FREsSe\32¢

THE CALCULATION OF COLLECTIVE ENERGIES FROM
PERIODIC TIME-DEPENDENT HARTREE-FOCK SOLUTIUNS

Ismail ZRHED

Center for Theoretical Physfcs, Laboratory for Nuclear Science and Department of Physics,
Massachusetts Institute of Technology, cambridqe, Massachusetts (2139
and The Nfels Bohr Institute, DK 2100 Copenhagen g, Denmark*

and

Michel BARANGER

-,

Center for Theoretical Physics, Laboratory for huclear Science and Lepartment of ,Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139’
and

Ofvisfon de Physique Théorique®, Institut de Phycique Nucléaire,
F-91406 ORSAY, France

IPNO-TH 83/33 JUNE 1983

% present address

! Permencnt address
* Laboratoire associ2 au C.N.R.S



-1-

Abstract

A pér1odic TDHF solution is used as the reference state
for a diagrammatic expansion of the propagator. A discrete Fourier
transform leads to a function of energy, whose poles are the corres-
ponding energy Tevels. Limiting the expansion to first-order diagrams
leads to a new derivation of the Bohr-Sommerfeid-like quantization

rule for collective states.

[Nuclear. Structure. Collective Energies. Periodic
time-dependent Hartree-Fock. Diagrammatic derivation of the Bohr-

Sommerfeld quantization rule.]



1. MOTIVATION

Microscopic calcutatiuns of collective energy
ievels have often had as their startinu point a static mean-field
calculation of the ground state, using something like the Hartree-
Fock or Brueckner-Hartree-Fock approximation. But one knows very
well how to describe collective motion with a time-dependent mean-field, as in
the time-dependent Hartree-Fock (TUHF) approximation. The many
swtccesses of this approach are well-known'*?. It does have some
problems, however, one of which is that, from the collective point
of view, it is a classical description, with the consequences that,
for bound states, it needs to be requantized, often in a rather
arbitrary manner, and for scattering it is not rich enough to des-

cribe all the experimentally measured quantities.

This situation can be remedied if TDHF can be
considered as the first step in a fully quantal theory, and this
is just one of the results of the previous paper 3. We have shown
there that it is possible, without changing things very much, to
extend Feynman-Goldstone perturbation theory to the case where
tne basis is made up of time-dependent single-particle wave func-
tions, all being solutions of the same time-dependent Schrédinger

equation, which in the present case will be the TDHF equation. The

result is a potentially exact formulation, provided the perturbation

series converges, which of course is not a trivial matter. It is
Tikely to be a much more accurate description of collective motion
than the formulation starting frum static Hartree-rock, and to
imclude it as a special case. In particular, approximations such

as the RPA, which are based on static Hartree-Fock, cannot describe
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large amplitude collective motion, while the present approach can.

Also, there 1s no adiabatic approximation in the present approach,

This paper is de.oted to the derivation of
the quantfzation rule for periodic TDHF solutions. The existence
(or possible existence ?) of these solutions has excited intense
Interest recently 4, because of their effective one-dimensional
character and because of the analogy with classical mechanics.
What we do i5 to use our Feynman-Goldstone expansion, in Jowest
order, to derive an unequivocal quantization rule for these solu-
tions if they exist (and they do exist for simpie models). This
rule turns out to be identical to that preciousliy derived by func-
tional integrals 5’5, and it is instructive and satisfying to see
it derived in this completely new way. Later papers will develop

corrections to this lowest order result.



2. PERIODIC TDHF_SOLUTIONS

2,7

In a periodic TDHF solution ,» the one-body

density e( t) is a periodic function of time with period T
plev=) = p (k) (1)
and frequency

w=42n /. (2)

It

Therefore the single-particle potentiat U(t) has period T also.
The single-particle states are solutions of the time-dependent
Schriddinger equation in tnis potential. They are not periedic, but
quasi-periodic, as in Bloch's or Floquet's theorem. This means

L Oy

lN(l:+'c)>= 2 ‘o((l:')> (3)

where eu is a phase angle characteristic of the particular single-
particle state. Ubviousty, these phases disappear in the construction

of the one-body density as a sum over occupied states
eled= Z | A > <A (4)
A
and p(t) is truly periodic.
5
't is possible to define a variable )\u having

dimensions of energy by

e“= )\d'lz (note:'e;=l) (5)
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and to define lo(‘P(t)> , the periodic part of |t (1)) . by
Fd

LA B,
lateod> = o % lePey> . (6)

one checks immediately that ‘o(?(r,)> is truly periodic. We shall
call )\_“ the quasi-energy of single-particle state o( . It is
similar to the "crystal momentum” of Bloch's theorem and it is
detined up to a wultiple ofwonly. The time-dependent Schrydinger

equation, written for la{?(t)> , becomes

( L%— K=V | [os = - A >,

Vne way of lovking tor periodic TDHF sglu-
tions 2,1 consists in soiviny :he set of eys.(7) as one would the
static HF eqs, but with the added dimensiun of time and the added
boundary condition that ]ug'P(t)> has period T . In this process,
the value of = 1is arbitrary and, aithough one may not find solu-
tions for all pussible © , it becomes pmatural to expect that solu-
tions will exist over a continuous range of = , which is one of
their characteristic reatures, and which reinforces the analogy

with one-dimensional classical solutions.
Considering now the reference state ’@o(t)>)

which 1s the Siater aeterminant built vut of the occupied single-

particie states IF\ (t) ;. we find that it is quasi-periodic alsoe,

| B eve)> = "% g (> (#)
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with

©,= %6, . 9

The periodic part and the quasi-energy of ld% (t):> are defined
by
-LN E P
PR, > = 777 (§ o > (10)

with

(-4

A=%XA=®°/-;_ (11)

We derive in the Appendix some variational properties of periodic

TDHF solutions which will be useful in Secs.5 and 6.
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3. THE CHOICE OF BASIS

One of these periodic TDHF solutions will be

our basis . Which one ?

One problem is that, if there are many degrees
of freedom, hence several types of collective motion, we should be
able to pick the TDHF periodic solution which describes the kind of
collective motion we want to consider. In complicated cases, this
could be very difficult. If we solve the problem as a 4~-dimensional
HF problem, by iterating eq.(7), how are we going to make the
result converge toward the kind of collective motion we wish ?

In simple cases, on the other hand (for instance, the Lipkin model),

it is very easy to see what to do.

Anpther question is associated with the con-
tinuous range of values of the period T ,as mentioned in the last
section. Which of these should we use ? This question has an
approximate answer, which is interesting and important. From now
on we shall assume that we are dealing with a one-parameter conti-
nuous fanily of periodic TOHF solutions. The parameter can be T,
or it can be w = an /T , or it can be W, the energy, i.e.
the expectation value of the exact hamiltonian H for the TDHF
wave function, which is well-known to be time-independent. All
three of these parameters are related and equivalent. A possible
relation between ¢2 and W is shown in Fig. 1. When W is the energy
of the HF ground state, &> is the RPA frequency. As W increases,

@ changes. Viewed as a function of the collective coordinate,
the TDHF wave function is a wave packet, i.e. a classical object,

which i1s an approximate superposition of exact stationary states
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whose energies 1ie in the vicinity of W. Its frequency co is an
approximation to the level spaciny, again for levels in the vicinity
of W. Thus the curve ¢ (W) is an approximate description of the
variationh of the spacing of the collective levels with their exci-
tation eneryy., It is clear, then,tnat ¥ should be chosen to agree
roughly with the energy of the level one is interested in. One will
use a different W, i.e. a different basis with a different period,
far catculations concerning each collective level, And since one
does not know, at the start, the exact energy levels, one will

neged a cquantizacion rule to fix, av least provisionally, the best
value of W to be used for each level. This is the quantization

rule which we shall derive in Sect.o.

Wute that, in principle, the Feynmann-Goldstone
expansion of Kef.3 is exact irrespective of what we pick for W.
Its convergence, however, is cbviously very much affected by H.
Thus the game is to pick as yood a W as possible at the outset,
and this we snall du separately for eaci level, using the quantiza-
twon rule. ft can then ve huped tuat nigher-arder corrections will

wnverge rapidly attar this
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4. THE CALCULATION OF BOUND STATE ENERGIES

Though the states of the basis are not sta-
tionary, the fact that they are gquasi-periodic allows us to make
a8 Fourier transformation to an energy variable. This transformation,
however, 1s different from what is done in the usual case of a

stationary basis.

In the usual case, the reference state 4& is

stationary with unperturbed energy wa, i.e.

<O, = L) (12)

One way to look for bound state energies is to calculate somehow

the "reference-to-reference” matrix element of the propagator
L lRT
<o) e [ o (m> (13)

which by (12) van aiso be written

P &
<¢p(°3‘f ot H-W,T *¢u<°)> _ (14)

Introducing aos intermediate states the complete set of exact

stationary states qln with exact energies E”, we can write (14} as
wy i L —L(E-WHT
TALE g D17 T (15)
LY

Then we Fourier integrate over positive times with un eneryy
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variable £, and we get the formula

) [ . (E_WQ)T -l
N S bl T g >
o5 I<AGIESIY ae)
~ E-E,

The idea is to find some diagrammatic approximation for the matrix
element vn the left hasd side as a function of T, Fourier transform
it, 100k for the poles in E, which should be approximations to the

true energy levels En, while the residues should be approximations

to ||y, >

In the present case, <¢°CT>] is not a
harmonic function of T such as (12). Bu%t if T is a multiple of the

period T , then things are simplie aga » and we have

<o) = <b o) N ()

and therefore
Lootne) | & NN [ cor>
— 'z l<¢°£°)|q)M >‘3- Q—L(EM— /\0) N"C )

This time we do a discrete Fouurier transform, using the formula

(18)

L Nx ) PR
e = (i-e™) (19)

=.
]
v

and we write, instead of (16},
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2 L(E-A)DNT -LHN
-l 2 o < (ne|e t‘¢°(e>>
N=Do

s mel<h@lb S

~ |-~ exp L{E-E T (20)

The right hand side has poles at

E=E_ +wmw (21)

where m is awy integer, positive, negative, or zero. These addi-
tional ghost poles are the price one has te pay for using the
discrete instead of the continuous Fourier transform. The residue

for each pole is just ‘<¢D(u)] q.lm>|"' , the same as earlier.

Our strategy is then as follows. We do an
approximate diagrammatic calculation of ~tHNw
PP g <b (M) e TOIOPS
for all positive integer N, we perform the Fourier sum in the left
hand side of (20), we loak far its poles and recidues in E, and
we compare with the right hand side of (20) which contains the

exact poles and residues.

We shall row apply this strategy to a first-

order calcuiation ot the propagator matrix element.
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5. FIRST-ORDER CALCULATION

The propagator matrix element is a sum of
products of disconnected clusters, as shown in F{g.2. The exponen-
tiation theorem 8 states that this equals the exponential of the
sum of all distinct singie clusters, as shown also in Fig.Z. There
ure two first-order clusters unly, which are shown in Fig.3, Their
numerical value, including the symmetry factor of % for the

"double-bubble®, is

NT - "~ ~
Y [ [l 2 A BNV | Ay B> = 3 AW U ALY ] -
) * AB N

(22)

Becausze of the diagonal nature of the matrix elements, the integrand
iy periodic of period & ., Also, according to the usual Hartree-
Fock devinition 3 of U(t), the first term cancels half of the

secand term. Hence these diagrams are egual to

N ff»vr. 3 2:_<Mt:)lU(l=')\A(t)> . (23)

Une finds easily, using the TDHF eguatiuns, that this is the same

at

NS = JN({J-Wz) (24)

where S and J are the two actions defined in eqs.(A.15) and (A.27)
of the Appendix, respectively . Thus, this approximation to the

propagator matr:+ element is



13-

&LN(J—W':) (25)

The Fourier sum on the left aand side of

eq,(20) is then easily performed and yields

~1
-L-r:[\-— wpi(Et—- AT +J3—~ Wr)]
{26)

= -i:c[l- v-x\oL(Et + d?-w':)]-l

where JP s the quantity definaed in &4,(A.28). This has pales far

values of E given by

EcW—3/7 +wmw (27)

and all the residues are unity. When we try to compare these poles

with the exact ones, ey.(21), we are faced with a probiem,
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. Tie QUANTIZATIUN RULE

Tlie problem is this. The exact poles (21)
sepend on two discrete purameters, n and m. The approximate poles
{(27) depend on vne discrete parameter only, m. How should the iden-

tification be made ? The answer lies in looking at the residues.

Cui before this, note that both sets of poles
alse depend on vne continuous parameter W (orer» , or ) whicn,
sa far, we do not know how to determine. This dependence is relati-
vely trivial for the exact poles, but it is essential for the

approximate ones.

We vegin by plotting the approxim.te poles

{27), using ¢ as the contvinuous variasble, 1... we plot

.
E = W)= — dwijw + meo. (28)

inis is shown in Fig.4a for a particular example. Each curve corres-
wonds to a particular value vof m, Since all residues are unity,

Ltre entire curves are presumed to be meaningful.

i Fig.4p, we plot the exact poies (21), a
double tamily of straight lines of slope m. These lines are not
equalily meaningful everywnere, because the residue l<fd%(o)|q¢n:>|l
sitant sometimes be very swall. According to the argument we gave in
sect.3, which looks upua TDHF as a classical approximation to the
collective motion, we expect the everiap <¢°(u)l 0\\4’ to be

turye when W is in the vicinity of E, and small otherwise.



-15-

Thus, for the lowest possible W, the overlap with 4; is largest.
As W increases, the overlap with 4« » becomes the largest one,
and as W increases some more, the overlap with QﬂL becomes largest,
etc... Hence we must single out, among the many dashed lines of
Fig.4b, those lines which are issued from level E, if W is small,
the lines issued from level E] when W is larger, the lines issued
from level E, when W is sti11 larger, etc... These pieces of lines
are shown as solid segments on the figure and, when considered
together, they form curved lines which begin to resemble very
strongly the curves of Fig.4a . The situation becomes even clearer
when we switch to the variable w against which the curves are
plotted. According to -the argument of Sect.J, the leve's E“ with
large residues are the ones for which the level spacing corres-
ponds to the value of ¢u . If we now look for the intersection

of the line E{n,m} with the line E(n+l,m-1), we get the condition

Em+ me = EM“-v-(m-l)w (29)
or
By — EM_ = w , (30)

which is precisely the condition on the level spacing . Going to

the timit of large quantum numbers, we see that the curves we want,
for purposes of comparison with Fig.4a, are the enveiopes of the
families of straight 1ines E(n+p,m-p) for variable p. These envelopes
do indeed look very similar to the curves fo Fig.4a, the small
remaining discrepancy being due to the neglect of higher-order

diagrams in Fig.4a.

Once this identification of the two sets of

curves has been made, the determination of the approximate energy
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levels is easy since, according to Fig.4b, they correspond to those
values of E for which the curve E(w) has a horizontal slope. Hence

we must set the derivative of (28) equal to zero :

Ay LAY
Q) A AW
Lar aw AW dw (31)

peyn-

&lm
i

14
;

According to ey.(A.31), J,J‘:/J,W-_—.'c , while w/.!rr: '5-‘)

heace we are letft with

J thim (32)

Ey.28) shows then that £ = ¥W. Thus we reach the result : the

approximate energy levels are those values of W which satisfy

J‘(W): I (33)

where 1 is an integer, This is the Bohr-Sommerfelid-1ike quantiza-

tion rule 6 ,derived in a completely new way.

digher-order corrections to this have been
wWworked out and we shall publish them in a forthcoming paper. We

shall also present a detailed application to the Lipkin model.
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KPPENDIX : PERIODIC TDHF AS A VARIATIONAL PROBLEM [

We begin by reviewing some well-known varia-
tional properties of aclassical system with coordinates 9, wemen tum

conyuyates p,, and hami I tonian H(p“,qn). Hamilton's action is

.
i _ . _ .

< a lE) [ R . o -

S= i, #{ Zriog - Higte o)l . (A1)

if lculates 65 for arbit iati Y % )

If one calculates o5 for arbitrary variations ‘ﬁ.(t)/ %.M(k)

satistying

5% (£,) = 5% (6 = (A.2)
ane finds arter one inteyration by parts
[fg -.
S e oz 2‘_5- (t — — S‘ " E’.f‘_ } .
° ‘jeu ~ /P"" ) %...( K Toq H
(A.3)

setting o 5=U yields Hamilton's equations of motion : this is

Hawilton's principte. MNote that S can also be written

S=liZrdy — Hle,,g,)46] (h4)

where the integral 1s caken along the trajectory in phase space.

Now we consider only periodic trajectories
of variable period T , and we take one period as the 1ntegration

interval for S. We replace the time t by a cyclic parameter rl



=19«

varying from 0 to 1, i.e. we write t -q‘:. Then, p, and q, are
periodic functions ofv] of period 1 (at least, this is so if a,

are Cartesian coordinates). The action is then

5'—".{';' {z dq \ D)
VE A T - nlringolel. s

If one calculates 9§ for arbitrary variations Y’ﬁ‘(")’ S%”Snl) which
keep the functions periodic, and if one also variest, one finds
after one integration by parts

!
— S d’ ~ =
fs-i*ﬂ%[‘m(i’, =) (a3 )] 0

S ('dy W

oT ) 4n )

When this is evalvated for correct trajectories, the coefficients
of S,P‘“ and S-%M_ vanish by virtue of Hamilton's equaticns, and

again by virtue of these equations H(rL) is a constant, the

energy W, therefore one gets
c .
©S5=-WST on ST =-W. (A.7)

This tells us how the action S varies when we go from a correct
trajectory to another correct trajectory with a different period.
tet us indtroduce the reduced action J (sometimes called Maupertuis’,

action), which is the first part of §,

"‘S‘k‘ll)" _;LZ'P&%M (A.8)

we see that, for coerrect trajectories,
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J=S+Wez ) (A.9)
therefore
F0=58+ Wit +TiW ) (A.10)

therefore, by virtue of (A.7}),

o= oW o "DJ/QW' =T . (A.11)

fhis tells us how the action J varies when we go from a correct

trajectory to another correct trajectory with a different energy.

We can now proceed to TDHF. Kerman and Koonin9
have pointed out that it can be formulated in a way almost identical
to the above Hamiltonian formulation of classicel mechanics. The

action is

E
S= jzjb {E‘ SACITACH T H[<‘(’A(I:)]) WA("»_PS (A.12)

which is a real quantity. The role of Py and , is played by the
bras and kets of the occupied single-particle staies CPA, which

i ind t @ H P ™~ ] is th
have to be varied independentiy, and 't<3?AF*’L;‘qﬂék>>iJ i e
expectation value of twe exact hamiltonian for the Slater determi-
nant. For arbitrary variatiuvns of <:@$\ amd. \q;:> satisfying the

narmalization conditian and

'\f‘t‘AC‘ea') o ;th'k(e.)> =0, (A.13)
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one finds after one integration by parts

$S = fk_o‘“’ % [(5-1“ lbcéA —(\<+U)(()A>

(A.14)
- <ig, + ¢, (ka0 |5, > .

Setting S S=D yields the TDHF equations of mation.

Now we consider only periodic trajectories of
variable period © , and we do the time-integrai over one period.

Once again we set t =q1r, so that we write

al R
_ . a (A.15)
S=lin{Fr<amighy - ni<goplgmilel.

We calculate SE for arbitrary variations of <quI and |t(Af;
which keep the one-body density periodic, and we also vary T .
fhings are u liitle different from previously, however, because
the ]L?A(W):>'s ace not periodic any wmore, but quasi-periodic.

Let us do the variation in detail

|
$%= s (e 40N 0 4 2
S -£3~‘]1-(_ <S‘ﬁ' Iv)_h>+ <)% ;f)"‘> —‘E(S‘(A\B<¢A\>

oH = i (A.16)
<3S IBL(A>}_S1:LJA] Hey) .

The integration by parts is the following

{ e | !
"o w@ a
[Menlt 500 <050 5| - fag 1S, o)
The integrated part does not vanish. Rather, we have

-i 8
e, (0> = e Ay, 3> (.18)
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o« -8,
hq’h(\)>-_——.;5_95\ WA(”> + e ‘Y‘fA(")> (A.19)
<¢Ac.)\§<ﬂ\m>= -3, + <¢A(.,)l§ﬁ(a)> (A.20)

(A.21)

1
<L(A !S’-{’A\)L = -i SHA
Hence the variation of S is

5= _(lle{/S‘f \»T-.,(mmw NG ‘;uqh kev) |5, )

=
+§(‘;9A—DTJDJ,V'HU\)- (a.22)

If we restrici ourselves to correct YDHF trajectories, the coef-
ficients of {S((A‘ and ‘(Mfk> vanish by virtue of the TOHF equations,
and the energy H(rl) is a constant W, hence we can write, using

eq.(9),

$8=56, -WSz . (A.23)

Let us naow define an action sP identical to S,
but built upon the periadic part lf: of the occupied single-
particle states fsee eq.(6)] , in other words

o o (A.28)

(o v v At
g =J‘,“Vli?§"<q:“]” ':G)&>' “\./‘fa“'\)‘ lefmlel .
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One sees easily
S'P= S-6, (A.25)
and therefore, for correct TDHF trajectories,
S a¥. Wt o 55?/})1-: =-W. (A.26)
This gives us the change in s? when we go from one TDHF solution

to another TDHF solution with a different period. Finally, we

introduce both forms of Maupertuis‘action

1
. a
S = ja&"l FK RS ACH A_l;& > (A.27)
r . ? clq:?
d:_g’s\.v] %u(t?,\(v,){qu>=d-@° ' (A.28)
We have for correct TDHF trajectories
? o
J' =38+ we (A.29)
S8¥. §S?+ Wt +tdW ) (A.30)

therefore, by virtue of (A.26)

Sz SW o }J?/DW=1:. (A.31)

Tnis formula gives us the charge in Jr when we go from one periodic

TDHF solution te another one with a different energy. Sometimes
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it can also be used to calculate the period, in those cases where

J? can be evaluated trom eq.{A,¢8) without reterence tuv time.
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FIGURE CAPTIUNS

The relation betweenwand W tur a Lipkin model10 (N=8,¢=1,
X =-8). In real nuclei, it is wore usuval for cw to

decrease as W increases.

Diagrammatic expansion of the reference-to-reference

propagator matrix ejement and exponemntiation theorem,

The two first-order diagrams. The one-body vertex stands

for ~U(t}.

The bound state poles E vs. & , for the same Lipkin

model as Fig.l, Fig.4a shows E(m,a) according to eq.(28).
Fig.4b shows as dashed straight 1ines the double family
E(nsu,er) according to eq.{21). The dashed lines have been
replaced by solid segments in those regions of w where

tne residue 1s expected tv be large. EU'El’EZ are the

exact energyy levels.
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