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ABSTRACT 

Fast roagnetosonic wave propagation in a cylindrical tokamak model is 

studied using a parabolic approximation irathod in which poloidal variations of 

the wave field are considered weak in comparison to the radial variations. 

Diffraction effects, which are ignored by ray tracing methods, are included 

self-consistently using the parabolic method since continuous representations 

for the wave electromagnetic fields are computed directly. Numerical results 

are presented whicH illustrate the cylindrical convergence of the launched 

waves into a diffraction-limited focal spot on the cyclotron absorption layer 

near the magnetic axis for a wide range of plasma confinement: parameters. 
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I. INTRODUCTION 

Auxiliary plasma heating has become an essential component of tokamak 

research because fusion temperature plasmas cannot be achieved with ohmic 

heating alone. Though various methods for delivering power to the plasma have 
1 -7 

been tested, the one most favored in proposed reactor designs " is bulk ion 

heating via fast magnetosomc waves in the ion cyclotron range of frequencies 

(ICRF). This preference is baaed in part on recent striking experimental 

resulta from several tokamaks, particularly the achievement of central ion 

temperatures in the 3-5 keV range in PLT under the application of 3 MH of 

power to the plasma. The ready penetration of thjse waves to the plasma 

center combined with a cylindrical convergence of the wavefront due to 

refraction arising from the variation of the Alfven speed with the peaked 

density profile and the ancervna geometry results in a favorable, centrally 

concentrated deposition of the applied heating power. The width of the 

heating profile is determined by the degree of focussing experienced by the 

waves during the propagation phase and by diffraction effects which limit the 

nave intensity at the mode conversion/absorption layers ' in the neighborhood 
7-9 of the magnetic axis. Conventional treatments of the propagation region 

utilize ray tracing techniques to solve for the wave electric field and 

polarization. Since these techniques treat the wave field as a set of 

discrete, noninteracting wave packets, diffractive and wave interference 

effects are neglected. Furthermore, the discretization process itself may 

induce nonphysical, spatially localized fluctuations in power deposition 

profiles derived using the field solutions in quasilinear damping 

calculations. Finally, all of these techniques are based on WfCB 

approximations which fail near the absorption/conversion layer due to fine 

scale structure in the refractive index of the plasma. As a result, mode 
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converted and transmitted waves, both of which may contribute significantly to 

the heating process, are ignorea by these methods. A connection between fast 

wave propagation solutions and solutions to the full wave equation in the 
1 1 1 2 

absorption/mode conversion layer ' i3 needed. 

To address this issue, we have developed a new algorithm which is capable 

of computing continuous representations for the fast magnetosonic wave 

electric field in a model tokamak equilibrium consisting of circular, 

concentric flux surfaces- The plasma cross section is divided into three 

regions as indicated in Fig. 1. propagation in Region I is influenced 

primarily by the radial variation of the density. Though variations arising 

from the toroidal nature of the equilibrium could also be important, we will 
1 3— 1 S 

not assess those effects in the current study. A parabolic approximation 

of the fast wave equation in the cold plasna limit is utilized to treat Region 

I, which extends from the plasma edge to a transition layer near the magnetic 

axis of the equilibrium. This approximation has been used previously to study 
15 16 

vacuum focussing of laser beams, acoustic wave propagation in oceans, 

propagation of beamed signals through optical fibers and otner inhomogeneous 

media, and propagation of the high frequency extraordinary mode in a 
1 8 uniformly magnetized, inhomogeneous plasma slab. By using this 

approximation, we are able to solve directly for the wave amplitude, thereby 

retaining the diffractive and wave interference effects which are ignored by 

ray tracing methods. 

Region II consists of a transition layer in which diffraction limits the 

extent of the focussing of the incident wavefront. As a first approximation 

in this region, we neglect effects related to density and magnetic field 

variations in comparison to the diffractive effects and treat the propagation 

using a uniformly magnetized, homogeneous, cold plasma slab model. Fast 
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Fourier Transforms provide the connection between the paraxial representations 

obtained in Region I and the full field solutions obtained in the transition 

layer. Ion cyclotron absorption and mode conversion effects have a pronounced 

influence on the wave physics in Region III. Detailed analyses of the wave 

fields in the absorption/mode conversion layer have been derived by 
11 1 ** others ' * by solving the linearized Vlasov-Maxwell equations in slab 

geometry with one-dimensional equilibrium magnetic field gradients. ftn 

advantage to our approach is that the two-dimensional cold plasma propagation 

solutions we generate in Regions I and II may be readily coupled via FFT's to 

the fully kinetic one-dimensional solutions provided by mode conversion theory 

in Region III in a manner which properly accounts for the coherence of the 

incident wavefront parallel to the absorption layer. In this manner, power 

deposition profiles can be obtained which naturally couple the wave 

propagation characteristics in Regions I and II with the absorption and node 

conversion effects which dominate Region III. 

In this paper, a derivation of the equations governing fast magnetosonic 

wave propagation in tokamaks will be presented along with the corresponding 

numerical results. The coupling of these calculations to one-dimensional 

kinetic solutions for the fields in the absorption/conversion layar of 

Region III is left for future studies. fc derivation of the parabolic wave 

equation appropriate for fast magnetosonic wave propagation m tokamaks is 

presented in Sec. II along with a discussion of the approximations used. The 

transition layer is discussed in Sec. Ill, while results from tho numerical 

code are given in Sec. IV. Conclusions and discussion of future applications 

are summarized in the final section. 
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II. DERIVATION OF PARABOLIC WAVE EQUATION 

In a tokamak discharge, propagation of the fast magnetosonic wave between 

the periphery of the plasma and the plasma core is dominated by refraction 

arising from radial gradi mts in the plasma density. Referring to i'ig. 1, in 

Region I the wave is assumed to propagate primarily in the radial direction 

with a slow amplitude modulation induced by weak gradients in the equilibrium 

over a radial wavelength. Poioidai variations, which are proportional to 

1/r 3/99 r are taken to be much weaker than the radial variations which are 

proportional to 3/3r. Thus, for a reactor-sized plasi.a, one finds that k ~ 

k >> k , k , where r, 1, 6, " denote the radial, perpendicular, poioidai, and 

parallel directions, and k, denotes the i component of the wave vector. 

Furthermore, the equilibrium gradient scale lengths tend to be much longer 

than the radial wavelength over much of the discharge. For more moderately 

sized tokamaks such as PLT the radial wavelength can approach the size of tne 

minor radius. Nevertheless, as will be demonstrated in Sic. IV, adequate 

representations for the wave electric fields in the propagation region may 

still be obtained with tht assumption that 5 ~ 1/k a << l, where a is the 

minor radius of the discharge. These two orderings, that k >> k , k and 

that 5 << 1, form the physical basis for the parabolic or small angle 

propagation, approximation. 

We therefore consider a simplified model of a tokamak in which focussing 

by radial gradients is retained but complexities arising from the toroidal 

nature of the equilibrium are ignored. The plasma is assumed to be a 

poloidally and axially symmetric cylindrical column with a radially varying 

density profile and concentric flux surfaces. A model density profile is 

chosen which reasonably represents experimentally observed profiles while 

providing mathematical tractability and computational efficiency for the wave 



propagation calculations. The chosen density profile, displayed in Fig. 2, 

has the form: 

n o < r < — 
, a 2 (D 

n n - C 1 ^ ) 1 f « r c a 
o a ' 2 

where n is the density on axis. The central region of the tokamak is assumed 

to have a constant density. Wore general profile shapes can readily be 

incorporated into our numerical code. The magnetic field considered consists 

of a strong, uniform axial component, B„, and a weak, radially inhomogeneous 

poloidal component, B , such that 
P 

3 = B (r)9 + B z , (2) 

where B /B ~ 0(e) « I, and 9, z are unit vectors in the poloidal and axial 

directions, respectively. Toroidal effects are not included. Though we 

initially retain the effects of rotational transform and shear, it will tie 

shown that these terms have a negligible effect on the wave propagation in a 

lew beta, large aspect ratio tokamak. 

Dielectric properties of the plasma -medium are modelled with the cold 
1 9 plasma dielectric tensor denoted by: 

0 0 E 
(3) 

where 

e = ' + T. -S—~ ~ 5- , (4) 
1 1 a, 1 - u/n. 
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1 fti 

<5> 

1 U) 

<6) 

In Bqs. (3-6), the plasma frequency, m •, for the i species i s defined by 

r, 2 2 

2 4 ' \ Z i £ 

Pi 
(7) 

the cyclotron frequency of the i species is given by 

Z eB 
i (8) 

(j is the wave frequency, ox
 i 3 t n e 3 i9n of the charge of the l 1 species, e is 

the charge of a proton, and m- is the mass of the i species. This tensor 

has been defined relative to the local magnetic field frame, r, n, b< where r 

is a radial unit vector, b is a unit vector parallel to the total equilibrium 

magnetic field, and TI - b x r. The rotation matrix from the cylindrical frame 

to the local frame is given by R, where 

R = 0 b m -b 
T p 

0 b b m 

p T 

(9) 

with b p = Bp/B and b T = 3^/R. 

The starting point for the analysis is the Maxwell equations for a cold 

plasma dielectric medium in the usual fast wave limit, i.e., tne parallel 

electric field, E„, given by 
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E = b E + b E (10) 
r p 6 T z 

is assumed to vanish in the limit "i /m. + 0. By assuming a harmonic time 

dependence at a frequency ia, and Fourier analyzing in the axial direction of 

symmetry, the wave equation may be written in the form: 

2 
v x vxi = ^ E • E . ( ID 

c 

Upon transforming from the cylindrical frame to the local frame using the 

rotation matrix, I , the components of Eq. (11) which govern the radial 

electr ic field, EL, and the poloidal electr ic field, E., may be written as: 

1 3 E r 1 a 1 a l k z 9 Efi 

( 1 2 ) 

and 

\y. - k 2 b 2 1 E - b

 2 *_ 1 2_ ( r E ) + b 2 _3_ 1 _ j : E 

'1 z P 8 T gr r ar g T gr r 38 '2 T r 

2ik b b , 9E„ ik b b„ , b b 2 32E 
- Z - P - T —2- - a P T 3 - ( r E , _ __B. i - r i_ ( b E ) _ _£- _—S. _ 0 

r 36 r 3 r U V r 3 r r

 3 r ( b p V 2 2 ' ° 
( 1 3 ) 

where 

y-\ = \ - ("> /c ) c , (14) 



2 , 2 
y 2 = a) / c e x . 

and k i s the component of the wave vector in the z d i r e c t i o n . 

Based on the assumption that p o l o i d a l v a r i a t i o n s of the wave f i e l d are 

much weaker than the rad ia l v a r i a t i o n s , Bqa. (12) and (13) may be approximated 

by t r e a t i n g p o l o i d a l d e r i v a t i v e s as small per turbat ions and r e t a i n i n g only 

2 2 
terms through order 3 /3B . Solving Eq. (12) i t e r a t i v e l y y i e l d s an a l g e b r a i c 

equation for the p o l o i d a l e l e c t r i c f i e l d i n the form: 

W, 1 3 3 
J r " Y l b T "8 r 2 36 3r 9 

n 2 1 3 E„ lk 
- | - < b E ) 

'1 T'1 
2 r 2 2 T , ° T 3r p 8 

ik . 2 
- 5 i - L L t b E j 
Y l

2 b T r 2

 3 e

2 a r " 9 

(15) 

Inser t ion of t h i s express ion for E in to Bq. 113), fol lowed by a modest amount 

of algebra and d iscarding of higher order terms, y i e l d s a s i n g l e p a r t i a l 

d i f f e r e n t i a l equation for the p o l o i d a l e l e c t r i c f i e l d , 

L i L ( t E ) + k * ( r ) E

 l b * T 2 3 l " ' V r 2 V 3 E 9 , i % \ 
I F r 3r ( r E a ' + k o ( r ) E

6 Y , r 3r 3 9 * .2 . . 2 T r 39 
2 2i k b b„ 3E„ k b v . S l n U v . / b v , ) 21 k b b k 3E n z p T 9_ z p'2 '2 p'1 z r p o 6 

r 36 Y l 3 r 9 Yi 3 g 

36 
<• 2 1 r 3r 9' 

r Y 
2ik b m z T 

r 1 

b 

k z V 2 3 l n ( ^ 2 / C V l 2 ) ^ 
3r 36 

b 

2 2 

3r 3 6 - r 2 ^ 2 3 r 3 9 2 

+ 1 * b m z T 

2b b * b 
3 l T l r ^ r l Y l c J = 0 (16) 



where primes denote derivatives with respect to radius and where 

2 ' 2 , 2 2 e, „ / •?• i 2 

„ 2, » Y 2 ̂ 1 w A E* - [«*,/»> - 6 | ) k (r > = ——•—•— = r r z 1 • (17) 
*1 c ( c k / w ) 2 - E | 

To the extent that 3/31: » 1/r 3/30, b » r/qR « 1, 3 2/3r 2 ~ 0(k Q
2), and 

k << k , the first two terms in Eq. (16) are dominant and of order k E.. z o o C 
2 The next two terms contain the primary diffractive effects and are of order 6 

relative to the dominant terms, where g ~ 1/̂ .a 3/36- Lowe3t order 

corrections introduced by the rotational transform and shear are contained in 

the next three terms. Since these contributions are at most of order 

c k /k 1/5 in comparison to the diffraction terms, they have a weaker effect 

on the wave propagation and will be ignored in the remainder of this paper. 

Th' remaining terms are significant only at the plasma edge, where y, becomes 

very small, and hence will also be ignored in the wave propagation 

calculations. 

With these considerations, the appropriate equation governing the 

poloidal electric field can be written as: 
i 

3 - - f - <rE ) +'k 2(r)E - i a<r) — & • + ~- $ = 0 (18) 3r r ar g o e 39 2 2 . . r g y 

where b has been set equal to unity with l i t t l e error introduced, and the 

coeff ic ient , a ( r ) , i s defined as : 

2 Y 2 31n(v / r v ) 
a<r) = - ± - % !- . (19) 

Similarly, the l a s t two terms ii. Eq. (15) for E may also be negLected, 

leading to: 
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E _ = ^ _ _ L ^ . J _ ( r E j + ^ | l j . 
;1 V M 36 

(20) 

The first two terms in Eq. (IS) determine the overall radial structure of the 

wave, while the remaining smaller terms describe distortions arising from 

focussing and diffraction. As we will show further on, the third term 

introduces a poloidal skewing of the wavefront, while the final term causes a 

poloidal spreading of the width of the wave packet. 

The fast radial wavelike dependence, e (r), c;m be separated from the 

more slowly varying amplitude, $(r,9), of E. by substituting 

E (r,e) = e <r) $ (r,e) (21 ) 

into Eg. (18), with the result 

£ - ~ ~ (re ) * k 2 (r) e 3r r 3r o o 

- ' " • ' S * ^ } - ° 
HE -2- 3- rfr c^o 

Bit 
3r 

(22) 

Til's waveform e Q (r) is determined by a generalized Bessel equation of the form: 

3 - - | - ( r E ) + k 2 ( r ) e = 0 3r r 3r o o o (23) 

For a homogeneous plasma, k Q is constant and the travelling wave solutions of 

Eq. (23) reduce to Hankel functions of the first and second kind, representing 

outward and inward propagating waves, respectively. Hence, the general 

solution to Eq. (23) will be written as: 
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e tr) = C, e °'(r) + c e
 < 2 ) (r) (24) 

O T O .£ O 

where the analogous wavelike solutions to the homogeneous Bessel equation are 

denoted by H " ' <kQr)and H^2'(K r), respectively. In this manner, ingoing 

waves, launched by the antenna or reflected from the conducting wall, and 

:mtgoing waves, transmitted through or reflected from the mode 

conversion/absorption layer, are readily simulated. 

The remaining terms in Eq. (22) govern diftractive distortion of the 

wavefront. Since the amplitude function, i|>, is a slowly varying function of 

radius relative to the waveform, e 0 , the term 3 \|i/3r2 has been neglected. 

This approximation is the key feature of the parabolic method. With this 

approximation, the equation for the amplitude function has been reduced to a 

parabolic partial differential equation of the form 

| £ i - i .(D *(l\r> !*^«.i- tU> l r ) £ £ L m 0 . (25) 
3r 36 r 2 3 e 2 

The coefficient, $ (r), depends on the particular waveform chosen, 

* U > < r ) = e. / r ) , (26) 
2 3e '<r)/9r 

where e Mr) = r'2 e 0 r). It is Eq. (25) that is commonly referred to as 

the parabolic or paraxial approximation of the wave equation. 

Solutions of Eq. (25) are readily obtained in the form 

(1) 

where 
lr,8) = I ^ ( r ^ e x p j i m f e + F^'tr)) - im2?^'(r) } , (27) 
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p / ' - ' t r ) = i f d / a ( / ) < t U ) ( r ' ) (28) 
t ( i J 

3 

f , U , ( r ) = i f . . . d r » ' g ' (29) 

and where r ' 1 ' i s a conveniently chosen radius for evaluation of constants . 

The summation i s over the poloidal harmonics, m, present in the wave. 

Physical ly, F- (r) represents a poloidal ro ta t ion of the wavefront as the 

wave propagates into or out of the plasma core . To th i s order, the ro ta t ion 

i s d i r ec t ly a t t r i bu tab le to the amsotropy of the plasma d i e l e c t r i c 

p roper t ies , as contained in the function a ( r ) . In the l imit of short r ad ia l 

wavelengths and f l a t density p ro f i l e s , the function $ ( r ) asymptotically 

reduces to i/2k for an inward t rave l l ing wave and - i /2k for an outward 

t rave l l ing wave. Hence, the wavefront ro ta t ion proceeds in opposite poloidal 

d i rect ions for an inward vs. outward directed w*ve and is more pronounced for 

longer rad ia l wavelengths. Final ly, F- (r) represents d i f f rac t ion of the 

wavefront caused by a var ia t ion in the r e l a t i ve phasing of the d i f fe ren t 

poloidal harmonics as the wave propagates r a d i a l l y . 

Using Eqs. (21), (24), and (27), the general solution for the poloidal 

e l e c t r i c f ie ld in the propagation region becomes: 

E (r ,9) - £ c

i e o 1 } t r ) £ * r a i ) ( ' I 1 ' ) e x p f i m ( 9 + F S i > { r ) ) " i ^ F ^ f r H . 
i=1 in 

(30) 

Through an appropriate choice of the constants c L and %, (ri )/ waves 

launched from an antenna, reflected from the conducting wall of the vacuum 

vessel, and transmitted through or reflected from the cyclotron 
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absorption/mode conversion layer may be computed. Evaluation of these 

constants will be discussed in general and numerical solutions appropriate for 

the case of single pass absorption will be presented In Sec. IV. 

The propagation of the fast wave between the plasma edge and the 

transition layer is completely described by Eqs. (20), (21), (23), and (25). 

Solutions of these equations provide a continuous representation of the wave 

electric fields that correctly account for the dominant refractive and 

diftractive effects. The key approximations utilized include the slow 

poloidal variations of the wave field relative to the radial variations, and 

the factorization of the poloidal electric fieid into a rapidly convergent 

cylindrical waveform modulated by a more slowly varying amplitude function. 

In this manner, diftractive effects are isolated in the amplitude function. 

The connection of the propagation solutions to those appropriate within the 

transition layer will be discussed in the next section. 

III. THE TRANSITION LATER 

As the fast magnetosonic wave propagates from the edge of the plasma 

towards the plasma core, it enters a transition layer in which the wavefront 

has become so strongly focussed in the poloidal direction, that a full two-

dimensional treatment of the wave fields is required. The transition layer is 

indicated by Region II in Fig. 1. Since the wave intensity in this layer has 

been focussed primarily into the constant density regions near the magnetic 

axis, the density will be approximated by its central value, n. , throughout 

the entire layer. Furthermore, since this region is outside of the mode 

conversion/cyclotron absorption Liyer, kinetic effects may be neglected and a 

cold plasma model may be assumed. With these approximations, the final 

focussing of the fast wave in this region into a diffraction-limited focal 
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spot on the absorption layer may be described using a homogeneous, uniformly 

magnetized plasma slab. 

In Cartesian coordinates, the components of the wave equation, Eq. (11), 

in the fast wave limit are given as: 

2 2 
3 E a E 
^ - 7 T i + ^ i E

x - i V y = 0 , 3 1 ) 

oy 

32E 3 2E 
*• + Y, E + if,E = 0 (32) 3x3y 3 x 2 'l y '2 x 

where x is directed outward along the major radial direction and y is directed 

upward perpendicular to the midplane of the tokamak. The y-dependence cf the 

fields is represented using Fast Fourier Transforms (FFT): 

,N/2 - 1 ik y E n., _ . 

E.(x,k_)e (33) n = -N/2 

where i = x,y ar.d k = nAk. For a slab of height 2L, the minimum number of 

harmonics, H, needed to resolve accurately a structure with a typical 

wavenumber, k , is approximately equal to 2k L/n. The corresponding mode 

spacing, £k, is equal to n/L. Fast Fourier Transform algorithms operate most 

efficiently when N is rounded upwards to a suitable value of 2^, where o is a 

positive integer. Inserting Eq. (33) into Eqs. (31-32) and adopting the 

notation E^ ^ = E-(x,k ), leads to an algebraic equation for E in the 
n ' n 

form: 

1Y-E , ., n 
2 Y>\ ' X l tn ^ 

Ex,k = ~2 C 3 4 ) 

Y1 + k n 
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and a siraple p lane wave e q u a t i o n for R, . : 

2 

— - + (k - k ) E . = 0 . (35) 
^ 2 o n y , k 
3x n 

By using the linearly independent solutions of Eq. (35) in Bq. (33), the 

general solution for E (x,y) in the trans*-ion layer consists of a sum of 

waves travelling in the ± x directions: 

N/2 - 1 ik y V 2 ,., 
E <x,y) - £ e fd ( I ) «»|i (k 2 - k 2 ) (x - x < n )1 

Y n = - N/2 

v 2 
+ d t 2 > expr -i (k 2 - k 2 ) fx - x t 2 > -HI (36) 

n n o v s / ! r 

where the mode amplitudes, d l i , are evaluated at x = x . For the special 
2 9 ( 1 ̂  f 2) 

case of k o^ = k n
£, the modes corresponding to d ' and d n

l ' coalesce into a 
single constant solution and a second linearly independent solution 

corresponding to a field amplitude that grows linearly with x. As will be 

discussed in the next section, waves which are incident upon, reflected from, 

or transmitted through the adjacent absorption layer are readily simulated 

with a proper choice of the coefficients, d . 

IV. NUMERICAL RESULTS 

By utilizing the solutions for the wave electric fields developed in the 

preceding two sections, we have developed an algorithm which computes the 

propagation of fast magnetosonic waves between the launching structure at the 

plasma periphery and the cyclotron absorption/mode conversion layer in the 

core. In general, the method is numerically efficient since for a given value 

of k(, only six radial integrations are required to generate the waveforms 

e 0 (r) and this associated phase functions F 1' 1'(r), F~ \(r) for I =1,2, as 
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defined in Eqs. (2H, 28, 29). The remainder of the code is devoted to the 

evaluation of the various constants and functions indicated in Eqs. (30, 

36). 3y way of contrast, in a ray tracing simulation of the wave propagation, 

the minimum number of integrations required is at least equal to the total 

number of rays required to represent accurately the poloidal spectrum of the 

launched wave. 

In the case of strong single pass absorption, the evaluation of the 

constants in the propagation regions is straightforward. Beginning in 

Region I, the solution consists of an incoming wave launched at c = r Q by an 

antenna located on the low field edge of the discharge. In principle, r is 

somewhat leas than the minor radius of the plasma due to the presence of a 

thin evanescent layer at the plasma edge. In practice, the width of this 

layer is sufficiently thin for fixed values of k << k so its presence may be 

ign.oredr TO demonstrate this, consider Eq. (18> near the plasma edge in a 

slab model limit in which poloidal variations and cylindrical geometry effects 

have been ignored. Assuming a linear variation of k with r and specializing 

to the case of minority hydrogen heating in a deuterium majority plasma, Eq. 

(18) can be cast into the form: 

3 2E , 2 !2. + i!L 
^ * \ o 2 ° 

A,o 

(a-r) e„ = 0 (371 

where VA Q = Si/4irn m_, wi th nu be ing the mass of the deuter ium i o n s . ay 

i n t r o d u c i n g the d imens ion le s s v a r i a b l e 

u-i2=El ( 3 8 ) 

where 
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£ 3 = l ^ o _ f < 3 9 ) 

4oi 

Eq. (37) is transformed into an Airy equation: 

2 
— - S + u e = 0 . (40) - 2 o 3u 

Since the transition from evanescence to propagation takes place in a 

characteristic distance % which is snail compared to other characteristic 

lengths of the system, 

a = (—TT) « 1' V « '- f-fe« ̂  ( 4 1 ) 

4k a o 

we will ignore the evanescent layer in our current model. 

Returning to the evaluation of Eq. (30), the amplitude of the outgoing 

wave, c- , is set eqaal to zero while the amplitude, c ?, and poloidal harmonic 

content, ip ' , of the incoming wave are evaluated at r^ =. a. To lowest 

order in the Poynting flux at r=a, the incoming wave amplitude, c,, associated 

with an incident power, P , is equal to: 

8iruP ' 2 

c = ( - ) • (42) 2 2 r . , (2) „<2>* , , ( 2 ) , 2 , , ' c a [ R e a l ( i E Q 3 E Q /3«) - V2\e0 I / « ? , ] r ^ 

The F o u r i e r a m p l i t u d e s , |N ( a ) , a r e de te rmined from an assumed p o l o i d a l 

s t r u c t u r e , f ( 8 ) , of the wave launched by the an t enna , such t h a t : 

E„ ( a , e ) = c E

U ) !a) f ( e ) , (43) 
9 2 o 

| * B , ( . . e ) - r l } 7 ( « B ) - ^ 1 M . (44) 
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B C03\Tt/2 (w/B) I | H | < H ( 4 5 ) 

o in m 

where 2 x %ni i s e c ! u a l - t o t h e maximum angular extent of the launched 

wavefront. The function f(w) is normalized gach that 

jir | f ( 9 ) | 2 dw = 1 . ( 4 6 ) 
- I T 

In Fig. 3, the corresponding current density profile in the launching 

structure considered in this report is displayed. 

Radial and poloidal electric fields evaluated along the interface between 

Region I and Reqion It at x = xo determine the coefficients, d n ' ° f t h e 

inward propagating wave in the transitional region. Proiecting ^rom 

cylindrical to slab geometry, the coefficients are determine' using the 

relationship: 

E (x ,y) = E ir(sc ,y), n(x ,y) isin w(x ,y) y o r o o o 

+ E ir(x ,y), ti(x ,y)icoa n(x ,y). (471 
o o o o 

For the case of strong single pass absorption, there is no wave reflected hack 

from the absorption layer so the Fourier amplitudes, d n d ) , which comprise an 

outgoing wave in the transition region, all vanish. 

Our algorithm is readily adaptable to treat the c?se of multiple pass 

absorption. The amplitudes E„ ,, and associated wavenumbers kn evaluated =t 
K = Kco (or JteO for waves incident from the outside Cor inside) of thn torus 

serve as inputs to a linear mode conversion analysis of the cyclotron 

absorption/mode conversion layer of Region in. A kinetic treatment of the 
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fields in Region III yields an absorption profile plus amplitudes associated 

with transmitted, reflected, and mode converted waves. Since the mode 

converted wave is assumed to damp rapidly via electron Landau damping, its 

propagation away from the kinetic layer will not be computed in the current 

model. Amplitudes for the outgoing waves in the bordering transition layers 

are determined at x = x c o or x = x c 1 from the reflected and transmitted wave 

amplitudes, respectively. Similarly, the outgoing waves in the transition 

layers determine the characteristics of outgoing waves in the outer 

propagation region. Finally, the amplitudes of waves reflected bacK into the 

plasma from the conducting wall are determined by the requirement that E 

vanish on the wall. In this fashion, multiple passes can be computed until 

all incident power is deposited into the plasma. 

The code has been used to rtim- late fast magnetosonic wave propagation in 

three different sized tokamaks. We have considered reactor grade plasmas, 

breakeven type devices such as TFTR or JET, and moderately sized research 

tokamaks such as PLT. Parameters characterizing minority hydrogen in 

deuterium majority heating schemes for each of these devices are summarized in 

Table I. Tne assumed poloidal structure of the current in the half-turn 

antenna is the same for each case, with 9 m = 80°. in Fig. 4, the real portion 
t 2) of the incoming waveform, e (r), is displayed vs. normalized minor radius 

for each tokasnak considered. The relative number of radial wavelengths per 

minor radius varies significantly between the three cases, due to variations 

in the relative densities and minor radii. Since the perpendicular index of 

refraction n ~ ck fai is proportional to density, focussing effects are 

expected to be more pronounced in reactor-sized devices than vn PLT. 

Cylindrical convergence of the launched wave into a focal spot on the 

absorption layer is illustrated by the contours of the real portion of axial 
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wave magnetic field given in Figs. 5-7 for each device considered. Single 

pass absorption has been assumed. Because of the focussing of the launched 

wavefront, ICRF power deposition should be highly concentrated in the rentral 

regions of the discharge, a comparison of the three figures reveals that due 

to the smaller value of n in PLT, less focussing of the launched wave occurs, 

resulting in a relatively wider distribution of incident power on the 

absorptior. .'ayer. 

By inference from Figs. 5-7, the minimum relative diameter of the focal 

spot to the plasma diameter decreases as the size and density of the plasma 

increase. In addition, the anticipated width of the power deposition profile 

will increase as the location of the cyclotron absorption layer moves away 

from the magnetic axis of the device where the minimum focal spot diameter 

occurs. For the cases considered, the relative diameter of the focal spot to 

the plasma diameter decreases by about a factor of two from PLT to a 

reactor. Finally, as discussed in Sec. II, poloidal rotation of the :,oident 

wavefront is most pronounced for PLT because of the lower operating densities 

and hence longer radial wavelengths for the fast wave in the device. 

As a final example, a contour plot of the real portion of the axial wave 

magnetic field in a compact ignition device is displayed in Fig. 8. A 

deuterium-tritium plasma with a 10% hydrogen minority concentration and a 
14 -3 central electron density of 4 x 10 cm has been considered. The poloidal 

extent of the launched wave has been limited to ± 30° to model the field? 
20 radiated by an advanced waveguide coupler. Based on the highly peaked 

structure of the wave about the magnetic axis, it is likely that fast wave 

heating in such devices will be favorably concentrated in the central region 

of the discharge. 
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V- CONCLUSIONS 

In this paper, fast magnetosonic wave propagation and focussing have been 

examined in a simplified tokamak model using a parabolic approximation of the 

wave equation. Based on fast wave field calculations over a wide range of 

plassia parameters appropriate for moderately sized devices such as PLT to 

reactor-siaed devices, we conclude that power deposition is more favorably 

concentrated about the magnetic axis in the larger, more dense plasmas 

anticipated in tokamak reactors than in the plasmas currently producible in 

PLT. 

The physical motivation for the parabolic approximation is the slow 

poloidal variation of the wave field relative to the radial variation ov&r 

most of the plasma discharge. By treating poloidal derivative terms as 

perturbations and extracting the rapidly varying dominant waveform, E_(r), 

from the poloidal component of the field, the coupled system of second order 

partial differential equations for the radial and poloidal electric fields 

collapses into an algebraic equation for IL, a second order ordinary 

differential equation for the waveform, e , and a parabolic diffusion-type 

equation for the remaining amplitude modulation function, ip (r, 9 ). Diffractive 

and focussing effects are included self-consistenfcly by this method, since 

continuous representations for the wave el«jctric field components are computed 

directly. Hence, a more accurate representation for the wave fields is 

obtained than can be derived on the basis of ray tracing techniques. In 

addition, an algorithm based on this approach is numerically more efficient 

than standard ray tracing codes. Finally, absorption and mode conversion 

effects can be easily incorporated into this model lay connecting the 

propagation solutions obtained m the outer regions uamg a cold plasma model 

with fully kinetic solutions oDtained in the inner absorption/mode conversion 
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layer using a hot plasma model. This connection is being studied ar.d will be 

discussed more thoroughly in future reports. 

Some potentially important physical aspects of ICRF heating processes 

have not yet been treated adequately in the existing model. One remaining 

question concerns the extent to which the toroidal nature of the equilibrium 

influences the wave propagation and focal spot formation. In the outer 

propagation regions, the main complication resulting .Iron toroidicity or 

noncircularity of the plasma cross section is a weak poloidal dependence in 

the dielectric tensor elements. it appears likely that this additional 

poloidal dependence can be handled using perturbation techniques. in the 

transition layer, the dominant toroidal effect is a variation of the 

dielectric tensor elements with major radius. This can easily be handled by 

numerically integrating a somewhat more complicated version of Bq. (35) in 

which the coefficients are known functions of the independent variable x. A 

second, more difficult problem which needs to be addressed is how to retain 

properly vertical phase coherence of the incident wavefront in kinetic 

calculations in the absorption/mode conversion layer when vertical 

inhoraogeneities in the layer are significant. Finally, significant departure 

of the minority ion velocity distribution function from a Maxwellian has been 
21 observed experimentally. Wave polarization calculations can be used to 

determine the evolution of the ion velocity space distribution function via 

Fokker Planck techniques. Though this effect has been considered previously 
a by Hwang et al. using a ray tracing analysis of the wave fields, the wave 

polarizations determined using the methods outlined in this report will 

include mode conversion and wave transmission effects which are ignored by the 

ray tracing solutions. 
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Table X 

PLT TFTR Reactor 

B T o (tesla) 1.9 

R (m) 1.34 2.55 3.25 

a (m) 0.40 0.33 1.3 

f (MHZ) 30 63 63 

n (o) ( c m - 3 ) 6 x 1 0 1 3 6 x 1 0 1 3 1.2 x 1 0 1 4 

n D ( o ) ( c m - 3 ) 5 .7 x 1 0 1 3 5.7 x 1 0 1 3 1.14 x 1 0 1 4 

n H (Q) ( c m - 3 ) 0 .3 x 1 0 1 3 0 .3 x l o ' 3 0 .06 x 1 0 1 4 

N * \«o 

P (HW) 3 10 20 
o 
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FIGURE CAPTIONS 

Pig. 1 Geometry The plasma cross section is divided into three regions. A 

paraxial approximation is applied in Region I which extends from the 

plasma edge to the planes x = x Q,x 1 . Mode conversion and ion 

cyclotron absorption effects are important in Region III, delineated 

by x . < x < x . Strong focussing and diftractive effects are 

treated in the transition layers, x, < x < x . and x_ < x < x_, 
1 c1 co o 

which comprise Region II, Both cylindrical (r,8#3) and Cartesian 

<x,y,z) coordinates ace used with a common origin at the magnetic 

axis at R . The minority fundamental/majority second harmonic 

cyclotron resonance layer is located between x = R and x = x . 

Fig. 2 Density Profile The chosen density profile is constant in the 

central regions of the discharge, 0 < r « a/2, and decreases 

parabolically for r > a/2 to zero at the plasma edge. 

Fig. 3 Antenna Current Profile A half-turn loop antenna is simulated using 

a cosine distribution for the antenna cur.ant for 9„ > 9 > - 6 < 
HI [a 

Fig. 4 Radial Waveforms from Paraxial Solutions in Region I The real part 

of the lowest order approximation, E Q(r), of the poloidal electric 

field in the outer propagation region is shown for PLT in (a), TFTR 

in (b), and a reactor-sized tokamak in (c). Note that the relative 

ratio of radial wavelength to plasma minor radius decreases as size 

and density of the plasma increases. 
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Fig. 5 Contours of C B z ) E e a l in PLT Fast wave launched from an antenna at 

the outside edge with a current distribution as shown in Fig. 3 with 

8 m = 80" is focussed into a spot of approximate diameter equal to 

a/2. 

Fig. 6 Contours of < B a > r e a l in TFTR Same as Fig. 5, except that the 

diameter of the focal spot has decreased \xt about a/4. 

Fig. 7 Contours of ( B
z' r e ai i n a Reactor Sarae as Fig. 5, except that the 

diameter of the focal spot has decreased to about a/B. 

Fig. 8 Contours of ( B z > r e a l in a Compact Ignition Device Same as Fig. 5 

except that e m - 30° to model the fields radiated by an advanced 

waveguide coupler. 
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