




(1970) suggested the following relationships:

logjo R^c =  5.477 — 15.87/j for I r  <  0.15 , (4.45)

logio R cc  =  3.371 -  1.757/f for I r  >  0.15 . (4.46)

Based on their own experimental work, Clift and Gauvin (1971), suggested:

hg^Q R c m  =  6.878 -  2 3 .2 I r  for I r  <  0.15 , (4.47)

logio R c m  =  3.663 -  l . n i R  for I r  >  0.15 , (4.48)

and

R t y  =

The applicable drag equations (Uhlerr and Sinclair, 1970; Clift and Gauvin, 

1971) for each branch are the following:

Cd  =  \e,2l]l^Re~^ for 0.05 < I r  < 0.5

and 10 < Re < 50 , (4.50)

C p =  0.133(1 + 1507Ee~*)\565 +  47H for 0.07 < 7^ <  0.5

and 50 < 7?e <  700 , (4.51) 

CjD =  0.3(.Re/72cc)“ ® for Q.^Re^ < Re < R ey  , (4.52)

Cd =  0.3(7?e/72eM)^° “®‘̂ ^°^*^ for R ey < Re < ReM  , (4.53)

Cd = 3990(logio-Re)-®-^ -  4.47 x 10®7^° ®^/2c~* ®

for I r  > 0.07 and 7?cm < Re < 3 x  10* , (4.54)
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and for values of I r  smaller than the values covered by the previous equations a 

drag equation proposed by Clift and Gauvin (1970), will be used:

for Re < 10® . (4.55)

Equation 4.51 was extended to the range of Re > 700 and I r  < 0.2 due the lack 

of experimental data in this range. Equation 4.52 in the Clift and Gauvin (1971) 

paper presents a  coefficient of 0.03 instead 0.3 which clearly is. Equation 4.54 

shows an anomalous behavior at Re close to R e \ f  and is discontinuous at Re =  

Rejif . The use of this set of empirical equations in the solution of the equation of 

motion (Equation 4.43), presented a special problem when such discontinuities exist. 

Because these equations are empirical fits to data, it was considered convenient and 

correct to make a slight adjust to Equation 4.54 to make it convenient to use. A 

correction factor Cq  is introduced into Equation 4.54:

C d =  3990(logio iZe)"®-* -  4.47 x 10®(/h +  ® , (4.54-o)

where

C c  =  ki exp(A:2 /j? +  ksRe)I^*  , (4.54-6)

where the constants present the following values:

ki = 2.42 ; kz = -6 .01  x 10~® ; ks =  -8 .9 2  x 10“  ̂ ; k4 =  -2 .72  x 10“ * .

Figure 4.14 shows the drag curves obtained in this way for different values of I r .

The only param eter which determines the drag curve is this I r . Since these 

values of Cp  were measured under conditions of turbulent flow, two other parame­

ters could be involved. The first is the ratio of the turbulence scale to the particle
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Figure 4-14
The particle drag curves for different levels of turbulence inten­
sity.
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diameter. Taylor (1936) suggested that the transition from a laminar to a turbulent 

boundary layer should be determined by the ratio of d by £,  where £  is the Eulerian 

macroscale of turbulence. Torobin and Gauvin showed no such scale effects, so this 

param eter is not taken into account. The second is the acceleration modulus, M a  , 

defined by Equation 4.37. Torobin and Gauvin also observed no effect of M a on 

the value of Cd . But Wang (1969) found th a t for higher values of M a   ̂ the values 

of Rtc  were shifted further to values even lower than the ones predicted by Equa­

tions 4.45 and 4.46. Unfortunately, these observations were not quantified, and the 

measured values of Cd -, were all taken in the transcritical zone, i.e. the region after 

the maximum on the drag curve after Rcc (see Figure 4.13).

If the effects of acceleration are ignored, the drag curve generated by Equations 

4.45 through 4.54 can be used in the equation of motion (Equation 4.43) to calculate 

the dynamic behavior of droplets in annular flow. The values of terminal velocities 

of droplets in annular fiow are discussed in Section 4.3.3; and the dependence of 

velocity on particle size is treated in Section 4.3.4.

4 .3 .3  T he Term inal V elocity o f  D rop lets in A nnular Flow

The terminal velocity for the droplet is achieved when the forces acting on it 

are in balance. This corresponds to setting dv/dt =  0 in Equation 4.43. Then 

the terminal velocity, will be given by the solution of the following vectorial 

equation:

(4.56)

If the drag curve (Equations 4.45-4.54) is used in conjunction with Equation 4.56, 

an implicit equation for vrj. is obtained. For the case where the pressure gradient
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contribution is negligible, and for vertical rectilinear motion where vjj is the relative 

velocity, Equation 4.56 reduces to:

= 0 .  (4.57)

The solutions of this equation, for the csise of water droplets in air at atmo­

spheric pressure, are plotted in Figure 4.15 where the standard drag curve was used 

in the case of I r  = 0 . This reveals that, if the droplets are being entrained verti­

cally by an air current, with I r  = 0, the smallest droplets will travel faster than 

the larger ones when equilibrium is achieved.

For I r  ^  0 , & systematic search for solutions of Equation 4.57 was performed. 

For every diameter increment of 50/xm over the range 0 < d < 3000 /xm, the exis­

tence of solutions was determined numerically in each interval of terminal velocity 

of 0.1 m /s  in the range of 0 to 30 m /s .

In Figures 4.16 through 4.18 are plotted the solutions of Equation 4.57 in the 

form of I versus d, for selected values of the turbulence intensity, Urma • For 

certain values of d, and a t fixed Urma > there are multiple values of Vr ,. th a t satisfy 

Equation 4.57. The number of solutions for a given d, or the multiplicity degree, is 

always an odd number, being 1, 3 or 5. Also, it is no longer always true th a t larger 

diameters correspond to higher terminal velocities. This depends on the particular 

values of d and Urm«*

Each point in Figures 4.15 through 4.18 is identified with the particular branch 

of the drag curve where the drag coefficient is found for th a t terminal velocity ( see 

Figure 4.13).

The particular values of Urma selected to be plotted represent typical cases of 

each type of the ten different bifurcation diagrams found. The evolution of these
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Figure 4.16
Bifurcation diagrams of terminal velocity versus droplet size for 
«rm« =  1 .1 , 1 .2 , and  1 . 6  m /s .



diagrams with increaising values of Urme , can be described as follows:

— 0.0 < Urms <  0.9, a single valued solution curve is found similar to the one 

found for I/t = 0 in Figure 4.15.

— 0.9 < Urms <  1-1> the first multi-valued region of the solution. In this partic­

ular case a single region of multiplicity three, forms a bifurcation diagram of 

the hysteresis type. Figure 4.16-a.

— 1 . 1  <  Urms <  1-5, a second region of multiplicity three appears, of the same 

hysteresis type, for lower values of d. Figure 4.16-b.

— 1.5 < Urms <  the region of multiplicity three at higher values of d unfolds 

and a single multi-valued region is maintained. Figure 4.16-c.

— 1 . 6  <  Urms <  2 .0 , a new multi-valued region of multiplicity three shows at 

larger values of d but now with a different appearance from the previous ones. 

This region consists on a top branch from the preceding diagram and under­

neath it a finger type branch, constituting an isola type bifurcation diagram. 

This finger moves upwards as Urma increases and touches the top branch at 

«rma =  2, Figure 4.17-a.

— 2.0 <  Urms <  2.3, a new finger branch is created at the top region of the 

diagram with the same upwards trend with Urms • The branch below the finger, 

folds on itself forming a new kind of bifurcation diagram of the mushroom type, 

and a region of multiplicity five appears for the first time. Figure 4.17-b.

— 2.3 < Urms <  2.4, the finger moves further to  the top and right region of 

the diagram finally causing the region of multiplicity five to  disappear, Figure

4.17-c.

— 2.4 < Urms £  2.7, three regions of multiplicity three can be found. Figure
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4.18-a.

— 2.7 < Urms ^  2.9, the folding of the lower branch for larger particles continues 

and two regions of multiplicity three are present, Figure 4.18-b.

— 2.9 < Urms < 5, a new region of multiplicity five can be found for the lower 

particle size range. Meanwhile, the top finger moved out of the diagram region, 

Figtire 4.18-c.

The possible existence of multiple solutions raises the problem of stability of 

such solutions. This problem can be analyzed by recasting Equation 4.57 in terms 

of forces and by asking the question: when the forces balance, are they in a stable 

or in an unstable equilibrium?

If both sides of Equation 4.57 are multiplied by Vsp then:

( 1  -  '))gVsp = Cd Q p /   ̂ (4-58)

which expresses the fact th a t in equilibrium, i.e. vr — vrj., the gravity force Fq 

equals the drag force Fd • Therefore, in general, the ratio  of these two forces can 

be expressed as:

Fd CD{^Pf\vR\vR)ir<F

where gR(vR) is a function th a t takes the value one, whenever v r  =  v rj,. In 

Figure 4.19, this function is shown for Urms =  4.5 m /s  and for three different sizes. 

For the two lower values of d, the function gR(vR) takes the value one for three 

different values of vr,.  and for the largest only once. Consider, for the sake of 

analysis, only the curve for d =  750 /im.  There are three points, , U2 , and
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5 s , where gjt takes the value one. The stability of each point can be inspected by 

analyzing the behavior of Pij around each one of this points.

Around the point S i ,  the behavior of q r  is as follows: if is increased, 

then Pi? is greater than one, which means th a t the drag force is greater than the 

gravity force. Consequently v, the particle velocity, will increase, with a consequent 

decrease of |vi?|. Thus the droplet has the tendency to return to Si  and the point 

is stable. If |vi?| is decreased below Vr,, a t S i , the drag force is smaller than the 

gravity force and the particle deaccelerates, v decreases, [vi?| increases, and the 

condition retrieves to  S i . This behavior is associated with the positive slope of pj? 

at 5 i . Since S 2 presents the same positive slope. Si  behaves like S 2 , they both 

qualify as stable.

Around point U2 the following is observed: if is increased, p« is less than 

one, i.e., the gravity force is greater than the drag force, therefore the particle will 

accelerate, hence decreasing |rj? | with time and moving away from U2 . The same 

behavior is observed for a  decrease in |v r | by similar arguments. Then, in this case, 

the point U2 qualifies as unstable.

This type of stability analysis, by inspection of the function Pfi(vfi), can be 

carried over all the typical regions of multiplicity, and always the same conclusions 

are obtained. The unstable branches of the solution are represented by the inter­

mediate branches of the solution, i.e., when, for a given d, there is an increasing 

sequence of possible solutions, vr^^ , , v r^^ , vr ,.  ̂ , the branches con­

taining the values w ith even indexes (in this case vr ,.  ̂ and vr^^) are the unstable 

branches. The branches containing odd indexes are stable. This vs true for the case 

of the “finger” or “isola” branches which appear a t the top of the plots of Figures
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4.17-a through 4.18-b.

For certain regions of the curves, the branches are so close tha t for variations on 

Uq on the order of Urma > the droplet velocity vr^. can jump from a stable branch to 

another. Consider a droplet of 1000/xm in a annular flow field with u^ma =  3.0 m /s  

(Figure 4.18-c). Assume that the particle achieved the largest of the three possi­

ble term inal velocities predicted. At this condition, say the particle velocity is v. 

Turbulent gas flow is accompanied by significant fluctuations in velocity. As eddies 

having different velocities sweep across the particle, the relative velocity changes. 

For example, if the local gas velocity increases the value of will decrease, and 

the point moves down in the bifurcation diagram, eventually crossing the unstable 

branch. The reverse situation is also possible. This can imply the presence of a 

dynamic oscillatory behavior of some sort suggesting th a t a single measurable vr^  , 

may not be the expected observation.Torobin and Gauvin (1961) found very large 

scattering in the values of C p calculated from measured values of v r  for condi­

tions of Re  close to Rtc.  Clift and Gauvin (1971) mentioned the possibility of the 

existence of multiple solutions for v r ^  , bu t the  problem was never analyzed.

This stability analysis can only describe the behavior close to equilibrium. The 

behavior away from this situation can only be predicted by the integration of the 

equation of motion in conjunction with the gas flow field equations. Since this is a 

turbulent field, it represents an unsolved problem, aggravated in the case of annular 

flow, by the presence of a  liquid film and droplets in a  gas field. But the use of some 

simplifying assumptions, at least with respect to  what happens in the gas flow field, 

can give a way to a solution of the equation of motion th a t can in part explain the 

experimentally observed results, as will be shown in next section.
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4.3 .4  P re d ic tio n  o f D ro p le t V elocities a t  th e  C en te r  o f  th e  C o lu m n

The objective of this section is to predict the axial velocity of the droplets, 

Vg, measured at the center position ( r ^  =  0 ) of a column with the same pipe size 

and under conditions similar to the ones used during the experiments. In order 

to predict drop velocities from dynamic calculations, one must specify a time of 

flight. The drops originate at the liquid surface. At the centerline, all drops must 

have experienced a time of flight equal to the ratio of the radius to the radial 

velocity, which has been shown to be essentially constant. At any other position, 

0 , the time of flight, depends on the point of origin. For this reason, these 

computations are restricted to describing conditions at r\{ = 0. The equation of 

motion, correspondent to this situation, can be obtained from Equation 4.43 to give:

^  . (4-60)

^ = 0 ,  (4.61)

The initial conditions are:

Vz(t =  0) =  , (4.62)

Vy{t =  0) =  Vy , (4.63)

where VzP  is the pressure gradient in the axial direction, v r  is the speed of the 

relative velocity vector, V /j, and given in this case by v r  =  {Vy  +  (w* — U g ) ^ Y ^ ^ -  

The system of ordinary differential equations, Equations 4.60 trough 4.63, can then 

be solved, to obtain the time evolution of velocity in the presence of a turbulent 

stream  by using Equations 4.50 through 4.55 for the drag law. In Equation 4.60, 

the total droplet acceleration is given by the sum of three acceleration terms:
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— The gravitational acceleration, constant for incompressible gas flow, a condition 

satisfied here.

— The gas pressure gradient acceleration, depends directly on the gas flow through 

the conduit while the local values may vary due to the the turbulent motion 

of the gas. The average pressure gradient V^p is constant over a cross section 

of the column. The frequency of oscillation around the mean is high, and the 

droplets will not respond to these oscillations, and V^p is replaced by V*p.

— The drag acceleration requires a value for Uq in order to calculate v r  along 

the path. For purposes of precise computation, values of t^c(r) would be 

required. However, in order to estimate the trends a single constant value of 

Ug =  1-41/gs» the value over the center section of the core will be used.

Some im portant conclusions can be drawn from Equation 4.60 even before inte­

gration. Only the gravity term has a negative contribution to the total acceleration 

for the case of droplets moving upwards in annular flow. The gas pressure gradient 

acceleration acts positively. For conditions of the experiments of this study, this 

term  represents only 10% of the gravity acceleration. But under other annular flow 

conditions, for instance, in the studies by Cousins and Hewitt (1968) where high 

pressure gradients were reported, this term  can be twice as large as the gravity 

term. As a result it is possible to show th a t droplet velocities greater than the gas 

velocity can be expected.

The initial axial droplet velocity is assumed to  be the velocity of the wave from 

where it originates. The radial component of Vq can be assumed to  be the exper­

imentally measured values of Vy. Recent experimental measurements by Zabaras 

(1985) of wave velocity in the same test section and in the same region of flow pa­

- 174 -



rameters suggest values for Vzo on the order of 3 m /s . In the simulations presented 

here, Vy and are varied around the values suggested experimentally to test the 

sensitivity of the results to these assumptions.

A solution of the system of Equations 4.60-4.63 is now possible. Namely, when 

U g s  and Urma  are considered constant. Equation 4.63 can be integrated by separa­

tion of variables, resulting in the following integral equation:

t - t o =  I  7  r------------------- ^ -------------------------------, (4.64)
[ ^ ) g -  \  ^dC D {RejR) \vR \vRz

where

Vr =  ((uz -  U c f  +  v j)   ̂ > (4.65)

vrz =  {vz -  Ug ) , (4.66)

where Re = {d |u;?| /i//)  and I r  = {urmel this way, the numerical handling

of the discontinuities on the expressions for C o,  Equations 4.50-4.55, is simplified 

when a  convenient quadrature procedure is used to evaluate the integral in Equa­

tion 4.64. The numerical procedure evolves in the following way:

— Set d, Vy and

— Find the time of flight tp given from:

(4.69)

— For a given Vzo > a value of r* is found by iteration until Equation 4.64 is 

satisfied.

In Figure 4.20 are plotted the results for Vz {tm  =  0 ) as a function of the droplet 

diameter d, for a typical set of values of Ug s  » > Vr, with V*p =  —550 N /m ^ ,
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and with Urms as a varying parameter. As can be observed, for Urms =  0, a 

monotonically decreasing function of is obtained. But as Urme is increased to 

non-zero values, then the monotonicity of the solution disappears. The curves 

versus d go through a minimum at lower values of d, then increase to a maximum 

and finally decrease slowly. The first minimum is associated with the drag crisis 

and Rcc . The large droplets are moving in the supercritical region of the Cd curve 

while the drag coefficient of the smallest droplets is controlled by the conditions for 

Re  < R c c .

Figure 4.21 shows the evolution of droplet velocity with radial position for 

different particle sizes, for the curve with Urma =  8 . 0  m /s  in Figure 4.20. The 

position of the Co  values in the drag curve can also be identified. For d =  2 0 0  /xm, 

initially the droplet Co  values fall in the branch EC, before the critical region of 

the drag curve (Figure 4.13). This corresponds to  a very rapid acceleration. As 

“ rm« increases, then transition to the supercritical region takes place (branch CV), 

and the rate of acceleration decreases drastically. For the other particles traveling 

always in the supercritical region (branches CV,VM and MI), an almost constant 

rate of acceleration is found for the whole flight to the column center.

The position of the minimums in Figure 4.20 and the point of sudden change 

on the acceleration rates in Figure 4.21 is determined by the relationship of Rcc 

and I r  as expressed in Equations 4.44 and 4.45. If it had been possible to take 

into account the experimental observations of Wang (1969), that for high Myi the 

values of Rcc would be even smaller than  the ones predicted, then the value of the 

minimum on the Vg versus d curve would be displaced to even lower values of d. 

In this case it would not be hard at all to flnd the similarity between the curves

- 177 -


