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Abstract

Within a constrained Hartree-Fock calculation we investlgate
Lhe efiects of left right assymmetric degrees of freedom associated with
the channel % . "}Ie 2. We flnd a large softness of 20y, agalnst
octupole deformation. The optimal solution after restoration of the
parlty by means of a projection showsa ;;ronounced 160 + hHe clustering.
A generator eom:dlnate calculation along the collective path conflrms
this conclusion. Unce center of mass motion effects are taken into account

+ goud agreement with experiment is found.



1. INTROOUCTION

The energy of the of decay threshold of 2DN(: 1s vemarkably
low (4.75 Mev). This distinctive feature which is a consequence of the
magicity of both of the decay praducts has been studied in several cluster
model investigations. Those were able to reproduce the spectra, the
B(E2) values and o( width of the ground state band and of some excited
bands of zoNe (for a recent review see ref.1). The interplay between
shell model and cluster configurations has been studied by Tomoda and
Arlma [2]. Combining wave functions of two different model spaces they
were also able to reproduce most of the.characterlstics of the spectrum

of 20,

Ne. Surpr1§ingly the same gquality of results has never been achieved
in prajected [3-S] or cranked Hartree-Fock calculations [6,7]. The moment
of Inertia of the ground state band is in general overestlmated by a
factor two. This discrepancy has sometimes been attributed to a wrong
velocity dependence of the nuclear Interactlon [5,6]. However only left
right symmetric configurations of ZDNe were considered in these calcula-
tions. The successes of cluster model calculation on the other hand
suggests that this restriction of the variational space is unphysically
drastic. The aim of this work is to investigate the influence of additional
asymmetric degrees of freedom on the results of self consistent calcu-
lations.

In section 2 we present a constrained Hartree-fock caicula-
tion which describes the collective path from the symmetric configuration
of 2ONe to the asymptotic channel with twc well separated 1f'l) and “He
fragments. The collectlve path is defined in terms of a combination
of quadrupole and octupole moments and the self consistent equations
arc solved on a three dimensional roctangular mesh. In section 3 we

investigate the effect of restoring the parity by a simple projection
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3.

and discuss the results of a variation after projection. In section
4 we perform a generator coordinate calculation which mixes the slater
determinants along the collective path. Finally In section 3 we estimate
the uncertalnty assoclated with the spurious relative motion of the

center of mass of the fragments in the asymptotic channel.

2. CONSTRAINED HARTREE-FOCK CALCULATION
2.1 Method

Since a detailed account can be found elsewhere [7] we
shall malnlv outline the method, introduce the notations useful for
the rest of the paper and insist on the aspects specific to the present
calculation.

The interactlon erergy between the 160 and “He nuclei
has been calculated as a function of their interdistance. To do so we
minimized the energy assoclated with a hamlltonian composed of a constrai-
ning operator, a one body kinetic encrgy operator, and a two body effective
interaction. For the latter we choose the BKN force [8] supplemented

by the coulomb interaction. The corresponding Hartree-Fock energy reads

3 -1 ]
L A R T oy (e 2 2ave * ¢
E= Sd,-(z(r).ib_e(w) s l',f(r)),jd..-.ir C(.-)(:m) __-___“T__- e (1)

In formuia (1) tys t3» @ and V are parameters of the BKN force, e is the
electron charge and f and T are respectively the total denslty and the

kinetic energy density defined as
2
P = 42; { i‘(z, ) )
e = 4Z‘_', |¥ $.2 7" D)
The index & which appears in the definitions of P ald T labels the indivi-

dual orbits éi(z,’?) assoviated with an interdistance z. Since we assumed
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spla-isospln symmetry only the spacial part need be considered and a
degeneracy factor 4 must be lntroduced.

We want to study a collective path leading from the H.F.

ground state of 2oNe to the asymptotic channel wlth two weil separated

20Ne pround state

seled 160 + “He. In most H.F. calculations {3-7) the
is described as an axially symmetric Slater determinant with an additional
left -right plane symmetry. In the present work we intend to study the
effects resulting from the breaking of the latter symmetry. For technical
reasons we did not enforce axial symmetry and imposed oniy symmetry
with respect to the two perpendicular planes x = D and y = 0. The indivi-
dual wave functions @‘ are therefore characterized by two quantum numbers
(with values + 1) assoclated with these symmetries. It is easy to check
that the description of the symmetric 2oNe wave function and the asymptotic
150 + “He channel requires the same set of quantum numbers.

The constraining operator must ensure a smooth transjition

zoNe and the 160 + "'He system. As such a transition involves

between
bath quadrupole and octupole deformations we sclected a iinear combination

of Q,, and Q3p as operator of constraint. Asymptotically the values

of Qyq and Qy are simple functions of the interdistance z between the
fragments . When the two nuclei come into contact the interdistance z
and therefore its relationship to Qm ang gm are no leonger unambiguuus.
We therefore rclied on a schematic model to provide us with a reasona-
ble definitlon of the interdistance. We consider a "system of twu non
averlapping sections of spheres (figure 1). The volume of each section
is kept constant as a function of the interdistance z between the centers

and propartional to the masses of 160 + "He. The quadrupole and octupole

moments of the toial system assigned to a glven value of z are then

-
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easily calculated. In addition we take into account the intrinsirc deforma-
tion of the H.F. ground state ofzoNe, by modifying the value of 020
with a linear interpolation which varles from O for the non overlapping
and touching spheres (z ) 5 fm) to the intrinsic mass quadrupole moment
of symmetric zONe (Q = 100 fm®) for z = @, Thls procedure determines
the collective path in the (020,030‘ plane as a parametric function
of the interdlstance z. It then remains to adjust the strength of the
constralning gquadrupole and octupale operators so that thelr expectation
valu;'in the self consistent solutions follows the same path. From the
above discussion it 1s clear that the interdistance 2z provides only
a convenient parametrizatlon (although it recovers physical meaning
asymptotically) and that the Hartree-Fock resuits will depend only an
the collective path and not on its parametrization.

The solution of the Hartree-Fock ecquations was performed
on a three dimensional cartesian mesh by means of the imaglnary time
step method [92].

2.2 Resuits

The critical Ilmportance of che octupole degree of freedom
is apparent from flgure 2 which displays the constrained Hartree-fock
energy curve. The minimun corresponds to z = 0 {the results for the
symmetric H.F. solutlon (z = Q) are summarized in table 1 ; they compare
well with experiment) but the energy varles by less than 1 MeV for inter-
distances up to 3.5 fm. For larger values of 2z the energy rlses to a
maximum attained for 2z = 7 fm at which polnt the nuclear forces cease
to be active. For larger values of z the behavior of the energy is that
of a pure monopole coulomb interactlon, Compared to the asymptotic
cnergy {(z =00) the hetght of the barrier s 3 McV. The unrealistic varlue
fur the threshold energy (6.5 MeV campared to 4.73 MeV experlmentally)
{s due to our incomplete correction for .the center of mass motion. Indeed

it is effected by subtracting from the kinetic energy operator the kinetic
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energy assoctated with the motion of the center of mass of the complete
system. In the asymptotic channel this correction does not take into
account the relative motlon of the centers of mass of the lndividual
ions. In the section 5 we show that most of the discrepancy 1s removed
when one evaluates the energy associated to this relative motion by
means of a simple projection.

Contour lines of the density of the system are plotted
in flgure 3 for three different values of the Iinterdistance. One can
note the signlficant oetupole deformation of the density for the value
z = 3.5 fm which as we have seen corresponds to an H.F. energy less

than 1 MeV above that of the symmetric solution.

3. PROJECTION ON PARITY

When the value of 2z differs from zero the determinantal
wave functions are no longer eigenstates of the parity. This symmetry
can be restored by a simple projection. If we denote {2) (23 0) the
constralned Hartree-Fock solution we define {-z)» {z > 0) as the left
right symmetric state of lz3» . The positive and negative parity

projected states I“ft(z)) are then defined as

@) = (12> £1-22) VT
and the parity projected energy curves as
Ee(@) = <Yaial HIYs@/ <t taten

We have plotted on figure 2 the values E+ as a function
of +s. The minimun of the positive parity curve no lu-nger occurs for
z = 0 but at z = 3.6 the gain in energy equals 1.27 MeV. The state
l"i“(z=3£)) can be considered as the result of the (restricted) variation
aleng the collective path after projection (VAP). Some of 1ts properties
are glven in table 1. The minimum of the curve E_ occurs at a larger

intcrdistance z = 4.6 fin. The difference between the energies of the



posltive and negative parity minima is 5.48 MeV which compares well with
the energy difference between the o* ground state and the first 1~ state
of 2':)Ne (5.8 MeV). Before comparing these results with those obtained
in earlier works we note that the energy E_ increases rapidly when z
devlates from the optimal value z = 4.6 fm in constract with the curve
E+ which except for the shallow minima at z =:3.6 fm is rather flat
for values of z between -4 fm and + & fm. Flnally as expected,at large
distances the curves E, and E_ become identical with the canstrained
Hartree-Fock curve. In our calculation the ratio IE+-E_| /1 E_| becomes
less than 10'4 when z is larger than § fm which is slightly larger than
the value z = 5.86 fm found in ref.[10]. In our opinion thls difference
can be explained by the too rapid decrease of the gaussian tail of the
wave functions used in ref.[10].

Two different studies of the left right asymmetry properties
of 20Ne are available which in some of their aspects bear a strong resem-
blance to our calculation. In the first calculation Nemoto and Bando
investigate a two cluster model consisting of 160 and qu nuclei built
from properly antisymmetrized oscillator shell model wave function
with fixed oscillators parameters [11]. Their result {figure 3 of ref.[11]

*
is remarkably similar to ours . The optimal interdistances for the 160

“He clusters are z = 3.5 fm and 4.5 fm for the positive and negative

and
parity states. At smaller interdistances however thelr positive parity

energy curves exhibit a strong repulsion not present in our ecalculation.

"bue to the simple properties of the oscillator wave functions the
authors of refs.[15,12] can alse perform the projection on good states of
angular momentum. In this chapter we comcare our results for thz intrinsic
states to those obtained in refs{11,12] for the 0% and 17 states.
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This is due to a deflciency of the two cluster model which for 2 = 0 leads
to a promotion of the *He wave function to an highly excited spherlcal
orbital rather than a deformed orbital of the 1d shell. This feature
is not present In the & cluster modei used by Nemoto et al. in ref.[12]
which describes the left right symmetric state of zoNe by a regular
hexaedron. Thelr results (figure & of ref,12) are qualitatively similar to
ours. The positive parity state of lowest energy corresponds to a left
right” "asymmetrlc configuration and the negative parity minimum occurs

20y {flg.%4a,

for an even larger asymmetry. The symmetric state of
b=a=3 fm) LIs less bound by about 1 MeV compared to the absolute minlmum.
We could not however compare the location of their minima with ours
because we could not find a relationship between our interdistance z
and the set of parameters used in the geometrlcal description of the
five ol cluster. Finally we note that the height of the 169 + *He barrier
relative to the minimum In their model is about twice higher than ours
(see fig.4c of ref.(12]) which may indicate a deflciency of the 5 &
cluster description of asymptotic channel. Indeed this feature is absent

in ref.[11] which for the same quantity flndsa result very similar to

ours.

4. GENERATOR COORDINATE METHUD

In the preceding section we showed that a significant
improvement on the description of the ground date of ZDNe is achieved by
projecting on parity a left right asymmetric determinantal wave Function.
On the other hand we noticed that the curve E*(z) does not snow prunvunced
structures over a large interval of values of the interdistance. It
seems then appropriate to investigate the effects of a mixing by weans

at o generator coordlnate calculation (G.C.M.) of all the states along

the collective path.
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. In order to solve the GCM equations we used the techniques
exposed in ref.[13]. The continuous variable is discretized and the
H111l Wheeler integral equation is replaced by the generalized eigenvalue

problem

N
Z ( H(z;lzj) - E) N(zi_’zs)) gx(zj) =90 (4)

4=t
We checked the stability against a change in the number N and the range
of th:: collective coordinate z of the elgenvalues Ej and the collective
wave functions fl(z) defined below. The functions ga(z) associated with
dlfferent eigenvalues are not orthonormal and cannot be interpreted
as collective wave functions. for this reason it is convenient to transform
the equation & into an ordinary eigenvalue problem. To do so one first

prforms a diagonalization of the overlap kernel

N ” M
j;i N(Zx,lj)‘g.(z‘-)f'nf ‘pl(Z,-) . (5}
and introduces the hamiltonian
N *
A 't v Py
gﬁ,w = ﬂ,‘,z"ﬂ(z;)H(z;,aJ‘K(zj) nt (6)

~4°

The GCM equation reduces then to the eigenvalue problem

; ... £ E.\F,:\ )

and the functions

Flay = ; F: Rz ®)

which form an orthonormal set can be interpreted as collective wave
functions. In fact the equations 5-7 provide also a practical algorlthm
for solving the GCM equation. The well known redundancy of the GCM basis

associated with any continuous variable like z shows up in the appearsnce
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of zero or close to zero elgenvalues 'np 1ln the spectrum of the operator
N (eq.5). The subspace corresponding to these eigenvalues can therefore
be neglected and the eigenvalue probiem (6,7) solved In the subspace
of vector ‘ﬁ" with a non negligible collective norm.
The calculatlon of the overlap and energy kernel

N(zj.z) = <zl 24>

Hizpz) = Czliidzg>
Is easily performed on the rectangular (and fixed) mesh used in all
the calculations of the Hartree-Fock solutions. The set of states lzj)
(z1 >,4e} used in our GCM calculation Included the constralned Hartree-
fock selutions as well as the states I-zi) resulting from the action
of the parity operator. for a simple interactlon like BKN the encigy
kernel can be written as the integral of a local functional of a density
P(F) and a kinetic encrgy density z(f*) [13] formally identleal to
the Hartree-Fock functlonal (1) with an appropriate deflnltlon of the

denslties f and T

3 * =
P(F):é ?d(z.}?’) ‘E,(g,»‘-')(uf *)'“
4

— g 4
zm= ) \Zj‘(z;,i-‘).v,_@,(?,-,i-‘)(df bsa

a7
In the above definition the matrixclfis given by
¥

3 . -
U{/:p = SJ"' éq(z‘lr) épu?l")
The overlap kernel <zﬁ ! zj> is the decerminant of the matrix b‘/o .
The results are shown in table 2 and figure 2 for thc
eigenvalues and figure & for the collectlve elgenfunctions of the first
two elgenstates. Due to the symmetry of th¢ kernels under the change

(Li,zj) - (-zi.—zj) the eigenstates can be sorted according to their
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parity. Compared to the positive parity projected Hartree-Fack energy
the GCM ground state t;nergy is lowmered by 0.2 Me¥. Its collective wave
function spreads over an Interval Az ~ 5 fm indicating a strong admixture
of left right asymmetric components. The overall ewergy lowerlng compared
to the symmetdc Hartree-Fock ground state equals 1.6 HeV. The flrst cxcited
state has a negative parity. Its wave function is peaked at larger inter-
distance . The energy lowering compared to the optimal negative parity
projected Hartree-Fock Is 0.5 MeV which leads to an excitation energy
of 5.15 Mev (5.8 MeV exp.). The positlon of the second positive parity
state is also In reasonable agreement wlth that of the first 0* excited
state having significant o decay width (9.65 MeV calculated , 8.6 MeV exp.).

In ref.[12] the collectlve OCM wave functions are plotted
(fig.7c} on the parameter space of the 5 & model. A5 said before a simple
relationship with eur coordinate z does not exist. Mevertheless we can
note that the ground state wave function (fig.7a} spreads significantly
over the space of collective parameters a result which is similar to
ours. The wave functions of the 1~ (flg.7b} ls, fike ours, more localized

in a regisn of the parameter space corresponding te asymmetric shapes.

5. CORRECTION FOR THE RELATIVE MOTION OF CENTERS OF MASS

In section 2.2 we mentioned that the threshold energy
resulting from our constrained Hartree-Fock calculation could not be
compared directly with experiment because we had not taken into account

16

the relative motion of the centers of mass of 0 and QHe. To evaluate

th: correction associated with this relative motion we usedthe simpfie
projection method discussed by Peierls and Yoccoz [14]. The eneryy currec-
tion is estimated as cthe difference between the sum of individuai center

16

of mass motlon energies for “e and "% and the venter of mass energy

for the combined system with a flxed interdistance between the {ans.
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€ach of the three energles is given by

an (BIRIRD

AE = - <BI A3 (9)

3.{’& <BIR

where | 0> denotes the coresponding ground state with center of wmass
at the origin and IH) the same state translated by the vector 'r? For
"He and 160 the ground state is described by the H.F, solution and the
overlap and energy kernels <D IR> and <0 I # IRY are calculated rith
the techniques described in section &, The kernels for the systew of

the two infinitely separated ions are taken as the product of the individual

kernels for the same value of R.

CBIR> = (BIRY . <BIR)y,,
CBIRIRY = (GBI, (BIRIRD,, + <BIRIRY, - <BIRY,,

The identical displacement of the two ions, ensures that the energy
correction (9) takes into account the global center of mass motion only.

Finally the relative motion energy ER 1s obtalned as

Ek - AE ("O 4‘“;) - AE("O)- AE(“He)
The numbers corresponding to each energy correction are glven in table
3 and fig.2.

The calculations are made simpler by the sphericai symmetry
of the two nuclei which reduces to one the dimensionality of the integrals
involved ln (2). Such a simplification does not exist for the H.F. ground

20,

state of Ne and the configurations of the cumbined system associated

with finite inteirdistances z.
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&. DISCUSSION

The results of tne present work demonstrate clearly the
necessity of including the left right asymmetric degrees of freedom
in self consistent calculations aiming at am accurate description of
the spectroscopy of 2t’Ne. There ls really nothing to be surprised at
such a finding,as It could have bee:‘l guessed elther from experimental
information (the very low ut decay threshold and large o width of the

first 67 and 8% states) or from earlier calculations using ecluster
models [1}. Our resuvlts can be summarized as follows : the Hartree-Fock

solutlon shows a remarkable softness against thecombination of quadrupole
and octupole constraint that we used to define the collective path leading
to the 160 + "He channel. The symmetric solution remains however the
variational minimum, The parity projection changes drastically the picture.
The varlation after projection solution corresponds to a left right
asymmetric determlnant. A generator coordinate calculation wusing the
tamlly of determinants of the collective path improves slightly the
binding energy and indlcates that the collective wave function ls very
flat over a large range of values of the interdistanccs between 160 + %e.
After correctien for the reiative motlon in the asymptotlc
16(J + MHe channel, the ground state of the generator coordinate calculation
lies 0.6 MeV below the threshold. This is in fair agreement with experiment
if one remembers that our calculation providesonly information on the
intrinsic states assaciated with rotatlonal bands of different paritles.
It is generally estimated (15,16] that a45 MeV galn In energy would
resuit from a projection of the a* state. As shown In ref.[16] the exclta-
tion of the first 17 state relative to the ground state is not signiflcan-
tly different from the energy difference between the optimal negative

and positive parity intripsic states. Qur result 5.48 MeV compares then
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reasonably well wlth the experimental value for the excitation of the 17.
The last question which is not answered bv our calculation concerns
the problem of the moment nf inertia of the ground state band. We can
only note that in cluster model calculations (refs.[11,16]) the clustering
is much more pronounced for the 0 state than far states with higher
spin. The Introduction of the left right asymmetry degrees of freedom
in angular momentum projected Hartree-Fock cnuld then lead to a lowering
of the 0 state comnared to the other members of the band and therefore

Ll deca;wressian of the band.
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TABLE CAPTIONS

Comparison of theoretical and experimental results for
the binding energy, charge radius , and charge
quadrupole moment of 20,6 (H.F. for the Hartree-Fock
solutiom, V.A.P. for variation after projection, and G.C.M.
for generator coordinate method).

Energies in MeV of the H.F. ground state, of the positive
and negative optimal solutions resulting from a variation
after projection, and of the flrst four eigenstates of

the generator coordinate calculatlon.

Center of mass energy courrections in MeV estimated by the

projection method.



Table 1

r 0
E yev © fm © fmt
Expe -160.65 2.91 56.4 + 2.7
H.F. -160.11 2.99 50
- VAP -161.38 3.02 53
ocH -161.60 3.06 55
Table 2
VAP ccH
H.F. .
E, E_ Eqe Eq- Epe E,-
-160.11 161,38 -155.90 | -161.60 -156.45 -151.95 -149.94
Table 3
BE(*He) 2£( 1) A€ (*Hes 150) £y
9.5 10.7 10.8 -9.4
i




Figure 1

Flgure 2

Figure 3

Figure 4

18.

FIGURE CAPTIONS

Parameters of the schematic model used to specify the

constrainlng vperator of the collective path (see text)

Deformation energy curves as a function of the interdistance
z between the nuclei 6 and "He. The full curve corresponds
to H.F. while the dashed and dotted curves correspond respec-
tively to the energy of the plus and minus parity projected
states. Also shown are the position of the intrinsic states
assoclated to the first and second posltlve parity bands and

the first negative parity band as predlcted by the generator
coordinates. In the central part of the figure are indicated
the value of the threshold as deduced after correction for the
relative motion of the lons. On the right part of the figure
we show the posltion of the first experimental positive and
negative parity band heads relative to the threshold.

Contour lines of equidensity of the constrained Hartree-Fock
solutions correiponding to three distincts values of the
interdistance z botween 160 and 4He. The lines are determi-
ned in a symmetry plane containing the elongation axis z.
The interval between two lines corresponds to a density
variationap = 0.02 fm~ .

Collectlve wave functions of the intrlnsic ground state
(positive parity) and first excited state (negative parity).
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