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“ABSTRACT~
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I. INTRODUCTION

Bremsstrahlung processes play an mportant role in present-day high
energy physics. Reactions like e‘e - e*e Y and e+e - u u-y are vital
to precision tests of QED and to the detemination of electroweak interfe-
rence effects. Also, QCD p;tocesses like et + 3 jets, 4 jets,... get con—
tributions from subproc_esses in vhich one‘or more gldons. are radi#téd.

| In the framework of perturbative quan.cum‘field :theo:y, there is no

fundéme;ztal problem associated vi;t:h the evaluation of br;msstrahluné cross
s';ctionsf In practice, however, the calculatiops' turn >outk to be ‘véry‘ lehgthy
when one uses the‘standard métﬁods. Generally, very cumbersome and“untrans-
parent 'exprgssions result, imléss one spends an enormous effoft on simpli-
‘fying the fovrmulae.A : l

In Sec.Ii, we wiil show, however, that single btl-emsstrahluég cross
sections do have a remarkably simple structure, provided fermion masses can
be neglected. ‘Th!is is usuaily the case for high'énergy reactions inyolvirig
electrons; muons, and/or l‘ighr.‘ quarks. We find';hat all these cr§s$ sections
facto;i:e' into two faétqrs; one of‘vhi‘c'h is associat:_éd with the geil-known
"in‘i"raredl factor" ‘), vhile. the second one is a suitable genetélization’ of
the non-radiative cross sec’tfi.on. .

'Simple ‘réSults ‘should hovgver be obtained in a ‘simple G#y, and, 'm-
See. III, we describe ‘the foﬁnélism, baée& on a covariant :deyscri‘pti'.o‘n of
. helicity a'm1;1i'tudés, 'vhich achievés this goal.
In Sec IV, we give some apphcatlons of r.hxs fomahsm to multxple

. bremsstrablung processes 11ke e te” >y u + ny and e’ e - lo Jets. Fmally,"

in Sec. v ve sumanze our results.
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1I. SIﬁGLE BREHSSTRAHLUNGZ)

Consider first the process
e (p) + e () » 1 (g + v + v , m

where the momenta of the particles are given between parentheses, and let

us introduce the following notatiom:

s=(p, +p0% L t=tp, mq)? L u=(p, -q0?,

) (2)
2
s'= (g  +q)" , t'=(p_=-4q)) ,u'=(p_- q+)2-
All particles being masslesg, wa have furthermore
s+s'+t+t +u+u =0, (3

To simplify the discussion, we shall assume first that the photon
is emitted by the muons only. We then have to consider the two top Feynman

diagrams of Fig.l.

+

.Fiﬁ.lf Feynman Hiagrams‘for ete u+u-y .
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Their cortespondinngeynmhn amplitudes are given by

: 3 '
¥ e TEIY s W) ¢ WDy, v,
| ‘ @

« 3
le - -
M, = ——23(q+k) V(p4_)'ru ulp_) u(q_)Yu(’L %) £ v(q).

With the standard methods of covariant summation over the polarization

degrees of freedom, one finds that

6
I ol 1= 22— (er' +uu’ + st + st + 2tu"). ‘ (5)
pol .87(q_k) . '

Note that one power of (q_k) has been cancelled in the denominator.

Similarly,
D oIl% = - o2 (et wunl v osu o set + 20w
2 —EI__;b (tt uu! su + st t'u),
pol s
' : qf (6
‘ * 486 ] [ 1 * o
2@ ) MM, = ————— [(s+t+u')(ss'+te'+un’-2tu’)
pol s (q_k) (q,%)

+ (s+t'+u)(ss’+tt'+uu'~2t'u)

+ 2s' (ss'-tu'~t'u)] . .

However, if one takes the trouble of combining these three expressions

{ Eqs. (5) and (6) ] over a common denominator, a much simpler expression

results:
I lyy+m lz = 5eb s’ ' t2+c'2+u2+u'z . "‘(7)
Pt (g l)(q k) o ss? 4

Note that this time the doub1§ pole in s has aiso,been replaéed by-a single :

pole (s-z, + sfl).“
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Let us now compare Eq. (7) with the infrared limit formula. For k¥ -+ O,

we have
103 (@) (qE) . -
M+ M, = [ - T ovlp Iy ulp)) ulq )y, viq), (8)
(x) (q,k)
and
2.2

’ 2 6 s' t +u

p}:l [M] + le = 8e RO sz . 9)

It is obvious that the formulae for hard and soft bremsstrahlung are very
similar.

Hard bremsstrahlung cross sections can be written as a product of two
factors: )
1)

1) an "infrared factor” , in this case

.2 .s' ’ o ‘
¢ @OEw | B (19

which, of course, must be evaluated for kf0, and

2) a suitable extension of the non-radiative cross scction, which in ‘this

case is obtained by substituting

2

t -s;—(:zxtc'z) ,u2

- % (u2 + u'z)., s2 + ss'. an

For the complete process, which includes radiation from the: electron

lines, we have the four Feynman diagrams of Fig.l. We find anaiogously

2,2

. . . 2 12‘
T M |2 e s et EXE el (12)
pol ) : ‘ss' .

but now S(k) stands for the complete "infrared factor":

. Py P q q_ _ ‘
[ - = -2 =7 o 13)

(O B (k) (4K

D S(K) = - e?
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v A
c +

- e2[ s + s - T - u
(e k) (p_¥) = (qk)(q k) (r, k(g k) (pK)(g k) (p, k(g k)

u'

*eoEnl

In Ref.2, other single bremsstrahlung processes were examined as well.
They included e'e” » e*e™y ,e'e” = yrv, qi~q3g, 94 ~ 9'3'8s 47 ~ 288, and
gg <+ ggg. Every time, the above mentioned factorizatiom vasAEound to hold.
Hovever, the amount of work which was neeeded required extensive use of alge-
braic m#nipulation programs on a computer.  This was mainly a consequenée of
the large number of Feynman diagrams which were involved. The process gg - ggg
has 25 of them! Clearly, a more efficient method is needed, as one can easily
imagine that.one day even higher order bremsstrahlung processes might be in--.

vestigated.

III. HELICITY FORMALISHs)

Consider again the simple case of ete” *‘u*u_y , with the photoh being
radiated from the muon line only. We can explicitly construct :Qo-photon pola-

rizations orthogonal to the photon momentum k and to each other:

ey =N UeWq - (akq, ],

(14)
1 . a B .Y
cu " N EuaBY q, 49 k',
wvhere the - normalization factor is
: oy <12 RN .
¥ = [2(q,q9)(q k) (q_K)] . . (15) -

These two linear polarizations can be combined into circular polariza-

tions

Y ] : ,‘ I ‘ . :
tie) 1. ‘ ‘ . 3 L (16)
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’ +
But, in QED , only the combination £~ appears in helicity amplitudes. It can

effectively be written as

a2 N A0t cdE QT v) ., aD

vwhere we have dropped terms proportional teo Kys , which vanish in this case
because of axial current conservation for massless muons.

Suppose we want to calculate the helicity amplitude M(+,=-,+,-,+), where
the arguments indicate the helicities of the e+,e-,u+,u- , and y . Because
of the %(1 - ys) helicity projection operator for the spinor v(q,), only the

+ . . + . .
second term of ¢ can contribute. Inserting £ in our previous expression
for Ml [Eq.(4)] will give zero because of the Dirac equation G(q_) 4_ = 0.

Hence, only M2 contributes, and

M("";',"’,-r*)

: (18)
= 3 - - :
=" % Y vip ¥ (1- gdulp dula )y, (B, + B4 (1 - vgIv(q,),
with
R {CRRYCRSTOR S I B (19)

Note‘tha: our choice of polarization veétors eliminated one diagram ia
this example and that the fermion propagator pole (q+k)-] was cancelled. It
reappeared, together with (q_k) , in the overall normalization factor Né, but
with the right power in view of the result-(7) of Sec. 1I.

Formulalle) can further bé‘simpliﬁied by eliminating the repeated index

u . To this end,‘wé observe that, for any light-like vector, q,

(1 3y vaW (@ (1 £ = (15 vg) h{ v(@V(Q) (1 £ vg)
| . el .

=200 vd. | o)
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Hence,

M(+,=y %~ %)

103 . ;(P.,.)Yu(I‘YS)U(P_)G(P_HU‘Ys)u(q_)a(q_)'ru(ﬁ**d_)d_(l-ys)v(q‘_)

E(p__)zl(l-'vs)u(q_)

2ie3 . V@Y B Ly (B, + B4 Q-yIvla)
"t e . @n

ulp)) i(l—Ys)u(q_)

3 v(p,)4_4& p_$ 4_(1-v)v(q,)

5, ulp)A(-youlq)

Choosing a = p_ yields

v(p,)d_(1-vgIv(q,)

u(p )8, (1=vgu(q ) (22)

E3 21/2 e3 [ ‘ st ] 1/2 u
(a,) (q_k) (ss1)1 72

where in the last line we neglected an irrelevant overall phase factor.

The evaluation of the remaining non-zero helicity amplitudes proceeds
along the same lines, merely resulting in a replacement of u by u', t, or t'
in Eq. (22): The previous result (7) for the total squared matrix element is .
then easily obtained by squaring. the helicity amplitudes and by adding.

1f, in addition to‘radia:ion from thé.muon line, one includes the
radiation from the‘electrdﬁ liﬁe, a slight complication has to be faced.
For diagrams H3‘énd v, one wants to use aﬁ expréssion for ‘tt ih terms gf '
the momenta p_ éﬁd P_ instead of q, and q_ in order to have Eimilar gimpli-
"fications. Since a photon'can only haﬁe two\polarizations, the polari:ation

vectors must be related by a phase (up to gaugé terms) :



255

£33

+ + ’
t;(q+,q_) e e (p, p) + Atku . 23)

The quantities A, are irrelevant because of separate electron and muon

current conservation. Also,

*1 ) ;t -
et = (e ) “EN, T (8,8 ¢ d_4¥05 v,

(24)
- 2
R R R B LIOTE ) s
Including M3 and H“‘then yields
3 id s
tyyt) 24 ! R , 25
M(+, 9"") ’¥) e‘ {s Nq +s8 pe. 1 W (25)

- and the sqpared absolute vélue of the bracketed expression is easily seen to
be propoftional to the complete infrared factor S(k) [Eq. (13)].

This example shows that the use of explicit photon polarization vectors
leads, in a covariant way, go simple expressions for;helicity amplitudes. The
factorization property, which was found in Sec. II for bteﬁsstrahlung CcTross
sections, is seen to be present already at the level of Ehe amplitude itself.
It is, ﬁf course, much easier to fiﬁd at the amplitude level than to dig it oﬁt
of a lengthy cross section formula!

IV. MULTIPLE BREMSSTRAHLUNG “

Two key features of single bremsscrahiung cross sections, which are
largely responsible. for their simpliciti, are fgctorization-andAthe absence of.
double poles in the invariants. A detailed analysis of ﬁui:iple bremsstrahlung
'ptocesseslﬁhows ﬁha: this is.still the case for certain helicity #mﬁlitudes.

E.g. , for

Cetp) + el »utia) + uT(e) (kD Ll (k) (26)
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one finds that

2

N HCE U TR I A | @

with S(ki) given by Eq. (13). In this case, the simplicity is due to the fact
that all photons have the same helicity.
When this is not the case, the results are more cpmplicated. Consider,

e.g., the process

e"(p,) + T(p1) + qliy) + alky) + 8(k) *+ glky), B¢

s s - : + - . . .
which is one of the subprocesses for e e -+ 4 jets. It is still adventageous
to introduce ‘explicit polarization vectors for the giuons and to eliminate the
repeated index in the various helicity amplitudes. ﬁe,vettheléss, for the

M(~,+,=,+,~,+) amplitude where the arguments refer to the e+,e..i,q,g(kl). and

. g(kz) helicities, a relatively long expressioh results. We find that the most

efficient way to evaluate this expression is to introduce explicit-forms for

the spinors and to compute the helicity amﬁlimde for a given point in phase

- space as a complex number.

Suppose that we go to e'e” c.m. frame with the z-direction along 5’, and.

that ve introduce the notation

k, =k, ¢ kz,gl-kxf;ky-lklle_, L (29)

for any light-like vector k. Choosing a representation for the y-matrices .

for which :

L I

o -1 ‘ ‘ o ‘
'we can take . - R
k, ' S 0
u, (k)= v_(k)= k_e k » u_(k) = v (k) =| 0. . T3 .
« - o . Coie; : :
ke
‘&_*‘ )
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Clearly, the first spinor is an eigenstate of 1 + Y5 , and the second omne
of 1 - Y5-

_ With these formulae, it is easily seen that

Koy 2o
- - > s, (32)
Sk (ygdulks) = [aGky) (I=yukd] = 2 e
’ kj - i*ky
where
2oy = kg ks - k’;lkjl , i,i=1,2,3,4. (33)

By making repgated use of the relation (20), any spinorial expression not
contairing repeated indices can be reduced to expressions of the type (32).
Hence, the helicity amplitudes can be expressed interms of the quantities Zij'
which are simple functions of the various momenta.

In this wayv, we find that

iM(‘v+v-|+"v+)l 2
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2_‘ Q e g (k k ) -
S R 34 tv2-2)e,+e, 12 + Ne ~e 171, (36)
1288 & ER(kok)KE K% k., Kk 12 L=
: Rk g Ky ke
with

A= kg) (R k) (K, ) (k) (K, (g, ),

_ (k,k,) - O (kyky)
Q] = ‘Q}z -+ ——-—2-—1.._. 08 ES __.__.1._3.—- :*Y ,
| 2E(E-ky0) ZE(E-k,0) -
L (k,k,) : (k,ky)
Cz'BY + ——l—i—aﬁ + 23 ‘u"{
2E (E-k3°) ZE(E-RI‘O)

(35)
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& =225, T 22y, o

* L 4 *
Bom gy Mz, v 20

Yy = 214 [z,. + 2

iz 32] *

In this formula, E denotes the beam enefgy, g the SU(N) gauge coupling constant,
and Qf the fractiomal quark charge.

All other non-zero helicity amplitudes for e*e” - qagg and e'e” ~ qq qq
can be calculated in this way.

Because of the relative simplicity of our formulae, we were able to esta-
blish that the 4-jet cross sectiom is proportiénal to R = i Qé . The terms
proportional to ( Z Qf)2 dropped out a2fter momentum symmetiization.

It is our hope that the abové procedure can be systematically applied
to all multiplegbremssttahlung processes, especially to those for which the
standérd manipulations of cévariant summation over polarization degrees of

freedom would become prohibitively lengthy.

V. CONCLUSIONS

We have shown that the introduction of explicit polariiacion vectors
for the gauge particles in the calculation of helicity ampiitudes for bremsstrah-
lung processes at high energies has many advantages: |
1) only a limited number of Feynman diagrams contribute to a given helicity
- configuration;
"'25 the procedure is manifestly cbvariant;
3) ghost ¢ontrib¢tions aséédiated uith unphysical polarization degrees of free-
dom do not have to be considered;
4) ﬁany helicity amp1itudgs are easily found to factor{ze, exhibiting "infrared

factors";.
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5) repeated indices can be eliminated;

6) multiple bremsstrahlung processes become calculable by the introduction of

explicit spinors.
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