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LBSTRACT

Fast magnetosonic wave propagation in a ecylindrical tokamak model is
studied using a parabolic approximation rathod in which poleoidal variations of
the wave field are considered weak in comparison to the radial variations.
Diffraction effects, which are ignored by ray tracing methods, are ircluded
self-consistently using the parabolic method since continuous representations
for the wave electromagnetic fields are computed directly. Numerical results
are presented which illustrate the c¢ylindrical convergence of the launched
waves into a diffraction-limited focal spot on the cyclotron absorption layer

near the magnetic axis for a wide range of plasma confinemenc parameters.
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I. INTRODUCTION

Auxiliary plasma heating has become an essential component of tokamak
research because fusion temperature plasmas cannot be achieved with ahmic
heating alone. Though various methods for delivering power to the plasma have
been tested, the one most favored in proposed reactor designs Rt 1s bulk ion
heating via fast magnetosonic waves in the ion cyclocron range of frequencies
{ICRF). This preference is based in part on recent striking experimental
results from several tokamaks, partaicularly the achievement of central ion
te-peratures 1n the 3-5 keV range in PLT under the application of 3 MW of

4

power to the plasma. The ready gpenetration of thuse waves to the plasma

center combined with a cvlindrical convergence of the wavefront due to
refraction arising from the variation of the Alfvén speed with the peaked
density profile and the antenna geometry results 1n a favorable, centrally
concentrated deposition of the applied heating power., The width of the
heating profile is determined by the degree of focussing experienced by the
waves during the propagation phase and by daffraction effects which limit the

5.6

wave intensity at the mode conversion/absorption liyers 1n the neighborhond

7~-9

of the magnetic axis. Conventional treatments' -~ of the propagation region

utilize ray tracing techm.quesm to solve for the wave electric field and
polarization. Since these tz=chniques treat the wave field as a get of
discrete, noninteracting wave packets, diffractive and wave interference
effects are nsglected. Furthermore, the discretization process 1itself may
induce nonphysical, spatially 1localized fluctuations in power depasition
profiles derived using the field solutions in  quasilinear damplrag

B Finally, all of these techniques are based on WKB

calculations.
approximations which fail near the absorption/conversion layer due to fine

scale structure in the refractive index of the plasma. As a result, mode
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converted and transmitted waves, both of which may contribute significantly to
the heating process, are ignorea by these methods. A connection between fast
wave propagation solutions and solutions to the full wave equation in the
absorption/mode conversion layer“'12 is needed.

To address this 1issue, we have developed a new algorithm which is capable
of computing continuous representations for the fast magnetosonic wave
electric field in a model tokamak eq?llibrlum consisting of circular,
concentric flux surfaces. The plasma c¢ross section is divided into three
regions as indicated in Fig. 1. Propagation 1n Region I is influenced
praimarily by the radial variation of the density. Though variations arising
from the toroidal mature of the equilibrium could also be 1mportant, we will
not assess those effects i1n the current study. A parabolic approx;matlonu"s
of the fast wave egquation in the cold plasma limit is utilized to treat Region
I, which extends from the plasma edge to a transition layer near the magnetic
axis of the equilibrium. This approximation has been‘used prev16usly to seudy

15 16

vacuum focussing of laser beams, acoustic wave propagation in oceans,

propagation of beamed signals through optical fibers and other inhomogenecus
media,” and propagation of the high freguency extraordinary mode 1in a
uniformly magnetized, inhomogeneous plasma slab.m By using this
approximation, we are able to solve directiy for th;a wave amplitude, thereby
retaining the diffractive and wave interference effects which are ignored by
ray tracing methods.

Reqion II consists of a transition layer in which diffraction limits the
extent of the focussing of the incident wavefront. As a first approximation
in this region, we neglect effects related to density and magnetic field

variations 1n compariscn to the diffractive effects and treat the propagation

using a umformly magnetized, homogeneous, cold plasma slab model. Fast



Fourier Transforms provide the connectinn between the paraxial representations
obtained in Region I and the full field solutions obtained in the transition
layer. Ion cyclotron abscrption and mode conversion effects have a pronounced
influence on the wave physics 1n Region III. Detailed analyses of the wave
fields 1n the absorption/mode conversion layer have been derived by

Az by solving the linearized Vlasov-Maxwell equations in slab

athers
geometry with one-dimensional equili.zium magnetic field gradients. An
advantage to our approach is that the two-dimensional cold plasma propagation
solutions wWe generate in Regions I and II may be readily coupled via FFT's to
the fully kinetic one-dimensional seclutions provided by mode conversion theory
in Region III in a manner which properly accounts for the coherence of the
incident wavefront parallel to the abscrption layer. In this manner, power
deposition profiles can be obtained which naturally couple the wave
propagation characteristics in Regions I and II with the absorption and mode
conversion effects which dominate Region III.

In this paper, a derivation of the equations governing fast magnetosonic
wave propagatlcon in tokamaks will be presented alcng with the corresponding
numerical results. The coupling of these calculations to one-dimensional
kinetic solutions for the fields 1n the abscrption/conversion layer of
Region III i1s left for future studies. & derivation of the parabolic wave
equation appropriate for fast magnetosonic wave propagation in tokamaks is
presented in Sec. II ulong with a discussion of the approximations used. The
transition layer is discussed in Sec. III, while results from th2 numerical
code are given in Sec. IV. Conclusions and discussion of future applications

are summarized in the final section.
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I1. DERIVATION OF PARABOLIC WAVE EQUATION

In a tokamak discharge, propagation of the fast magnetosonic wave between
the periphery of the plasma and the plasma core is dominated by refraction
arising from radial gradi:nts in the plasma density. Referring to fig. 1, in
Region I the wave is assumsd to propagate primarily in the radial direction
with a slow amplitude modulation induced by weak gradients in the equilibrium
over a radial wavelength. Poloidal wvariations, which are proportional to
1/r 3/38, are taken to be much weaker than the radial variations which are
proportional to 3/3r. Thus, for a reactor-gsized plasra, one finds that kl ~
kr > ke, kn’ where r, |, 6, " denote the radial, perpendicular, poleidal, and
parallel directions, and kL denotes the ith component of the wave vector.
Furthermore, the equilibrium gradient scale lengths tend to be much longer
than the radial wavelength over much of the discharge. For more moderately
sized tokamaks such as PLT the radial wavelength can approach the size of the
minor radius. Nevertheless, as will be demonstrated in Sec. IV, adequate
representations for the wave electric fields in the propagation reqion may
still be obtained with the assumption that § ~ 1/kla << 1, where a is the
minor radius cof the discharge. These two orderangs, that k., >> ke, k" and
that § << 1, form the physical basis £for the parabolic or small angle
propagation, approximation.

We therefore consider a simplified model of a tokamak in which focussing
by radial gradients is retained but complexities arising from the toroidal
nature of the equilibrium are ignored. The plasma is assumed to be a
poloidally and axially symmetric cylindrical column with a radially varying
density prufile and concentric flux surfaces. A model density profile is
chosen which reasonably represents experimentally observed profiles while

providing mathematical tractabirlity and computational efficiency for the wave



propagation calculations. The chosen density profile, displayed in Fig. 2,

has the form:

n =B A 4 g
2
n = ° 2 (n
2r-a a
n [1 - () ] —&<rg¢a
[} a 2

where ng is the density on axis. The central region of the tokamak is assumed
to have a constant density. More general profile shapes can readily be
incorporated into our numerical code. The magnetic field considered consists
of a strong, uniform axial component, BT’ and a weak, radially inhomogeneous

poloidal component, Bp, such that

S:Bptr)é + B2, {2)
where BP/BT ~ 0(g) << 1, and 5, E are unit vectors in the poloidal and axial
directions, respectively. Teoroidal effects are not included. Though we
initrally retairn the effects of rotational transform and shear, it will pe
shown that these terms have a negligible effect on the wave propagation in a
lew beta, large aspect ratio tokamak.

Dielectric properties of the plasma -medium are modelled with the cold

plasma dielectric tensor19 denoted by:

i o]
_ 51 ie,
= I 3
€ e, € 0 (3)

0 [¢] En
where 2
w
1 1

e =1 +5-F . (4)
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In BEgs. (3-6), the plasma frequency, wpir for the i gpecies 1s defined by

2 4wnlzize2
- — — (7}

W, .
28 m,
P 1

the cyclotron frequency of the lth species 18 given by

n. = — (8)

w 1s the wave frequency, g, is the sign of the charge of the P specles, e 1s
the charge of a proton, and m;, is the mass of the ltn specles. This tensor
has been defined relative to the local magnetic field frame, ;. ;, B, where E
i’ a radial unit vector, B is a vnit vector parallel to the teotal equilibrium
magnetic field, and a = b x £. The rotation matrix from the cylindrical frame

to the local frame is given by R, where

_ 1 o 1]
R = o] bT -bP f (9)
bp bTJ
with bP = BP/B and bT = BT/B.

The starting point for the analysis ig the Maxwell equations for a cold
plasma dielectric medium in the usual fast wave limit, i.e., the parallel

aslectric field, EI, given by

I



E = bp E +b_E @V}

is assumed to wvanish in the limt me/mi + 0. By assuming a harmonic time
dependence at a frequency w, and Fourier analyzing in the axial direction of
symmetry, the wave equation may be written in the form:

v X PXE = . (11)

"o
o
o
.
[eT]

Upon transforming from the cylindrical frame to the local frame using the
rotation matrix, R, the components of Eq. {(11) whach govern the radial

electric field, Er, and the poloidal electric field, EB' may be written as:

2
3 E ik E
1 r t s 13 z 3 5]
Y, B-— + == —=—(rE) - T (b E)-iy, —/=0
1 ¢ rz 382 r 36 £ 3K ;] bT ] P o 2 bT
(12)
and
oE
S22 _p 23 13 22 1 7x
l'Y‘l kz bp ] Ea bT 3r r 3r (rE ) + b'I' 3r £ 38 * lY2 bTEr
2ik b b_ 3E ik b b b 2 azE
- 2pT_08_ _2PT3 (pgy_--RE .3 (yp,)--R.__8_4
r 29 r 3r r r 3r ar P 6 2 aez
(13)
where
2 2,2
U C IV e (14}
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and kz 1s the component of the wave vector ia the z directiaon.

Based on the assumption that poloidal variations of the wave field are
much weaker than the radial variations, Egs. (12) and (13) may be approximated
by treating poloidal derivatives as samall perturbations and retaining cnly
terms through order 32/392. solving Eq. (12) iteratively yields an algebraic

equation for the poloidal electric field in the form:

2
~ 172 ) 13 9 lyz 1 ] Ee 1kz
E_= b Ee > r(rEe)+ 373 2+ (bE]
FooY2q ¥4F 38 3 bTY1 c an ar
ikz 1 a2 N
+ — = = (b _E) . {15}
712bT r2 392 ar PO

Insertion of this expression for Er into BEg. (13), followed by a modest amount
of algebra and discarding of higher order cerms, yields a single partial

differential equation for the poloidal electric field,

2 - 2
s 1 1b,y, 31‘1(72/! vy) B, ;8 Ee
L - (rEl+k (r)E - —_— t — —
aT ¢ a 6 v,r ot 3 202
. 2
) 23 kszbT . ksz-yz aln(rYZ/bpY1) e - 2i kszpr-c0 aEe
r 36 Yy ar 9 T, a9
. 2 2
22 1 k Ppry Bn(vp/Thy, ) 3°E,
+ (——2—) 13 (rF )|+
r ar 2 2 2
28 oy, %y, ax 39
2ik b Y P % b b 2 alaty,/riy) 28
+ T | (=) -—B 9 _ p T Y2 2" T B
r r 2 2 r 2
Y, Y, 3r3d = 3 20
2b b + RN 2
+ .1!(sz —*-—EY i + (—E—) e (— rred o) (16)
1



where primes denote derivatives with respect to radius and where

2 72 2 2 2 2
2, . Yp Yy 2T - (fek /e) - <)
ko (r) = = ( 2) > - . (17
Y4 c (ck /w)” = ¢,

To the extent that 3/px >> 1/r 3/88, by = L/qR << 1, 327322 . 0(k,?), ana
kz << k,, the first two terms in Eq. (16) are dominant and of order kOZEG.
The next two terms contain the primazy diffractive effects and are of order 52
relative to the dominant terms, where § -~ 1/kla /308, Lowest order
correctinns introduced by the rotational transform and shear are contained in
the nexf three terms. Since these contributions are at most of order
c kz/ko 1/8§ 1n comparison to the diffraction terms, they have a weaker effect
on the wave propagation and will be ignored in the remainder of this paper.
Th- remaining terms are significant only at the plasma edge, where y, becomes
very small, and hence will also be ignored in the wave propagation
calculations.

With these consiacerations, the appropriate equation governing the

poloidal electric field can be written as:

2
9B 3 E
3 13 w2 - -8, 8 _
aC T A% (IEQ) + kQ [r]Ee 1 alr) 36 + rz 352 =0 (18)

where b, has been set equal to unity with little error 1introduced, and the

coefficient, a(z), 1s defined as:

2
Y, aln(yz/r y1)
afg) = — —— , (19)
ry1 ar

Similarly, the last two terms i1 Egq. (15) for Er may also be neglected,

leading to:

e 13
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The first two terms in Eq. {38) determine the overall radial gtructure of the
wave, while the remaining smaller terms describe distortions arising from
focussing and diffraction. As we will show further on, the thizd term
introduces a poloidal skewing of the wavefront, while the final term causes a

poloidal spreading of the width of the wave packet.

The fast radial wavelike dependence, go(r). can be separated from the

more slowly varying amplitude, y{(r,9), of Ee by substituting
Ee (x,9) = eo(r) y {r,9) (21)

into Eg. (18), with the result

13 2 2 3 A y|aw
"’[ar r ar (reoj * ko () Eo]+ Ec-{[r/g e ar (r Eo)]ar
o

2
- i a(r) %’é’-+1—2~h£-} =0 . (22)
r 39

The waveform go(r) is determined by a generalized Bessel equation of the form:

1 2
z (rgo) + ko (r) €y = o] . (23)

|
n
Qi jor
n

For a homogeneous plasma, k02 1s constant and the travelling wave solutions of
EqQ. (23) reduce to Hankel functions of the first and second kind, representing
outward and inward propagating waves, respectively. Hence, the general

solution to Egq. (23) will be written as:
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e () = e v ce P (24)
where the analogous wavelike solutions to the homogeneous Bessel equation are
denoted by H$1)(k°r)and H%Z)(kor), respectively. In this manner, ingoing
waves, launched by the antenna or reflected from the conducting wall, and
Jutgoing  waves, transmitted throuéh or reflected from the mode
conversion/absorption layer, are readily simulated.

The remaining terms in Eg. (22) govern diffractive distortion of the
wavefront. Since the amplitu’s function, iy, is a slowly varying function of
radius relative to the waveform, 50(1), the tecsm azw/arz nas been neglected.
This approximation is the key feature of the parabolic method. With this

approximaticn, the equation for the amplitude function has been reduced to a

parabolic partial differential squation of the form

(i} {1) . 2 (1)
—gr'i—— - i a(r) ¢h)(r) gie—-— +1—2¢(1)(r) a—g’————= 0. (25)
4 L]

The coeificient, ¢(1)(r), depends on the particular waveform chosen,

{1}
(i) (r)
& T E) =Sy (26}
2 3¢ (r)/ar

1 -
where e(l)(r) = r@ eocl)'r). It is Eg. (25} that 1s commonly referred to as
the parabolic or paraxial approximation of the wave equation.

Solutions of Eg. (25) are readily obtained 1n the form

(1) )

(1)

P (r,ga} =t ¢
m

:‘i) (r}) - :.mzs'(l)(:)} , (27)

)exp{;m(e + F:l N

where
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1 I - - -~
P % = if  ar a’y o) (28)
(i)
r
a9
(1) T . (1)( ‘)
P ey =0, ar & EL (29)
2 (i) (r-)z
S

and wvhere réi) is a conveniently chosen radius for evaluation of constants.
The summation is over the poloicdal harmonics, m, present in the wave.
Physically, F,‘i)(r) represents a poloidal rotation of the wavefront as the
wave propagates into or out of the plasma core. To this order, the rotation
is directly attributable to the anisotropy of the plasma dielectric
properties, as contained in the function a(r). 1In the limit of ghort radial
wavelengths and flat density profiles, the function ¢(i)(r) asymptotically
reduces =o 1/2k° for an inward travelling wave and -1/2k0 for an outward
travelling wave. Hence, the wavefront rotatron proceeds J..n opposite poloidal
directions for an inward vs. outward d:rected wave and is more pronounced for
lponger razdial wavelengths. Finally, E‘z(i)(r) represents diffracction of the
wavefront caused by a variation in the relative phasing of the different
poloidal harmenics as the wave propagates radially.

Using Egs. (21), (24), and (27), the general solution for the poloidal
clectric field i1n the propagation region becomes:

(i) 2 (i)

EB(z,e) = cigéi)(:)gi w;l) { r;i)) exp{im ( B+ F, (r)) - in'F, )l .

A

1
(30)

Through an appropriate choice of the constaants G and wn(\i)(réi)), waves
launched from an antenna, reflected from the conducting wall of the vacuum

vessel, and transmicted through or reflected from the cyclotron
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absorption/mode conversion layer may be computed, Evaluation of these
constants will be discussed in general and numerical solutions appropriate for
the case of single pass absorption will be presented in Sec. IV.

The propagation of the fast wave between the plasma edge and the
transition layer is completely described by Egs. (20}, (21), (23), and (25).
Solutions of these eguations provide a continuous representation of the wave
electric fields that c¢orrectly account for the dominant refractive and
diffractive effects. The kevy approximations utilized include the slow
poloidal variations of the wave field relative to the radial variations, and
the FEactorization of the poleoidal electric fieid into a rapidly convergent
cylindrical waveform modulated by a more slowly varying amplitude function.
In this manner, diffractive effects are isolated in the amplitude function.
The connection of the prcpagation solutions to those appropriate within the

transition layer will be discussed in the next section.

III. THE TRANSITION LAYER

As the fast magnetosonic wave propagates from the -edqe of the plasma
towards the plasma core, it enters a transition layer in which the wavefront
has become so strongly focussed in the poloidal direction, that a full two-
dimensicnal treatment of the wave fields is required. The transition layer 1is
indicated by Region II in Fig. 1. Since the wave intensity in this layer has
been focussed primarily into the constant density regions near the magnetic
axis, the density will be approximated by its central value, n.. throughout
the entire layer. Furthermore, since this region 1is outside of the mode
conversion/cyclotron absorption layer, XKinetic effects may be peglected and a
cold plasma model may be assumed. With these approximations, the final

focussing of the fast wave 1in this redion into a diffraction-limited focal
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spot on the ahsorptlon layer may be described using a homogeneous, uniformly
magnetized plasma slab. .
In Cartesian coordinates, the components of the wave equation, Eq. (11),

in the fast wave limit are given &as:

3% azax

-—_—— -1 = 31
—-——laxay Byz + Y, E, IYZE}' 0 (31)
aZEx azE
oy " + 11EY +iy,E =0 {(32)

where x is directed outward aleony the major radial direction and y is directed
upward perpendicular to the midplane of the tokamak. The y-dependence cf the

fields is represented using Fast Fourier Transforms (FFT):

) N/2 - 1 ikny
ﬁi(x,y) =E Ei(x,kn)e {33)
n = -N/2

where i = x,y ard kn = nAk. For a slab of height 2L, the minimum number of
harmonics, N, needed to resolve accurately a structure with a typical

wavenunber, k is approximately equal to ZkoL/rr. The corresponding mode

D’
spacing, 4k, is equal to w/L. Fast Fouri=axr Transform algorithms operate most
efficiently when N is rounded upwards to a suitable value of 2P, yhere o is a

positive integer, Inserting Eg. (33) into Eqs. (31-32) and adopting the

notation Ei,kn = Eilx,kn), leads to an algebraic equation for Exrkn in the
farm:
JdE
. Y.k
P . |
n n_ox
Exk = 7 (34)
"“n Y. + k



and a simple plane wave equation for Ey,k :
n

+ Ckoz -k ) E =0 . (35)

By using the linearly independen: solutions of Eg. (35) in Eg. (33), the
general solution for Ey(x,y) in the trans.vion layer consists of a sum of

waves travelling in the % x directions:

N/2 -1 ikny
E (x.y) =3, e {a
Y no= - N/2 n

1
2/2

() xels 2=k B (x -

{1) )]

s

ik (36)

1

)

R N (x - x (2)
n - n [+] 5

, are evaluated at x = x (l). For the special

(1)
n S
(2)

where the mode amplitudes, d
case of k°2 = knz, the modes corresponding to dn(1) and dn coalesce into a
single constant solution and a second iinearly independent solution
corresponding to a field amplitude that qrows linearly with x, As wWill be
discussed in the next section, Waves which are incident upon, reflected from,
or transmitted through the adjacent absorption layer are readily simulated
with a proper choice of the coefficients, dn(i).
IV. NUMERICAL RESULTS

By utilizing the solutions for the wave electtic fields developed 1in the
preceding two sections, we have develoged an algorithm which computes the
propagation of fast magnetosonic waves betwgen the launching structure at the
plasma -perlphery and the cyclotron absorption/mode conversion layer 1n the
core, In general, the method is numerically efficient since for a yiven value

of k only six radial integrations are required to generate the waveforms

[

eo(l)(r) and the associated phase functions F1(1)(r), FZ(LJCI) for 1 = 1,2, as
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defined in Egs. (24, 28, 29). The remainder of the code is Adevoted to the
evaluation of the various constants and functions indicated 1n Eqs. (30,
36), By way of contrast, in a ray tracing 9imulation of the wave propagation,
the minimum number of integrations required is at least equal to the total
number of rays requiced to represent accurately the polaidal spectrum of the
launched wave.

In the case of strong single pass absorption, the evaluation of the
constants in the propagation regions i3 straightforward. Beginping in
Region I, the solution consists of an incoming wave launched at r = r, by aan
antenna located on the low field edge of the discharge. In principle, £, is
somewhat less than the minor radius of the plasma due to the presence of a
thin evanescent layer at the plasma edge. In practice, the width of this

layer is sufficiently thin for fixed values of k, << k 50 its presence may be

1
ignored. To demonstrate this, consider Eq. (18) near the plasma edge in a
slab model limit in which peloidal variations and cylindrical geaometry effects
have been ignored. Assuming a linear variation of koz with r and specializing

to the case of minority hydrogen heating in a deuterium majority plasma, Ej.

{18) can be cast into the form:

2
3 €, 4 2
+ 2. — (a-r) e. =0 {373
2 2 =)
3r aVv
A,0

where VA,OZ = EZ/AWHOmD, with m, teing the mass of the deuterium icns. ay

introducing the dimensionless variable
u = —— {38}

where



2
av
23 - — e (39)
4m

Eq. (37) is transformed into an Airy eguation:

Q
+ 1 = . 4
de Q (40)

Since the transition from evanescence to propagation takes place in a
characteristlc distance ¢ which is small compared to other characteristic
lengths of the system,

1/3

1
= (——————j << 1, k_g < 1,
4k°2a2 2

K 1, (41)

P e

we will ignore the evanescent layer in our current model.
Returning to the evaiuation of Eg. (30), the amplitude of the outgoing
wave, Cq. is set egaal to zero while the amplitude, Sos and poloidal harmonic

content, wm(ZJ, of the incoming wave are evaluated at rézl

a. To lowest
order in the Poynting flux at r=a, the incoming wave amplitude, Coyr assoclated

with an incident power, P is equal to:

o’
1
%)
(o4 = [ BFNPO } (42)
2 2)* 2)2 '
2 c“a fReal(L 522) aéo) /a:) - Yzlei )[ /ay1]

The Fourier amplitudes, wm(Z)(a), are determined from an assumed poloidal

scructure, £(g), of the wave launched by the antenna, such that:

E la,p) =c 5;2) ta) f£{g) B (43)

2
L —rla -1l_x
o By(a,0) = [yop (kB - o==1 ‘ (44)
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#l< {45
B, cosin/2 (/6] | fal 90 )
B2 =3 lnbsa

where 2 x up 1% edqual to the maximum anqular extent of the launched

wavefront. The function f{w) is normalized guch that

T fEted}2 dw = 1 (48)

-1
In Fig. 3, the corregponding current density profile in the launching
structure considered in this report is displayed.

Radial and poloidal electric fields evaluatad along the interface hetween
Region I and Reqion II at X = xo determine the coefficients, dn(z)- of the
inward propagating wave in the transitional zeqion. Prajecting from
eylindrical to slab geometry, the coefficients are determine? using the

reiationship:
E {x .y} = E.1zr{x ,¥), vix ,¥})isin wix ,¥y)
y o T o o o
o4 , P . 7
+ nv:r(xo ¥y, n(xo ¥} icos d(xo,y) a7

For the case of strong single pass absorption, there is no wave reflectad hack
from the absorption layer so the Fourier amplitudes, dn(1), which comprise an
cutgoing wave in the transition region, all vanish.

Qur algorithm is readily adaptable to trzat the case of multiple pass

absorption. The amplitudes § and associated wavenumbersg kp “valuated a:

¥Y.Xn
X = Xug [(or x¢cl1) Ffor waves incident from the outside (or inside) of the torus

serve as Lnpputs to a linear mode conversion analysis of the cyclotron

absorption/mode conversion layer of Region III. A kinatic treatment of the
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fields in Region III yields an absorption profile plus amplitudes associated
with transmitted, reflected, and mode converted waves. Since the mode
converted wave is assumed to damp rapidly via electron Landau damping, 1ts
propagation away from the kinetic layer will not be gomputed in the current
model. Amplitudes for the outgoing waves in the bordering transition layers

are determined at x = X or X = X from the reflected and transmitted wave

co cl
amplitudes, respectively. Similarly, the outguing waves in the transition
layers determine the characteristics of outgoing wawves in the outer
propadation region. Finally, the amplitudes of waves reflected back into the
plasma from the conducting wall are determined by the reguirement that EF)
vanish on the wall., In this fashion, multipl: passes can be comp:ated until
all incident power is deposited into the plasma.

The ¢ade has been used to ~um late fast magnetosonic wave propagation in
three different sized tokamaks. We have considered reactor grade plasmas,
breakeven <type devices sSuch as TFTR or JET, and moderately sized research
tokamaks such as PLT. Parameters characterizing minority hydrogen 1in
deuterium majority heating schemes far each of these devices are summarized Lin
Table I. Tne assumed poloidal structure of the current in the half-turn
antenna 1ls the same for each case, with 8, = 80°. 1In Fig. 4, the real peortion
of the incoming waveform, eo‘z)(r), ig displaved vs. normalized minor radius
for each tokamak considered. The relative number of radial wavelengths per
minor radius varies significantly between the three cases, due to variations
in the relative densities and minor radii. Since the perpendicular index of
refraction nL ~ c}ci/“" is proportional to density, focussing effects are
expected to be more proncunced in reactor-sized devices than in PLT,

Cylindrical convergence of the iaunched wave into a focal spot on the

absorption layer is illustrated by the contours of the real porticn of axial
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wave magnetic field given in Figs. 5-7 for each device considered. Single
pass absorption has been assumed. Because of the focussing of the launched
wavefront, ICRF power deposition should be highly concentrated in the rentral
regions of the discharge. A comparison of the three figures reveals that due
to thz smaller value of nl in PLT, less focuasing of the launched wave occurg,
resulting in a relatively wider distribution of incident power on the
abgorption layer.

By inference from Figs. 5=7, the minimum relative diameter of the focal
spot to the plasma diameter decreases as the size and density of the plasma
increase. In addition, the anticipated width of the power depaosition profile
will 1ncrease as the location of the cyclotron absorption layer moves away
from the magnetic axis of the device where the minimum focal spot diameter
occurs. FPor the cases considered, the relatlvé diameter of the focal spot to
the plasma diameter decreases by about a Eactor of two from PLT to a
reactor. Finally, as discussed in Sec. II, poloidal rotation of the ryoident
wavefront is most pronounced far PLT because of the lower cperating densities
and hence longer radial wavelengths for the fast wave in the device.

As a final example, a contour plot of the real portion of the axial wave
magnetic field in a compact ignition device is displayed in Fig. 8. A
deuterium-tritium plasma with a 10% hydrogen minority concentration and a
central electron density of 4 x 1014 c:m"3 has been conaidered. The poloidal
extent of the launched wave has been limited to 1 30° to model the fields
radiated by an advanced waveguide coupler.20 Based on the highly peaked
structure of the wave about the magnetic axis, 1t 1s likely that fast wave

heating in such devices will be favorably concentrated in the central reqion

of the discharge.
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V. CONCLUSIONS

In this paper, fast magnetcscnic wave propagation and focussing have been
examined in a simplified tokamak model using a parabolic approximation of the
wave equation. Based on fast wave field calculations over a wide range of
plasma parameters appropriate for moderately sized devices such as PLT to
reactor-sized devices, we conclude that power deposition is more faveorably
concentrated about the magnetic axis in the larger, more dense plasmas
anticipated 1n tokamak reactors than in the plasmas currently producible in
PLT.

The physical motivation for the parabolic approximation is the slow
poloidal variation of the wave ficid relative to the radial variation over
most of the plasma discharge. By treating poloidal derivative terms as
perturbations and extracting the rapidly varying domin<nt waveforsm, go(r),
from the poloidal component of the field, the coupled system of second order
partial differential equations for the radial and poloidal electric fields
collapses into an algebraic egquation for By A second order ordinary
differential equation for the waveform, €,r and a parabolic diffusicn-type
equation for the remaining amplitude modulation funct;on, w(r,a). Diffractive
and focussing effects are inclided self-consistently by this method, since
contipnuous representations for the wave elevtric field components are computed
directly. Hence, a more accurate representation for the wave fields 1s
obtained than can be derived on the basis of ray tracing technigues. In
addition, an algorithm based on this approach is numerically more efficient
than standard ray tracing codes. Finally, absorption and mode conversion
effects can be easily iacorporated into this medel by connecting the
propagation solutions obtained in the outer regions using a cold plasma model

with fully kinetic solutions obtained in the innes absorption/mode conversiaon
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layer using a hot plasma model. This connection is being studied and will be
discusged more thoroughly in future reports.

Some potentially important physical aspects of ICRF heating processes
have not yet been treated adequately in the existing medel. One remaining
question concerns the extent to which the toroidal nature of the eguilibrium
influences the wave propagation and focal spot formation. In the outer
propagation reqions, the main complication resulting from toroidicity or
noncircunlarity of the plasma cross section is a weak poloidal dependence in
the dielectric tensor elements. It appears likely that this additional
poloidal dependence can be handled using perturbation techniques. In the
transition layer, the dominant torocidal effect is a wvariaticn of the
dielectric tensor elements with major radius. This can easily be handled by
numerically integrating a somewhat more complicated wversiin of Eg. (35) in
which the coefficients are known functions of the independent variabla x. &
second, more difficult problem which needs to be addressed is how to retain
properly vertical phase coherence of the incident wavefroat in kinetic
calculations in the absorption/moede caonversion layer when vertical
inhomogeneities in the layer are significant. Finally, significant departure
of the minority ion velocity distributien function from a Maxwellian has been
ohserved experimentally.21 Wave polarizetion calculations can be used to
determine the evolution of the ion velocity space distribution function via
Fokker Planck techniques. Though this effect has been considered previously
by Hwang SE_EEJB using a4 ray tracing analysis of the wave fields, the wave
polarizations determined using the methods outlined in this report will

include mode conversion and wave transmission effects which are ignored by the

ray tracing solutions.
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Table I
;
PLT TFTR Reactor
i
Bro (tesla) 1.9 4 4
i
; R, (m) 1.34 2.55 3.25
a (m) 0.40 0.93 1.3
i £ (MHz) 30 63 63
ng(0) {cn™3) 6 x 10'3 6 x 103 1.2 x 1014
npto) (em™>) 5.7 x 10'5 5.7 x 10'° 1.14 x 10'4
ng (o) (en™?) 0.3 x 103 6.3 x 10"? 0.06 x 109
N = k”Ro 9 ] 9
P (W) 3 10 20

o
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FIGURE CAPTTIONS

FPig.

Fig.

Fiqg.

Fig.

1

2

3

4

Geometry ‘The plasma cross section is divided into three zregions. A

paraxial approximation is applied in Regicn I which extends from the
plasma edge to the planes x = Ko sy Mode conversion and ion
cyclotron absorption effects are important in Region III, delineated
by .9 < X < X .. Strong focussing and dirffractive effects are
treated in the transition layers, x1 < x < x‘:1 and xco < X < Xq:
which comprise Region II. Both cylindrical (r,8,2)} and Cartesian
(%x,y,2) coordinates are used with a common origin at the magnetic

axis at Ro' The minority fundamental/majority sgecond harmonic

cyclotron resonance layer is located between x = R, and x = X_..

Density Profile The chosen density profile is constant in the

central regions of the discharge, 0 ¢ r ¢ a/2, and decreases

parabolically for r > a/2 to zero at the plasma edge.

Antenna Current Profile A half-turn loop antenna is simulated using

a cosine distribution for the antenna cur.ant for B> 8 3 - 8.

Radial Waveforms from Paraxial Solutions in Region I The real part

of the lowest order approximation, e (r), of the poloidal electric
field in the outer propagation region is shown for PLT in (a}, TFTR
in (b}, and a reactor-sized tckamak in {(¢). Note that the relative
ratio of radial wavelength to plasma minor radius decreases as size

and density of ‘the plasma increases.
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Contours of (Bz)zeal in PLT Fast wave launched from an antenna at

the outside edge with a current distribution as shown in Fig. 3 with

8, = B0° is focussed into a spot of approximate diameter egual. to

Contours of (Bz)real in TFTR Same as Fig. 5, except that the

diameter of the focal spot has decreased ta about as/d.

Contours of (Bz)real in a Reactor Same as Fig. 5, except that the

diameter of the focal spot has decreased to about a/8.

Contours of {Bz)real in a Compact Ignition Device Same as Fig. 5

except that Op = 30° to model the fields radiated by an advanced

waveguide coupler.
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