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I. DTTRODPCTIOK 

Bremsstrahlung processes play an important role in present-day high 

energy physics. Reactions like e e e e y and e e y y y are vital 

to precision tests of QED and to the determination o£ electroweak interfe-

rence effects. Also, QCD processes lilce e+e~ 3 jets, 4 j e t s , . . . get con-

tributions from subprocesses in which one or more gluons are radiated. 

In the framework of perturbative quantum field theory, there is no 

fundamental problem associated with the evaluation of bremsstrahlung cross 

sections. In practice, however, the calculations turn out to be very lengthy 

when one uses the standard methods. Generally, very cumbersome and untrans-

parent expressions result, unless one spends an enormous effort on simpli-

fying the formulae. 

In Sec . I I , we will show, however, that single bremsstrahlung cross 

sections do have a remarkably simple structure, provided fermion masses can 

be neglected. This is usually the case for high energy reactions involving 

electrons, muons, and/or light quarks. We find that all these cross sections 

factorise into two factors, one of which is associated with the well-known 

"infrared factor" while.the second one is a suitable generalization of 

the non-radiative cross section. 

Simple results should however be obtained in a simple way, and, in 

Sec. I l l , we describe the formalism, based on a covariant description of 

helicity amplitudes, which achieves this goal. 

In Sec.IV, ve give some applications of this formalism to multiple . 

bremsstrahlung processes like e % y+y + ay and e^e * , 4 jets.' Finally, 

in Sec. V, we summarize our results. 
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I I . SINGLE BREMSSTRAHLUNG2* 

Consider first the process 

e + ( p + ) • e " (p_ ) - u + ( q + ) • ii~Cq_) • ï ( W , ( 1 ) 

where che momenta of the particles are given between parentheses, and let 

us introduce the following notation: 

2 2 2 
s - (p+

 + P_> , t - (p+ - q^) , u - (p + - q_) , 

(2) 

s'- Cq+ + q . ) 2 . f - (p_ - q j 2 , u»- ( p . - q + ) 2 . 

All particles being massless, we have furthermore 

s + s' + t + t' + u + u ' - 0 . (3 ) 

To simplify the discussion, we shall assume £irst that the photon 

is emitted by the muons only. We then have to consider the two top Feynman 

diagrams of F i g . l . 

F i g . l : Feynman diagrams for e + e •+ y+u y . 



•250 

Their corresponding Feynman amplitudes are given by 

. 3 
M1 * 2stq"k) ^ ^ u(P-> S < 0 1 + v<1+

)' 
(A) 

. 3 le 
m2 " Î5Î53& V(P+>Y tt(° ~ 10 15 

Vith the standard methods of covariant summation over the polarization 

degrees of freedom, one finds that 

? n„6 

î |M.I - - - A 1 • Ctt' • uu' + st + su' + 2 t u ' ) . (5) 

pol . s (q_k) 

Mote that one power of (q_k) has been cancelled in the denominator. 

Similarly, 

(6) 

? a . 6 

I |M2| - - • 2
0 e (tt* + uu1 + su + st» + 2 t ' u ) , 

pol s (q+k) 

* A
 6 

2 fie I M M - ^ [(s+t+u1 ) (ss'+tt'+uu' -2tu' ) 

' pol s (q_k)(q +k) 

. *• ( s + t ' + u X s s ' + t t ' + u u ' ^ t ' u ) 

• 2s* (ss'-tu'-t'u)] . 

However, if one takes the trouble of combining these three expressions 

[ Eqs. (5) ànd (6) ] over a common denominator, a much simpler expression 

results: 

[ 1 M . - + M J 2 - * « 6 t 2 +t ' 2 +u 2 +u ' 2 _ (7) 

pol 1 L (q +k) (qJO ss' 

Note that this time the double pole in s has also been replaced by a single 

pole (s 2 • •*• s 
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Let us now compare Eq. (7) with the infrared limit formula. For 1c 0 , 

we have 

. 3 (q_e) Cq E) _ 

M. • M , = i f - [ ] v(p ) Y
v u ( p _ ) u ( q j Y „ , (8) 

' 2 " (qJO 

and 

IM1 * " 2 I 2 • 8 * 6 (q^k) (q_k) ' <9> 

It is obvious that the formulae for hard and soft bremsstrahlung are very 

similar. 

Hard bremsstrahlung cross sections can be written as a product of two 

factors: 

1) an "infrared f a c t o r " ^ , in this case 

which, of course, "must be evaluated for kj'O, and 

2) a suitable extension of the non-radiative cross section, which in this 

case is obtained by substituting 

2 1 ,»2 ^ , 2 . 2 1 / 2 ,2 . 2 , . . . . 
•* y (t + t' ) , u (a + u ' ) , s s s ' . ( I l ) t 

For the complete process, which includes radiation from the electron 

lines, ve have the four Feynman diagrams of F ig . l . We find analogously 

T l M ^ M ^ + M j 2 » S(k) 4e* ^ f 2 ^ ' 2 ^ ( , 2 ) 

pol ss' . 

but now S(k) stands for the complete "infrared factor": 

2 p+ P. 1+ 1- 2 S(k) » - e [ —— - - — + ] (13) 

(p +k) (p_k) (q+k) (q_k) 
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2 , s s ' t c' u 

' " 1 ( P j O C P j O (q+k) (q_k) ~ (p+k)Cq+Vc)~ (p_k)Cq_k> Cp+k> (q_k) 

+ (p.kHq+k)1" 

In Réf .2 , other single bremsstrahlung processes were examined as well. 

They included e + e * e + e y ,e+e~ ->- rrY, qq-«-qqg, qq * q ' q ' g , qq - ggg, and 

gg ggg. Every time, the above mentioned factorization was found to hold. 

However, the amount of work which was neeeded required extensive use of alge-

braic manipulation programs on a computer. This was mainly a consequence of 

the large number of Feynman diagrams which were involved. The process gg-*ggg 

has 25 of them! Clearly, a more efficient method is needed, as one can easily 

imagine that one day even higher order bremsstrahlung processes might be in-

vestigated. 

I I I . HELICITY FORMALISM3^ 

Consider again the simple case of e +e u+u y , with the photon being 

radiated from the muon line only. We can explicitly construct two-photon pola-

rizations orthogonal to the photon momentum k and to each other: 

«J • N £<q+k>q_v - (q_k>q+w] , 
(14) 

e1 " N e . q? q8 k\ • 

u • uotSy ' 

where the normalization factor is 

N - t2(q+q_)(q+lc)(q_V)] ~ 1 / 2 . (15) 
These two linear polarizations can be combined into circular polariza-

tions 

e* - 2 ~ , / 2 [ e" ± ie1 ] . (16) 
V U V 
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But, in QED , only Che combination i~ appears in helicity amplitudes. It can 

effectively be written as 

r - - 2 ~ 3 / 2 N [ It 4 _ 4 + 0 ± Y S ) - A A + t (1 Ï Y5)3 . (17) 

where we have dropped terms proportional to 1£YJ , which vanish in this case 

because of axial current conservation for massless muons. 

Suppose we want to calculate the helicity amplitude M(+ ,- ,+ ,- ,+ ) , where 

the arguments indicate the helicities of the e + , e , u + , u > and y • Because 

of the - Yj) helicity projection operator for the spinor v ( q + ) , only the 

second term of t + can contribute. Inserting in our previous expression 

for Mj [Eq . (4 )] will give zero because of the Dirac equation u(q_ ) 4_ * 0 . 

Hence, only M^ contributes, and 

3 - ( 1 8 ) 

• " I f " Nq v(p+ )YU (1- - r 5 > u ( p - ) ; ; ( q - > V ! V + - y 5 > v ( 0 . 

with 

N " 1 - 4 [ (q + q_ ) (q + k) (q_k ) ] 1 / 2 . (19) 

Note that our choice of polarization vectors eliminated one diagram in 

this example and that the fermion propagator pole (q+k) 1 was cancelled. It 

reappeared, together with (q_k) , in the overall normalization factor ïT , but 

with the right power in view of the result (7) of Sec. I I . 

Formula (18) can further be simplified by eliminating the repeated index 

U . T o this end, we observe that, for any light-like vector q, 

d ï Y 5 ) v<q>7(q)(l ± Yc) - (1 î Y 5 ) I v(q)v(q) ( 1 i y$) 
hel 

- 2(1 + Y5)«|. (20) 
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Hence, 

i e 3 v (p + ) Y
P ( l-Y 5 )u (pj i ; (p_ ) j (C1-r 5 )uCq_ )ï (q_ )Y u ( l $ + +4_ ) « i _ ( l-r 5 )v (q + ) 

2s N q 

5 ( p _ ) i ( l - Y 5 ) u ( q _ ) 

3 v ( p ) Y
U i_i i.. yii. • jS_)4_<l-Y 5)v(q +) 

. - ii®. Nq = (21) 

5 ( p _ ) <(1-Y 5 )u(q_) 

4 l e 3 v ( p + ) 4 _ i jS_jJ+»L(l-Y5)v(q+) 
M N . 

s q 

-, u ( p _ ) i ( l - Y 5 ) u ( q _ ) 

Choosing a • p + yields 

, v ( p ) 4 _ ( 1 - Y 5 ) v ( q ) 

M ( + , - , + , - » + ) - 4 i e J N u 2 
q u (p ) ^ + ( l - Y 5 ) u ( q ) (22) 

~ , 1 / 2 3 s ' , 1 / 2 — 2 " ' e [ 2 ] 
( q J O ( s s ' ) 1 / z ' 

where in Che last line we neglected an irrelevant overall phase factor. 

The evaluation of the remaining non-zero helicity amplitudes proceeds 

along the same l ines , merely resulting in a replacement of u by u * , t, or t' 

in Eq. ( 2 2 ) . The previous result (7) for the total squared matrix element is 

then easily obtained by squaring, the helicity amplitudes and by adding. 

I f , in addition to radiation from the muon l ine , one includes the 

radiation from the electron l ine , a slight complication has to be faced. 

For diagrams M^ and M^ one wants to use an expression for t~ in terms of 

the momenta p + and p_ instead of q + and q_ in order to have similar simpli-

fications . Since a photon can only have two polarizations, the polarization 

vectors must be related by a phase (up to gauge terms): 
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*Î<V«_> " e±î* % <P+.P-> + • C23) 

The quantities A + are irrelevant because of separate electron and muon 

current conservation. Also, 

c ± i * • * \ \ T r ^ 

Np1 « 4 { (p + p_ ) (p + k) (p_k ) ] , / 2 . 

Including M^ and M^ then yields 

M(+,-,+,-,+) * 4e 3 [s' N q + s N p e 1 * ] 

and the squared absolute value of the bracketed expression is easily seen to 

be proportional to the complete infrared factor S(k) [Eq. ( 13 ) ] . 

This example shows that the use of explicit photon polarization vectors 

leads, in a covariant way, to simple expressions for helicity amplitudes. The 

factorization property, which was found in Sec. I I for bremsstrahlung cross 

sections, is seen to be present already at the level of the amplitude itself . 

It is , of course, much easier to find at the amplitude level than to dig it out 

of a lengthy cross section formula! 

IV. MULTIPLE BREMSSTRAHLÜNG 

Two key features of single bremsstrahlung cross sections, which are 

largely responsible for their simplicity, are factorization and the absence of 

double poles in the invariants. A detailed analysis of multiple bremsstrahlung 

processes shows that this is still the case for certain helicity amplitudes. 

E.g. , for 

e + ( p + ) + e " (p_ ) W + (q + ) + u~(q_) + Y<k,) + . . . + Y(k n ) . (26) 

«OÏ y5)1 , 
(24) 

(25) 
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|MC ...,+) I2 - S^ ) . . . S(kn) 2e 4 u 
(27) 

with S (k . ) given by Eq. (13 ) . In this case, the simplicity is due to the fact 

that all photons have the same helicity. 

When this is not the case, the results are more complicated. Consider, 

e . g . , che process 

e ( P + ) + e " (p_ ) - 5 ( k 3 ) + q(lc4) + g(kj) + g ( k 2 ) , (28) 

which is one of the subprocesses for e e •*• U jets . It is still adventageous 

to introduce explicit polarization vectors for the gluons and to eliminate the 

repeated index in the various helicity amplitudes. Nevertheless, for the 

M(-,+,-,+,-,+) amplitude where the arguments refer to the e + , e , q , q , g ( k j ) , and 

g(k^) helicities , a relatively long expression results. We find that the most 

efficient way to evaluate this expression is to introduce explicit-forms for 

the spinors and to compute the helicity amplitude for a given point in phase 

space as a complex number. 

Suppose that we go to e +e c.m. frame with the z-direction along p + , and 

that we introduce the notation 

(29) k±"ko 4 V k l " V + iky- ' 

for any light-like vector k. Choosing a representation for the y - matrices 

for which 

(o ) 
(30) 

we can take 

u +(k)- v_(k)> '/t , u_(k) - v+(k) - 0 
(31) 
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Clearly, che first spinor is an eigenstate of 1 + Tj , and che second one 

of I - y 5 . 

Wich these formulae, it is easily seen thee 

k . . Z * . 
* J 1 1J (12} 

u ( k i ) ( U Y 5 ) u ( k . ) - [uflc.Xl-r )u(lt . ) ] - 2 — , 

V ^ T -

where 

Z i 3 - k . ^ k j , - k ! ^ , i , j - l , 2 , 3 , 4 . (33) 

By making repeated use of the relation ( 2 0 ) , any spiaorial expression not 

containing repeated indices can be reduced to expressions of the type (32) . 

Hence, the helicity amplitudes can be expressed in terms of the quantities 

which are simple functions of Che various momenta. 

In chis way, we find that 

+,-,+,-,+) 12 

2 4 4 
M 2_t 8 (kJO 1 5 -> 

-J [(N*"-2) |cj+c«I + N jc,—c,| ],' (34 ) 
128S Ei(kIk2)k^kf.k3+k4_ 

with 

A - ( k J k 2 ) ( k 1 k 3 ) ( k I k / 1 ) ( k 2 k 3 ) ( k 2 k 4 ) ( k 3 k 4 ) , 

C I '
2

 +

 ( W

 A +

 ( K

1
K

3 > * 
c . - jr., + aS + A Y 

2E(E-k 3 0 ) • 2E(E-k 4 0 ) -

(k k ) (k k > # 

c - Sr + aß + a Y 

2E(E-k 3 0 ) 2E(E-k 4 0 ) 

(35) 

\ 
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a 
" Z12 Z34 " Z 14 Z 32 ' 

e 

In this formula, E denotes the beam enefgy, g the SU(N) gauge coupling constant, 

and Q f the fractional quark charge. 

can be calculated in this way. 

Because of the relative simplicity of our formulae, we were able to esta-

it is our hope that the above procedure can be systematically applied 

" to all multiple bremsstrahlung processes, especially to those for which the 

standard manipulations of covariant summation over polarization degrees of 

freedom would become prohibitively lengthy. 

V. CONCLUSIONS 

We have shown that the introduction of explicit polarization vectors 

for the gauge particles in the calculation of helicity amplitudes for bremsstrah-

lung processes at high energies has many advantages : 

1) only a limited number of Feynman diagrams contribute to a given helicity 

configuration; 

2) the procedure is manifestly covariant; 

3) ghost contributions associated with unphysical polarization degrees of free-

dom do not have to be considered; 

4) many helicity amplitudes are easily found to factorize, exhibiting "infrared 

All other non-zero helicity amplitudes for e +e qqgg and e +e - qq qq 

blish that the 4-jet cross section is proportional to R • [ Q f . The terms 

2 f 
proportional to ( T Q-) dropped out after momentum synimetrization. 

factors' « 
» 
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5) repeated indices can be eliminated; 

6) multiple bremsstrahlung processes become calculable by the introduction o£ 

explicit spinors. 
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