

(fig.7c) on the parameter space of the 5«< model. As said before a simple 

relationship with nir coordinate z does not exist. Nevertheless »o can 

note that the ground state wave function (fig.7a) spreads significantly 

over the space of collective parameters a result which is similar to 

ours. The wave functions of the 1" (fig.7b) is, like ours, more localized 

in a region of the parameter space corresponding to asymmetric shapes. 

5. CORRECTION FOR THE RELATIVE MOTION OF CENTERS OF MASS 

In section 2.2 we mentioned that the threshold energy 

resulting from our constrained Hartree-Fock calculation could not be 

compared directly with experiment because «e had not taken into account 

the relative motion of the centers of mass of 0 and He. To evaluate 

th.: correction associated with this relative motion we used the simple 

projection method discussed by Peierls and Yoccoz [14j. The energy correc­

tion is estimated as the difference between the sum of individual center 

of mass motion energies for He and 0 and the center of mass energy 

for the combined system with a fixed interdistance between the tans. 



Each of the three energies is given by 

\ À < o l H l R > ^ 
AE s -T - < O J H | O > ( 9 ) 

where I 0 > denotes the corresponding ground state with center of mass 

at the origin and I R> the same state translated by the vector R, For 

He a.nd 0 the ground state is described by the H.F. solution and the 

overlap and energy kernels <CÔ I R> and <^0 I H lR> are calculated /ith 

the techniques described in section 4. The kernels for the system of 

the tno infinitely separated ions are taken as the product of the individual 

kernels for the same value of R. 

<3li?>= <o|R^, o. < o ) R > « H < 

< S l H I R > = < o l S ^ . < 3 | H | 8 > ( i H + <olHI«?i o -<0lR , ,

! , H ( , 

The identical displacement of the two ions, ensures that the energy 

correction (9) takes into account the globai center of mass motion only. 

Finally the relative motion energy E_ is obtained as 

E R = AE ("o At) - AEC'o)- AECM 
The numbers corresponding to each energy correction are given in table 

3 and fig.2. 

The calculations are made simpler by the spherical symmetry 

of the two nuclei which reduces to one the dimensionality of the integrals 

involved in (9). Such a simplification does not exist for the H.F. ground 

state of Ne and the configurations of the combined system associated 

with finite inteLdistances z . 
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6. DISCUSSION 

The results of the present work demonstrate clearly the 

necessity of including the left right asymmetric degrees of freedom 

in self consistent calculations aiming at an accurate description of 

the spectroscopy of Ne. There is really nothing to be surprised at 

such a finding , as it could have been guessed either from experimental 

information (the very low d. decay threshold and large c( width of the 

first 6 + and 8 + states) or from earlier calculations using cluster 
models [1]. Our results can be summarized as follows : the Hartree-Fock 

solution shows a remarkable softness against the combination of quadrupole 

and octupole constraint that we used to define the collective path leading 

to the 0 + He channel. The symmetric solution remains however the 

variational minimum. The parity projection changes drastically the picture. 

The variation after projection solution corresponds to a left right 

asymmetric determinant* A generator coordinate calculation using the 

family of determinants of the collective path improves slightly the 

binding energy and indicates that the collective wave function is very 

flat over a large range of values of the intcrdistances between 1 ô 0 +• *He. 

After correction for the relative motion in the asymptotic 

0 + He channel, the ground state of the generator coordinate calculation 

lies 0.6 MeV below the threshold. This is in fair agreement with experiment 

if one remembers that our calculation provides only information on the 

intrinsic states associated with rotational bands of different parities-

It is generally estimated [15,16] that a 4-5 MeV gain in energy would 

result from a projection of the 0* state. As shown in ref.[16] the excita­

tion of the first 1 state relative to the ground state is not significan­

tly different from the unergy difference between the optimal negative 

and positive parity intrinsic states. Our result 5*46 MeV compares then 



reasonably well with the experimental value for the excitation of the 1~ 

The last question which is not answered bv our calculation concerns 

the problem of the moment nf inertia of the ground state band. We can 

only note that in eluster model calculations (refs.[11,16])the clusteriny 

Is much more pronounced for the 0 state than for states with higher 

spin. The Introduction of the left right asymmetry degrees of freedom 

in angular momentum projected riartree-Kock cnuld then lead to a lowering 

of the 0 state eomnared to the other members of the band and therefore 

a decompression of the band. 
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TABLE CAPTIONS 

Table 1 Comparison of theoretical and experimental results for 
the binding energy, charge radius , and charge 
quadrupole moment of Ne (H.F. for the Hartree-Fock 
solution, V.A.P. for variation after projection, and G.C.M. 
for generator coordinate method). 

Table 2 Energies in MeV of the H.K. ground state, of the positive 
and negative optimal solutions resulting from a variation 
after projection, and of the first four eigenstates of 
the generator coordinate calculation. 

Table 3 Center of mass energy corrections in HeV estimated by the 
projection method. 
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Table 1 

E MeV '«* Q < f r a . 

Exp* -160.65 2.91 56.* + 2.7 

H.F. -160.11 2.99 50 
VAP -161.3a 3.02 53 
GCM -161.60 3.04- 55 

Table 2 

H.F. 

VAP CCM 
H.F. E

+
 E- E 1 + E,_ E 2 + E ?_ 

-160.11 -161.38 -155.90 -161.60 -156.*5 -151.95 -1*9.9* 

Table 3 

iE(*He) AE ( 1 f i 0 ) AE(*He* 1 6 0) F ( ( 

9.5 10.7 10.8 - 9 . * 



FIGURE CAPTIONS 

Figure I Parameters of the schematic model used to specify the 
constraining operator of the collective path (see text) 

Figure 2 Deformation energy curves as a function of the interdistance 
1/î a z between the nuclei 0 and He. The full curve corresponds 

to H.F. while the dashed and dotted curves correspond respec­
tively to the energy of the plus and minus parity projected 
states. Also shown are the position of the intrinsic states 
associated to the first and second positive parity bands and 
the first negative parity band as predicted by the generator 
coordinates. In the central part of the figure are indicated 
the value of the threshold as deduced after correction for the 
relative motion of the ions. On the right part of the figure 
we show the position of the first experimental positive and 
negative parity band heads relative to the threshold. 

Figure 3 Contour lines of equidensity of the constrained Hartree-Fock 
solutions corresponding to three distincts values of the 

16 4-
interdistance z between 0 and He. The lines are determi­
ned in a symmetry plane containing the elongation axis z. 
The interval between two li«es corresponds to a density 
variationAp -• 0.02 fm~ . 

Figure fr Collective wave functions of the intrinsic ground state 
(positive parity) and first excited state (negative parity). 
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