THEORY AND SIMULATION OF "FISHBONE"-TYPE INSTABILITIES
IN BEAM-HEATED TOKAMAKS

By

L. Chen et al.

SEPTEMBER 1984
THEORY AND SIMULATION OF "FISHBONE"-TYPE INSTABILITIES
IN BEAM-HEATED TOKAMAKS

by

L. Chen, R. B. White, C. Z. Cheng, F. Romenelli, † J. Weiland, ‡ and R. Kay
Plasma Physics Laboratory, Princeton University
P.O. Box 451
Princeton, NJ 08544

J. W. Van Dam, D. C. Barnes, M. N. Rosenbluth, and S. T. Tsai
Institute of Fusion Studies, University of Texas
Austin, TX 78712

Abstract

Energetic trapped particles are shown to introduce a new unstable solution to the internal kink and ballooning modes in tokamaks. Both the real frequencies and growth rates of the instabilities are comparable to the trapped-particle precession frequency. Simulations including the excitation and particle-loss mechanisms of the internal kink mode are found to reproduce essential features of the "fishbones". Furthermore, the energetic trapped particle-induced ballooning modes are shown to be consistent with the associated high-frequency oscillations observed experimentally. Several possible stabilizing schemes are considered.

† Centro Ricerche Energia Frascati, Rome, Italy
‡ Institute for Electromagnetic Field Theory and Plasma Physics, Chalmers University of Technology, Gothenbury, Sweden
+++ Institute of Physics, Chinese Academy of Sciences, Beijing, PRC
I. INTRODUCTION

The role of energetic trapped particles in tokamaks has recently been dramatized by their significant effect on magnetohydrodynamic (MHD) stability properties such as the maximum achievable $\beta \left(=\beta_0\pi T/B^2\right)$ values. In particular, "fishbone" instabilities (~ 20 kHz) observed in tokamaks during high-power, nearly-perpendicular neutral beam injection[1] are theoretically explained as the internal kink mode excited by trapped beam ions.[2] The instability mechanism is due to a resonance between the MHD mode and hot trapped particle precessional drifts. This resonance has also been found to cause rapid ejection of the trapped particles.[3] Combining the instability and ejection processes, we can then simulate the complete "fishbone" event. Since this destabilizing mechanism is rather general, we then apply it to the ideal MHD ballooning mode[4,5] in order to interpret the high-frequency (~ 100 kHz) oscillations also observed experimentally.[6] In addition to neutral beam injection, other sources of energetic trapped particles can be considered, such as cyclotron resonant heating and fusion alpha particles.[7] Finally, highly energetic trapped particles whose precession frequency exceeds the ideal MHD growth rate can enhance stabilization and possibly provide access to second stability in tokamaks.[8]

In the next section, analytical theory of the "fishbone" internal kink instability is first described. We then present numerical simulations of the full "fishbone" cycle. In Sec. III, trapped particle excitation of the ideal MHD ballooning mode is considered. Several schemes for stabilization are presented in Sec. IV.
II. INTERNAL KINK ("FISHBONE") INSTABILITIES

A. Stability analysis

Consider a large-aspect-ratio (\(a/R \ll 1\)) tokamak plasma consisting of core (c) and hot (h) components. Consistent with the experimental identification\(^1\) of the predominantly \(m=1, n=1\) internal kink perturbations (\(m\) and \(n\) are, respectively, the poloidal and toroidal mode numbers), we adopt the following formal orderings: \(\delta^c \sim 1, \delta^h \sim \varepsilon, T_c/T_h \sim \varepsilon^2\) and \(|\omega/\omega_A| \sim |\omega_{dh}/\omega_A| \sim \varepsilon^2\). Here \(\omega_{dh}\) is the hot trapped particle precession frequency, and \(\omega_A = V_A/qR\) with \(q\) the safety factor and \(V_A\) the Alfvén velocity. The core plasma is treated as an ideal MHD fluid, while the hot component is described by the gyrokinetic equation.

Summing the collisionless equations of motion for each species, we obtain

\[-\omega_p^2 \delta \xi = \left(\delta \mathbf{J} \times \mathbf{E} + \mathbf{J} \times \delta \mathbf{B}\right)/c - \nabla \delta P_c - \nabla \cdot \delta \mathbf{B}_h\]

where \(\delta \xi\) is the fluid displacement, \(\rho_m = N_m M_1\), \(\delta \mathbf{B} = \mathbf{L} \times (\xi \times \mathbf{B})\), \(\delta \mathbf{L} = \mathbf{L} \times \delta \mathbf{E}\)

\(/4\pi\), and \(\delta \mathbf{P}_c = -\left[\delta \mathbf{L} \cdot \mathbf{Z}_c + \mathbf{Y}_c \left(\mathbf{Z} \cdot \mathbf{L}\right)\right]\). Assuming \(\omega\) is much less than the hot-particle transit and bounce frequencies, the hot particle pressure tensor \(\delta \mathbf{B}_h\) is given by

\[\delta \mathbf{B}_h = -\delta L \cdot \left[\mathbf{J}_c \mathbf{L} + \left(\mathbf{J}_c - \mathbf{J}_c\right) \mathbf{E}_S \mathbf{E}_S\right]_h + \delta \mathbf{P}_f^{(1)} + \left(\delta \mathbf{P}_h - \delta \mathbf{P}_l\right) \mathbf{E}_S \mathbf{E}_S\]

where
\[\{ \delta p \} = 2^{7/2} \pi \nabla \nabla \int_{B_{\text{max}}}^{B_{\text{min}}} d\alpha (1-\alpha B)^{1/2} \int_{0}^{\infty} d\xi \frac{\xi}{\omega - \omega_{\text{dn}}} \frac{aB/2(1-aB)}{aB/2}, \quad (2) \]

\[\mathcal{E}_{B} = B/\alpha, \quad aB = \nu \sqrt{v/2}, \quad E = v \sqrt{v/2}, \quad \bar{\mathcal{E}} \equiv (\frac{\alpha d\xi}{|v_{\parallel}|}) \frac{d\xi}{|v_{\parallel}|} \quad \text{denotes bounce averaging}, \quad \mathcal{Q} = (\omega_{\parallel}/2 \mathcal{E} + \omega_{\perp}) \mathcal{P}_{\text{oh}}, \quad \omega_{\perp} = -(i/\omega_{\parallel}) \left(e_{\parallel} \times \nabla \ln \mathcal{P}_{\text{oh}} \right), \quad \mathcal{P}_{\text{oh}} \text{ is the hot particle distribution function}, \quad J = (aB/2) \mathcal{E} \cdot \xi - (1-3aB/2) \xi \cdot \xi, \quad \text{and} \quad \xi = e_{\parallel} \cdot \xi_{\parallel}. \quad \text{Equations (1) and (2) constitute a complete normal-mode description in terms of } \xi. \]

Assuming a fixed conducting boundary, we can derive a dispersion relation variationally. The dispersion functional (quadratic form) is \(D[\xi] = \delta W_{\text{MHD}} + \delta W_{\mathbb{K}} + \delta I \). Here \(\delta W_{\text{MHD}} \) is the usual ideal MHD \(\delta W \) involving the total fluid pressure \(P = P_{c} + (P_{\lambda} + P_{\perp})/2 \); \(\delta I = -(\omega^{2}/2) \int d^{3} \mathbf{r} d_{m} |\xi|^{2} \) is the inertial energy, and

\[\delta W_{\mathbb{K}} = -2^{9/2} \pi \frac{3}{\nabla} \int_{B_{\text{min}}}^{B_{\text{max}}} d\alpha \int_{0}^{\infty} d\xi \frac{d\xi}{\omega - \omega_{\text{dn}}} \frac{aB/2(1-aB)}{aB/2}, \quad (3) \]

with \(K_{b} = \phi(d\xi/2\pi) \left(1 - \alpha B\right)^{-1/2} \). Note that \(\delta W^{(2)}_{\mathbb{K}} \sim \varepsilon^{2}(s^{2}(|\xi|/R|^{2}V)) \sim \delta I^{(2)}, \) where \(V \) is the volume and superscripts denote orderings. The variational scheme is then to find a \(\xi_{s} \) which minimizes \(D \) to \(O(\varepsilon^{3}) \). This minimizing procedure is facilitated by separating the regions outside and inside the singular surface located at \(q_{s} = q(r_{s}) = 1 \). For circular cross sections, we obtain the following dispersion relation [2]:
\[
-i \omega + \hat{\delta W}_f + \hat{\delta W}_k = 0, \tag{4}
\]

where

\[
\hat{\omega}_f = \hat{\nu}_f/\left[\left(1 + 2q_s \right)^{1/2} R_s \right], \quad \hat{\omega}_k = r_s q^t(r_s)/(q_s), \quad \text{and} \quad \hat{\delta W}_f = \pi(r_s/R_o)^2 \times \delta \hat{\omega}_{TC}.
\]

Also \(\delta \hat{\omega}_{TC}\) has been given previously\(^{[9]}\) and contains only the core-plasma contribution, and

\[
\hat{\delta W}_k = \frac{2^{3/2} q^{-2}}{B^2} \int_0^{1+R/R} \delta \hat{\nu}_f \int dE E^{5/2} \frac{\omega}{K_b} \frac{\hat{\omega}}{\hat{\omega}_h} \left(\frac{3}{\hat{\omega}_h} + \frac{\hat{\omega}_h}{\hat{\omega}_h} \right) \Phi \tag{5}
\]

Here \(\langle y \rangle \equiv (2/r_s^2) \int_0^{1+R/R} y \, d\theta \, r \, dr \) is the average of \(y\) within the \(q = 1\) surface,

\[K_2 = \delta(d \theta/2\pi) \cos \theta (1 - \alpha_b)^{-1/2}, \quad \text{and} \quad (m = 1, n = 1) \text{ perturbations are assumed.}
\]

The stability properties are modified qualitatively by the fact that \(\delta \hat{\omega}_k\) contains the mode-precessional drift resonance. A Nyquist analysis reveals the following general characteristics which are relatively insensitive to the \(\Phi_\Omega\) one assumes: (i) There exist two branches of the solution. One is the usual MHD branch driven by \(\delta \hat{\omega}_f\), and the other is a new branch induced by the energetic trapped particle. (ii) Even when the MHD branch is stable (\(\delta \hat{\omega}_f > 0\)), the trapped-particle branch can become unstable if \(\langle \delta \hat{\omega}_f > 0\rangle\) exceeds \(\langle \delta \hat{\omega}_f > \rangle \text{crit}\), where
Here \(\hat{I} \sim \left(K_2 / \varepsilon K_b \right) \) is a trapped particle geometrical factor typically of 0(1/\(\varepsilon \)) and, thus, \(\hat{\omega}_{h, \text{crit}} \sim 0(10^{-3} - 10^{-2}) \). (iii) Both the real frequencies and growth rates of this trapped particle-induced branch are typically comparable to \(\hat{\omega}_{\text{dh}} \).

The above features are consistent with the experimental observations. Specific calculations for slowing-down and Maxwellian \(F_{\text{oh}} \) have been performed.\(^{[2,7]}\)

B. Simulation of the "fishbone" cycle.

MHD perturbations with \(\omega \) in resonance with \(\omega_{\text{dh}} \) can cause secular radial drift of energetic trapped particles. To see this, consider a perturbation \(\delta B_r \), rotating toroidally with \(\omega = \omega_{\text{res}} \). In the frame moving with the perturbation there is an electric field \(\delta E = \omega \times \delta B \), producing a \(\delta E \times B \) radial drift of particles. If the trapped particles and the perturbation remain in phase (\(\omega = \omega_{\text{dh}} \)), this motion is secular. A Monte-Carlo code based on a Hamiltonian guiding center drift orbit formalism\(^{[3]}\) has been used to study the resonant loss process and to simulate the full "fishbone" cycle. The mode structure was obtained from a nonlinear MHD initial value code which reproduced the two principal diagnostic signals, due to soft X-ray detectors and Mirnov coils. The dispersion relation was calculated numerically using the instantaneous particle distribution. The initial particle distributions were given by beam injection and evolution.
The results of a typical simulation using PDX parameters are shown in Fig. 1. As soon as $<B_{h,t}>$ exceeds $<B_{h,t}>_{crit}$ the mode begins to grow. At some point the mode reaches a significant amplitude ($\delta B/B = 10^{-4}$) and begins to affect particle motion, ejecting particles in a beacon rotating toroidally with frequency $\omega = <\omega_{dh}>$. This loss process is rapid, and $<B_{h,t}>$ drops to $<B_{h,t}>_{crit}$ typically in hundreds of microseconds. The loss begins with particles of highest energy, and since $\omega_{dh} \sim E$, this produces a whistling downward of the "fishbone" frequency (~ 20 kHz for PDX) during the loss process, which is also observed experimentally. The maximum mode amplitude is reached when $<B_{h,t}>$ has dropped to $<B_{h,t}>_{crit}(Im\omega=0)$, and the mode continues to eject particles, driving $<B_{h,t}>$ well below $<B_{h,t}>_{crit}$. The mode then decays to a point where it no longer affects particle motion, and the cycle begins over. The beam deposition rate is typically much lower than the loss rate, so the time between bursts of MHD activity is longer than the bursts themselves.

Growth rates, frequencies, and other properties of the "fishbone" cycle depend on the beam injection parameters, and the nature of the equilibrium. In particular, high shear can make the particle precession rate a strong function of position, limiting resonance with the mode as a particle moves outwards.

IV. TRAPPED PARTICLE-INDUCED MHD BALLOONING INSTABILITY

By analogy with the theory of "fishbones," one may expect that energetic trapped particles can also destabilize ideal MHD ballooning modes by introducing a new unstable branch at $|\omega| = \bar{\omega}_{dh}$. The major difference is that whereas the $m=1$ internal kink-"fishbones" involve radially global
quantities, the high-mode-number ballooning instabilities will be localized near a flux surface.

As before, adopt an MHD fluid description for the warm core plasma but use the gyrokinetic equation for the hot component where $\omega \sim \omega_{\text{pe}}$. With the orderings $\varepsilon_{\text{pe}} \sim 1$, $\varepsilon_{\text{ph}} \sim 1$, and $T_{ei}/T_{e} \sim \varepsilon^{2}$, the ballooning eigenmode equation can be derived[4] as

\[\frac{d}{d\chi} \left(1 + s^{2} \chi^{2}\right) \frac{d\phi}{d\chi} + \Omega^{2} \left[1 + s^{2} \chi^{2}\right] \phi + g(\chi) \left[\varepsilon_{\text{pe}} \phi + \varepsilon_{\text{ph}} \phi\right] = 0 \quad (7) \]

where $s = (r/q) dq/dr$, $\Omega = \omega/\hat{n}_{A}$, ϕ is the perturbed electrostatic potential, χ is the extended poloidal angle, and $g(\chi) = \cos\chi + \sin\chi$ is $\varepsilon(1 - q^{-2})$. The trapped particle term is

\[\varepsilon_{\text{ph}} \phi = \frac{2^{3/2} \pi^{2} q^{2} n_{\text{pe}}}{\beta^{-1} [1 - \alpha B]^{1/2}} \int_{0}^{\delta B E^{5/2}} g(\chi) \phi \quad (8) \]

with notations the same as in Sec. II. If small shear, $s < 1$, is assumed, Eq. (8) can be analyzed in terms of the short and long spatial scales, χ and $z = \hat{\chi}$. Introducing the subsidiary ordering $\Omega^{2} \sim \Delta_{c}^{4} \sim \Delta_{h} \sim \varepsilon(1 - q^{-2}) \sim s^{2}$ and then expanding and solving for $\phi = \phi_{0}(z) + \phi_{1}(\chi,z) + \ldots$ up to fourth order in powers of $s^{1/2}$, one obtains an averaged ballooning equation for the function
\[\psi(z) = \phi_0(z) (1 + z^2)^{1/2}. \] Now match the asymptotic solution \(\psi \sim \exp \left[\frac{i}{(\Omega/s)} |z| \right] \) for \(|z| \gg 1 \) with the logarithmic derivative of the inner solution for \(|z| \approx 1 \), assuming \(|\Omega/s| < 1 \) and constant-\(\psi \) in the inner region. This yields a dispersion relation of the same form as that of the internal kink mode, Eq. (4), with appropriate replacements of \(\hat{\delta}_f \) and \(\langle \hat{\beta}_h, \hat{I} \rangle \) in terms of surface quantities. The stability properties are, thus, formally similar to those discussed in Sec. II. Note that the \(s < 1 \) limitation on the preceding analysis can be somewhat relaxed if the constant-\(\psi \) approximation is replaced by a weakly varying trial function which provides better estimates of \(\hat{\delta}_f \) and \(\langle \hat{\beta}_h, \hat{I} \rangle \) for \(s \ll 1 \). Otherwise, the stability properties remain unchanged.

The restrictions on \(s \) and \(\beta \) can be further relaxed in the following way. Assume that the energetic particles are deeply trapped so that the \(\epsilon_{ph} \phi \) term in Eq. (5) is localized near \(\chi = 0 \), where it couples the zero-frequency even and odd solutions \(\phi_0 \) and \(\phi_o \). For \(s \chi > 1 \), each has the asymptotic form \(\phi_0 \sim M_0 \chi^\nu + N_0 \chi^{-\nu} \), where the four Mercier coefficients \(M_{e,0} \) and \(N_{e,0} \) and the exponent \(\nu \) can be computed numerically for a given equilibrium. With this information, the total solution \(\phi_{in} = \phi_{e}(\chi) - \phi_o(\chi) \) can be matched to the small argument form of the Hankel function solution \(\phi_{out} = \chi^{1/2} H_\nu^1(\Omega \chi) \) in the outer, inertial region where \(\Omega \chi \sim 1 \). This procedure yields a complex dispersion relation, which can be analyzed by the Nyquist technique.

Figure 2 presents the results of such an analysis for a large-aspect-ratio model equilibrium. The trapped particle-induced branch is unstable for \(E_{ph} / \omega_A \) to the right of the solid curves for various \(E_{dh} / \omega_A \) values. Note that these curves approximately have the generic features given in Eq. (5). For \(E_{dh} / \omega_A < 1 \), the trapped particle branch restricts stability significantly. However, at very high energies, we can
have $\omega_d/\omega_A \gg 1$. MHD ballooning can then be analyzed in the limit where $|\omega|/\omega_d$ is negligibly small; i.e., the hot particles behave so as to conserve the flux adiabatic invariant, which leads to enhanced compressional stabilization. The dashed curve in Fig. 2 is the marginal stability boundary for this zero-frequency MHD mode. Thus, for large ω_d/ω_A, the introduction of highly energetic particles is able to provide direct stable access to the second stability regime at high core plasma beta values, ε_B. In general, however, ballooning stability in the presence of hot trapped particles requires that both the zero- and precession-frequency unstable branches be avoided.

This trapped particle-induced ballooning instability appears to be a likely candidate to explain the high-frequency (50 - 150 KHz) MHD-type oscillations observed in the PDX tokamak during high-power perpendicular injection, often as a "precursor" to the "fishbone" oscillations: (i) The ratio of the "precursor" frequency to the frequency of the $n=1$ "fishbones" is close to the measured toroidal mode number $n = 2-6$ of the "precursor." Theory predicts $\omega_p \ll \omega_d$, in agreement with experiment. (ii) While the high-frequency oscillations tend to occur at high values of beam power and ε_B, the "fishbones" can occur at lower values. Likewise, theory finds a higher ε_B instability threshold than that for the "fishbones." (iii) Experimentally, the high-frequency oscillations are localized near the $q=1$ surface. Since the q profile flattens there, shear is reduced along with the threshold ε value, consistent with theory. (iv) When the high-frequency oscillations are present along with "fishbones," they occur in the beginning stage of the "fishbones." Since q on axis drops during heating, ballooning modes, which require $q(0) \gg 1$, would occur before the internal kink instability sets in at $q(0) < 1$. (v) In cases where only the high-frequency oscillations are
observed, sawteething generally is either absent or has small amplitude, which is consistent with the idea that ballooning modes occur with $q(0) \geq 1$.

IV. STABILIZATION SCHEMES

We have demonstrated that "fishbones" and their high-frequency "precursors" are excited via the resonant coupling between the curvature drift precessional motion of energetic trapped particles and ideal MHD modes (internal kink and ballooning, respectively) of the core plasma. To suppress instabilities of this type and the associated loss of hot ions, we propose the following stabilization schemes: (i) Apply either tangential or not directly perpendicular neutral beam heating, in order to reduce the trapped hot ion beta value below its threshold value; (ii) Employ shaping of the plasma cross section, e.g., bean shape, to make ΔW_{FC} more positive (i.e., raise the $\langle \xi_{h,t} \rangle$ threshold) and make the MHD branch even more stable; (iii) Introduce highly energetic (~ MeV) beams, in order to raise the threshold trapped particle beta value, which is proportional to the injection energy through the ratio E_{th}/ω_A.

ACKNOWLEDGMENTS

This work was supported by the U.S. DoE Contract No. DE-AC02-76-CH03073.

REFERENCES

FIGURE CAPTIONS

Fig. 1. Results of a "fishbone" simulation, for typical PDX parameters and $\langle \delta_h, t \rangle_{\text{crit}} \approx 2 \times 10^{-3}$. Shown here are $\langle \delta_h, t \rangle$ and the Mirnov signal $A = \delta B/B$ with maximum amplitude 5×10^{-4}.

FIG. 2. Stability boundaries for the trapped particle-induced ballooning mode (solid curves) and the zero-frequency MHD ballooning mode (dashed curve). The parameters are $q = 1.5$, $s = 0.5$ and θ_o (magnetic turning point) = $\pi/4$.
Fig. 1
Unstable Trapped-Particle Branch
($\omega/\omega_{dh} \approx 1$)

Unstable MHD Branch ($\omega/\omega_{dh} \approx 0$)

$\omega_{dh}/\omega_A = 0.6$

$\omega_{dh}/\omega_A = 0.2$

Fig. 2
EXTERNAL DISTRIBUTION IN ADDITION TO TIC UC-20

Plasma Res Lab, Aust Nati Univ, AUSTRALIA
Dr. Frank J. Paoloni, Univ of Wollongong, AUSTRALIA
Prof. J.R. Jones, Finders Univ., AUSTRALIA
Prof. M.H. Brennan, Univ Sydney, AUSTRALIA
Prof. F. Cap, Inst Theo Phys, AUSTRIA
Prof. Frank Verheest, Inst Theoretische, BELGIUM
Dr. O. Palumbo, Dg XI Fusion Prog, BELGIUM
Ecole Royale Militaire, Lab de Phys Plasmas, BELGIUM
Dr. P.H. Sakakibara, Univ Estauan, BRAZIL
Dr. C.R. Jones, Univ of Alberta, CANADA
Prof. J. Teichmann, Univ of Montreal, CANADA
Dr. H.M. Skarsgard, Univ of Saskatchewan, CANADA
Prof. S.R. Sreenivosen, University of Calgary, CANADA
Prof. Tudor W. Johnston, INRS-Energies, CANADA
Dr. M.P. Bochynski, MTB Technologias, Inc., CANADA
Zhenowu 1.1, Institute of Physics, CHINA
Library, Tsing Hu University, CHINA
Librarian, Institute of Physics, CHINA
Inst Plasma Phys, Academia Sinica, CHINA
Dr. Peter Novak, Komotninos Nucl, CZECHOSLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Prof. Schatzman, Observatoire de Nice, FRANCE
J. Racet, CEN-IPPS, FRANCE
AN Dupas Library, AN Dupas Library, FRANCE
Dr. Tom Mau, Academy Bibliographic, HONG KONG
Preprint Library, Cent Res Inst Phys, HUNGARY
Dr. S.K. Trabao, Panjab University, INDIA
Dr. Indra, Mohen Lai Des, Banaras Hindu Univ, INDIA
Dr. L.K. Chawla, South Gujarat Univ, INDIA
Dr. R.K. Chhablani, Var Ruchi Marq, INDIA
P. Ram, Physical Research Lab, INDIA
Dr. Phillip Rosenau, Israel Inst Tech, ISRAEL
Prof. S. Guenman, Tel Aviv University, ISRAEL
Prof. G. Roestano, Univ DI Padova, ITALY
Librarian, Int'l Ctr Theo Phys, ITALY
Miss Chiara Di Polo, Assoc EURATOM-CNEN, ITALY
Biblioteca, del DNR EURATOM, ITALY
Dr. H. Yamato, Toshio Res & Dev, JAPAN
Prof. K. Yoshikawa, JAERI, Tottori Res Est, JAPAN
Prof. T. Uchida, University of Tokyo, JAPAN
Research Info Center, Nagoya University, JAPAN
Prof. Koichi Nishikawa, Univ of Hiroshima, JAPAN
Prof. Sigeru Mori, JAERI, JAPAN
Library, Kyoto University, JAPAN
Prof. Ichiro Kawakami, Kainan Univ, JAPAN
Prof. Tetsuji Itoh, Kyushu University, JAPAN
Team Into Division, Korea Atomic Energy, KOREA
Dr. R. England, Cimento Universitaria, MEXICO
Bibliotheca, Fom-Instit Voor Plasma, NETHERLANDS
Prof. E.S. Liley, University of Waikato, NEW ZEALAND
Dr. Suraj C. Sharma, Univ of Calcutta, NIGERIA
Prof. J.A.C. Cabral, Inst Superior Tech, PORTUGAL
Dr. Octavien Petrus, Ali CIDE University, ROMANIA
Prof. M.A. Hellberg, University of Natal, SC AFRICA
Dr. Johan de Villiers, Atomic Energy Bd, SC AFRICA
Fusion Div, Library, JEN, SPAIN
Prof. Hans Wieland, Chalmers Univ Tech, SWEDEN
Dr. Lamart Stamat, University of UMEA, SWEDEN
Library, Royal Inst Tech, SWEDEN
Dr. Erik T. Karlson, Lunds University, SWEDEN
Centre de Recherches, Ecole Polytechn Fed, SWITZERLAND
Dr. A.L. Heise, Natl Bur Stand, USA
Dr. M.H. Stacey, AEC Inst Tech, USA
Dr. S.T. Wu, Univ Alabama, USA
Prof. Norman L. Olson, Univ S Florida, USA
Dr. Benjamin Ho, Iowa State Univ, USA
Prof. Magne Kristiansen, Texas Tech Univ, USA
Dr. Raymond Askew, Auburn Univ, USA
Dr. V.T. Totok, Khonkaen Phys Tech Ins, USSR
Dr. D.D. Ryutov, Siberian Acad Sci, USSR
Dr. G.A. Eilseem, Institute of Physics, USSR
Institute of Physics, USSR
Prof. T.J. Boyd, Univ College N Wales, WALES
Dr. R. Stuhlman, Univ of British Columbia, USA
Dr. A.P. Reid, Atomic Energy Comm, USA
Dr. S.T. Hu, Univ of Alabama, USA
Prof. R.A.M. Cloetingh, Cent Res Inst Phys, NIGERIA
Dr. W.L. Welse, Natl Bur Stand, USA
Dr. V.A. Glukhikh, Inst Electro-Physics, USSR
Institute Geol, Physics, USSR
Prof. T.J. Boyd, Univ College N Wales, WALES
Dr. R. Stuhlman, Atomic Energy Comm, USA
Dr. B. Holsinger, University Stuttgart, USA
Bibliothek, Inst Plasmaforschung, USA