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ABSTRACT

The theoretical status of the photon structure function
is reviewed. Particular attention is paid to the hadronic
mixing problem and the ability of perturbative QCD to make
definitive predictions for the photonstructure function.

1. Introduction.

Deep inelastic scattering provides a unique probe of the pointlike
structure of matter. The structure of the photon has special interest due
to its two component nature where it can interact directly through its
pointlike couplings or indirectly through its hadronic component. Initial
interest! in the photon structure function was based on the parton model.
The parton model predicts that the virtual photon can interact directly with
the target photon through the exchange of charged pointlike partons. The
parton mode! prediction for the photon structure function becomes

F,3(402) = <e>x {P(x) x log(@2/m?) + B(x)} 0

where we see the sensitivity to the fourth moment of the parton charge
and the nonscaling Q2 dependence. The partonx distribution, P(x), reflects
the direct coupling to the photon. The parton mass sets the scale of the
logarithm and reflects the infrared sensitivity of the parton structure
function. In the following we will study the photon structure function
within the context of the theory of perturbative quantum chromodynamics.
We are particularly concerned with the separation of the direct pointlike



couplings of the photon from the effects of the quark and gluon hadronic
constituents.

2. lLeading order QCD.

The application of perturbative QCD to the photonstructure function is
similar to its application to hadronic processes. The reaction can be
factorized into a hard scattering cross-section of the constituents times
their target probability,

Fo3(x02) = £_Fc2(02) * A (2)

The infrared sensitivity is absorbed in constituent probabilities, A~ The
constituent cross-sections, F2 are directly computed in perturbative

QCD. Witten? was the first to observe that the proper treatment of the
photon structure function requires that the photonbe considered as its own
constituent. Witten used operator product expansion and rencrmalization
group methods to compute the hard scattering cross-sections. In leading
order, the diagrams for quark and gluon production as shown in Figure 1 are
summed to all orders. Of course only the hard scattering parts of these
diagrams are correctly predicted by perturbative QCD. | emphasize the
association of all Q? dependence with the hard scattering cross-sections
rather than the Q2 evolution of the parton distributions. The leading order
results were also obtained using a wide variety of methods3.

Quantum chromodynamics makes a unique prediction for the asymptotic
behavior of the photon structure function. Witten presented the results
for the moments of the structure function which are summarized by

M(@2) = fax x72x F,3(x,02)
= a/xg(Q2) + by, (photon)

+ Zi [ms(Qz)]dn,i x(1+..) x Ay (hadrons) (3)

where dn,t = 2f°m/ B 2 0 are the hadronic anomatous dimensions. The
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Figure 1. Leading order perturbative diagfams.

hadronic part has exactly the same structure as hadronic deep inelastic
scattering. In leading order, asymptotic freedom predicts that the
effective strong coupling should vanish for large Q2 as «g(Q?) -

417/ ngiog(02/1\2) -+ 0. Hence the photon component of the structure
function in Eq. 3 dominates asymptotically over the hadronic components
and the moments have the behavior,

MA(Q2) = &, x (Bo/41m) x 10g(Q%/ A2). (4)

The coefficients a, are computed In perturbative QCD and yield the

nonparton but stiff x distribution shown in Figure 2. The resuit of £q. 4
predicts the ultimate asymptotic behavior of the moments as the
anomalous dimensions given in EQ. 3 imply that all other correctionsto the
moments are logarithmically suppressed.

3. Higher order QCD.

The higher order corrections to the moments canalso be computed in
perturbative QCD. The next corrections to the photon component are O(1)
in an o expansion and will continue to aymptotically dominate over the
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Figure 2. Leading order structure function. a) Valence
component. b) Sea component. c) Total.

hadronic components due to the positivity of the hadronic anomalous
dimensions with the exception of the secondmoment where the anomalous
dimension can vanish. The coefficients, b, were computed? for n> 2 and

combined with the higher order corrections to oy to determine the photon

component of the structure function through next leading order. These
corrections are required for a significant determination of the QCD scale,
Nqcp: from this process.

The moments can be directly compared to data or inverted to give
directly the structure function For moderate x, the higher order
correctionsdo not dramatically alter the shape of the x distribution but do
provide the overall scale of the structure function. The results are shown
in Figure 3. For small x, the higher order prediction of the photon
component breaks down as it appears to predict a negative cross-section.
As emphasized by Duke and OwensS, this effect is due to mixing with the
hadronic component which cannot be suppressed at small k. The effect is
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Figure 3. Higher order structure function. a) Valence
component. b) Sea component. ¢) Total.

best seen by the separation of the theoretical prediction into the valence
component, ~{<e4>-<e2)?), and the sea component, ~{e2>2.  The negative
terms appear only in the sea component.

4. Mizing singularities.

The negative contribution to the sea component of the structure
function arises from a pole in the by, coefficient at n = 2, b, = b/(n-2).

when inverted this pole generates a singularity at x = 0,
F,5%8(x,Q2) - - (1/%). (5)
This singularity arises from the mixing of the photon and hadronic

components and canbe seen from the evolution equations for the structure
functions®$. The evolution equations generate terms in the form



{I-{x @2/ (@)1}, 6)

where the singlet anomaious dimension canvanish, d,_ - (n-2) - 0. While

the expression in Eq. 6 is nonsingular even at n = 2, the existence of such
terms can produce the singular terms in the photon component.  This
behavior of the anomalous dimensions produces nonuniform evolution in Q2
as ¥ - 0 since the "hadronic® component of £q. 6 will dominate for n < 2
and the “photon” component will dominate for n> 2. Hence the singular
terms found by Duke and Owens® in the sea component of the photon
structure function is spurious and must be cancelled by similar
singularities in the hadronic component,

A * 1o (@1 = (1/(n-2))  [oxg)%n-. @)

This cancellation was shown? to occur for the virtual photonstructure
function. In this case the target photonis taken to be highly virtual and
the entire amplitude is calculable in perturbative QCD. The coefficient A._

canbe computed exactly and does contain the poie expected formEq. 7. we
conclude that the “hadronic® component may not necessarily be ignored
even for real photons as the coefficients may be enhanced due to poles even
though the terms are suppressed by powers of o forn > 2.

S. Regularization.

The singularities discussed in the previous section require that the
simple separation of the photon and hadron components be modified. Much
of the predictive power of perturbative QCD may be retained through the
proper regularization of these singularities®.  The basic point is that the
singular terms produce a large effect in the sea distribution at small x.
However, except for the singularity, the sea component is expected to be
small. Therefore, any reasonable regularization witl cancel the singularity
and leave a remaining small sea component. Antoniadis and Grunberg?® have
made an explicit construction of the reguiarized structure function. The
method first invoives the explicit separation of the singular terms. Then



they introduce a new parameter, A, to tune the strength of the induced
terms. The resuiting structure function is nonsingular,

by =b,"2d + b/(n-2), [t=axag@®]

M% 129 = a /o (Q2) + 1,28 + [b/(n-2)] x {1-{t] In-}. 6)

For reasonable values of A, the singular terms are reduced to a true higher
order correctionwith sensitivity to A only at small x. Their results are
shown in Figure 4. The procedure used here is by no means unique but
other methods will yield similar results.

!E Fg(x)

Figure 4. Regularized structure functions. a) Total
contribution for various t values. b) Sea component.



6. Higher order singuiarities.

we have discussed the singularities and the reguiarization of the next
leading contributions to the photon structure function.  G. Rossi'® has
made a systematic study of singularities induced by higher order
corrections. He finds that the mixings generated in higher orders produce
poles which move to larger values of n. Poles at larger values of n
correspondto more singular x distributions,

My = 1/(n-ng) # Fp(x) = 1/x Mo~ (9)

These poles are a further refiection of the nonanalytic behavior at small x.
The singularities must be canceiled by similar singuiarities in the
*hadronic” terms. The poles canbe discussed from the perspective of the
previous section with suitable regularization methods. when the
sinqularities are cancelled, the higher order correctionswill be reduced to
higher order except at very small ¥ where perturbative QCD breaks down.

7. Evolution.

A different perspective! concerningthe application of perturbative QCD
to the photonstructure function was presented to this conferenceby Drees.
This work concludes that oniy evolution of the structure functions canbe
computed due to the mixing singularities in next and higher order. The
dominant photon component can not be isolated from the hadron
component. The treatment of the photon structure function is reduced to
that of the hadronic structure functions where one can only predict
evolution of the structure function from one value of Q2 to higher values of
Q2. This is very difficult to exploit in the case of the photon structure
function. It requires knowledge of three distribution functions qys. 4s.

and G at one value of Qg2 or measurements at three values of Q2 to
determine the full Q2 dependence (note there are no sum rules in this case).
In this procedure we fose ali sensitivity to Aqcp.

In practice one must make an ansatz, at one Q2. to relate the singlet
quark and the singlet gluon distributions to the nonsinglet quark



distribution.  Drees et al choosethe following relations,
£8(x.Qg2) = (<e2>/[<e*>-<e2>21}x qug(x.Q2).
6¥(x0g?) = (2/Bo} x POgq = 22 (10)

in order to test the evolution predictions, they let Qp? = 1 GeV?2 and evolve
to fit the data at Q2 = 5 Gev2 which determines the valence quark
distribution, qNs(x.Qo2). Their predictions for the photon structure

function at higher Q2 is shown in Fiqure 5. They compare the leading order
evolution and higher order evolution and find little difference. They find
no sensitivity to Agep 3 expected in this approach. with their

parameterization, they find only a slow approach to the asymptotic
structure function.
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Figure 5. Comparison of leading and higher order
evolution of the photon structure function.
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we may try to analyze the results of Drees et al by comparing their
results with the resuits of Antoniadis et al.  we may compare the
asymptotic forms for the fitted moments,

Md = a/o(@) + by + Zyo - AP xla(@1 ()

The two approachesmust agree on the values of ap, and by, The coefficient
Aq_ must have the same n=2 singularities. ~ However the nonsingular parts
of the A, ; canbe expected to differ as well as the choice of Aqep. We

see that the two approaches differ only in those terms which are not
calculable in perturbative QCD. Whether the photon component or the
nadron component dominates depends onthe fitting procedure.

Assuming that both approaches can fit the data, we can address the
sensitivity to the determination of Aqcp. The nonsingular hadronic terms

of Drees et al can imitate the dependence on A2 only if they have the
correct ¥ distribution over the fitted range of Q2.  The A? values are
related by

an * (Bo/41) x log(AZ50)
= a * (Bo/4M)x 10g(ATgeR) - L BAnj Xog)dni  (12)

where only the nonsingular parts contribute to AAn;. If the values of A?

differ in the two fits, then the hadronic terms must have the pointlike
structure of the x distribution dictated by the coefficient, a,. However

the true hadronic part of the structure function is expected to have an x
distribution similar to typical hadronic structure functions and not the
stiff x distribution of the pointlike contribution from a,. [ conclude that

the evolution approach advocated by Drees et al is quite conservative. It
chooses to iqnore our ability to directly compute the large photon
component which may dominate the entire cross-section.



11

8. Conclusions.

In this talk 1 have only briefly discussed the fundamental QCD analysis
of the photon structure function as it has been extensively presented in the
literature. Instead 1 have focussed on the questions related to the
hadronic miing problem. My basic conclusion is that a large pointlike
photon component can dominate the photon structure function with a
calculable dependence on AzQCD- The mixing singularities discovered in

the perturbative analysis must be properly treated. However the analysis
of Antoniadis et al does provide a reasonable prescription for regularizing
the perturbative singularities but requires the introduction of a new
parameter, A. The structure function is sensitive to the value of A oniy at
small x.  Of course the size of the true hadronic component is not
calculable in perturbative QCD. However since this hadronic component is
not expected to have the pointlike x distribution, the data can be used to
determine whether a large hadronic component is required. If the
structure function is pointlike, then we can presume the photon component
dominates and use the moderate  range to determine AZncp.

In fits to the data, a vector meson dominance (VMD) contribution is
usually included with the hadronic x distribution.  Although only a small
effect, this hadronic component should include the espected Q2 dependence.
The A parameter of Antoniadis et al produces a VMD-like effect with the
correct Q? dependence.

Strictly perturbative analysis can not be used further to resoive the
structure of the hadronic components. Diagram calculations are sensitive
to the wrong, perturbative infrared dependence which negiects all
confinement effects. In the future we must look to nonperturbative
estimates of the hadronic coefficients, Am. Perhaps the QCD lattice

industry can be induced to study the appropriate matrix elements and
determine whether anomalously large hadronic components contribute to
the photon structure function.
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COMMENTS

S. BRODSKY: ~ As you have emphasized, the mass dependence in the QPM
result Tor F,% ~ 1og(Q2/m?) is replaced by the QCD scale A2 in the
all-order calculation. For heavy quarks mZ >> A2, the mass dependence
can not be neglected.  Thus shouldn't we include higher dimension
operators in the analysis to recover the mass dependence, including the
vacuum expectation values which give large consistent quark masses?

Neglecting these contributions could affect the determination of Atlﬁ.

from ng

JH. FIELD: For the charm quark contribution to F,, the quark parton
prediction is normally used as the mass scale is set not by Aqcp but by

the charm quark mass. If however /\QCD is as small as 100 MeV and the

lightest constituent quark mass is ~300 MeV, is to be expected that even
for the light quarks, the quark mass will set the energy scale, not Aqcp.

In fact existing data are fitted equally well by the QPM with conventional
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constituent quark masses or by asymptotic QCD predictions with Aasan .
adjustable parameter.

K. GRASSIE: How do you obtain the typical behavior of structure
functions as predicted by QCD, namely an increase of f, at large x and
decrease at small x if you change A2 or Q2 appropriately? This behavior
is predicted by the A; terms which have been neglected in the

semi-asymptotic solution of Antoniadis and Grunberg.

WINSTON KO:  If we measure the longitudinal structure function, F,

which is espected to not have a Q2 dependence, would it be useful to
determine the Q2 - independent term of F,7?



