AT 8600505

UWThPh-1986-4

QUANTIZATION IN PRESENCE OF EXTERNAL SOLITON FIELDS

H. Grosse and G. Karner

Institut für Theoretische Physik

Universität Wien

Abstract

Quantization of a fermi field interacting with an external soliton potential is considered. Classes of interactions leading to unitarily equivalent representations of the canonical anticommutation relations are determined. Soliton-like potentials compared to trivial ones yield inequivalent representations.

+) Supported in part by "Fonds zur Förderung der wissenschaftlichen Forschung in Österreich", Projekt Hr. P5588.

INTROD

people occur

[2]);

studie

extern In par

S

allow free e

scting

Betezi

unitat

magne:

#Symp

which

where (f,g)

opera equiv

v_I to fore

Separ

has a

harries sever a si

INTRODUCTION

Quantization of fermions interacting with solitons has attracted people during the last few years, since fractional charged states may occur [1]. Different approaches have been advocated (for a review see [2]); the simplest situation with external soliton fields has been studied extensively too [3].

Similar problems describing the interaction of electrons with external electromagnetic fields have been treated in a rigorous way [4]. In particular scalar potentials decreasing rapidly enough at infinity allow the application of a Bogoliubov transformation which maps the free electron-Fock representation to the representation of the interacting field. For a large class of potentials, the Shale-Stinespring-Berezin [5] criterion shows that the Bogoliubov transformation yields a unitary mapping and the Furry picture holds.

We closely follow the above mentioned work dealing with electromagnetic interactions, but treat the one-dimensional case with potentials having either trivial asymptotics $v_{\underline{I}}(x) \xrightarrow{x+\pm \infty} u$ or nontrivial "solitonic" asymptotics $v_{\underline{I}}(x) \xrightarrow{x+\pm \infty} tu$.

We study representations of the algebra of operators a(f), $a^{\dagger}(f)$, which satisfy the canonical anticommutation relations

$$\{a(f),a(g)\}=0$$
, $\{a(f),a^{\dagger}(g)\}=(f,g)$ 1, (1)

where f denotes a two component wave function $f \in \mathcal{H} = L^2(\mathbb{R}) \otimes \xi^2$ and (f,g) is the scalar product of f and g in H.

By comparing representations related to first quantized Dirac operators we determine classes of potentials belonging to unitarily equivalent representations. Comparing a problem with trivial asymptotics \mathbf{v}_{I} to a soliton situation \mathbf{v}_{II} yields inequivalent representations; therefore a discussion of charge quantum numbers (which will be discussed separately [6]) has to be done with care and a regularization procedure has to be used.

BOGOLIUBOV TRANSFORMATION

We start with the self-adjoint Dirac operator

$$H_0 = \alpha \frac{1}{i} \frac{d}{dx} + \beta m \operatorname{th} x = \begin{pmatrix} 0 & A^{\dagger} \\ A & 0 \end{pmatrix}, \qquad A^{\dagger} = \frac{d}{dx} + m \operatorname{th} x , \qquad (2)$$

acting on M and use as a representation for $\alpha=\sigma_2$ and for $\beta=\sigma_1$, where σ_1 's are Pauli matrices. There are two linear independent solutions to the Dirac equation (for fixed energy $|E_k| \geq m$), which correspond to particles moving from left to right and vice versa:

$$f_{\pm}^{(1)}(k,x) = e(k) \frac{e^{ikx}}{\sqrt{4\pi}} \begin{bmatrix} 1 \\ \frac{-ik + m \text{ th } x}{|E_k|} \end{bmatrix}$$
 (3a)

$$f_{\pm}^{(2)}(k,x) = \theta(k) \frac{e^{-ikx}}{\sqrt{4\pi}} \begin{pmatrix} 1 \\ \frac{ik + m ch x}{|E_{k}|} \end{pmatrix}$$
 (36)

where $E_k^2=k^2+n^2$, and \pm indicates positive and negative energy solutions. Beside the continuous spectrum there exists one zero energy bound state solution

$$f_{g}(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \frac{i}{\cosh x} \end{pmatrix}. \tag{3c}$$

Spectral resolution of H defines projection operators P_+^0 , P_-^0 and P_-^0 onto the positive, negative respectively zero energy subspace of H. The CAR (I) may therefore be split into parts by defining

$$b(\hat{t}_{*}) = a(\hat{t}_{*})$$
, $c(\hat{t}_{g}) = a(\hat{t}_{g})$, $d(\hat{t}_{-}) = a^{\dagger}(\hat{t}_{-})$, (4)

vhere

the te

the f

and is

Final:

.....

to pro

an ob

of (6)

P°H a

where

where \hat{f} denotes the Direc-Pourier transform of f, \hat{f} $\in P_s^0H$, \hat{f} $\in P_s^0H$ and the zero mode has been treated like positive energy states.

The quantum mechanical many body representation corresponding to the filled negative energy states is defined by

$$\omega(a(f)) = 0$$
, $\omega(a(f),a^{\dagger}(g)) = (f,(P_{+}^{0} + P_{g}^{0})g)$, ..., (5)

and is related via the GNS construction to the usual Fock space realization. Finally, the field operator can be expanded like

$$\phi(\hat{t}) = b(\hat{t}_{*}) + c(\hat{t}_{*}) + d^{\dagger}(\hat{t}_{*})$$
 (6)

We compare the above situation to another one starting from a "perturbed" Dirac operator

$$H = a \frac{1}{i} \frac{d}{dx} + 8 v_{II}(x)$$
, $v_{II}(x) = a ch x + V(x)$ (7)

assuming $\lim_{\|x\|\to\infty} V(x) = 0$. We obtain a different splitting of H according to projections onto continuous and discrete spectra of R. Finally, with an obvious notation, we may write a decomposition of the field operator of (6) like

$$\phi(t) = b(\hat{t}_{+}) + C(\hat{t}_{+}) + D^{\dagger}(\hat{t}_{-})$$
 (6)

To simplify notation let us choose an orthonormal base $\{\hat{f}_{\pm n}\}$ for $P_{\pm}^{0}H$ and similarly $\{\hat{f}_{\pm n}\}$ for subspaces $P_{\pm}H$ corresponding to H, than (6) and (8) can be expressed as

$$B_{n} = (\hat{t}_{+n}, \hat{t}_{+m})b_{n} + (\hat{t}_{+n}, \hat{t}_{+n})c + (\hat{t}_{+n}, \hat{t}_{-m})d_{n}^{\dagger}$$
 (9a)

$$C = (\hat{t}_{g}, \hat{t}_{+m})b_{m} + (\hat{t}_{g}, \hat{t}_{g})c + (\hat{t}_{g}, \hat{t}_{-m})d_{m}^{\dagger}$$
 (9b)

$$\mathbf{p}_{n}^{\dagger} = (\hat{t}_{-n}, \hat{t}_{-n}) \mathbf{b}_{m} + (\hat{t}_{-n}, \hat{t}_{-n}) \mathbf{c} + (\hat{t}_{-n}, \hat{t}_{-m}) \mathbf{d}_{m}^{\dagger}$$
 (9c)

where $\mathbf{S}_n = \mathbf{S}(\hat{l}_{+n}) \dots$

Next we follow standard procedures [4]: Let $\hat{\Omega}$ be the vacuum corresponding to the bare representation defined by $b_n \hat{\Omega} = d_n \hat{\Omega} = 0$, and $\hat{\Omega}$ be the vacuum corresponding to the dressed representation defined by $B_n \hat{\Omega} = 0$, $\hat{\Omega} = 0$; assume both representations are unitarily equivalent; therefore there exists a dressing transformation with

$$\tilde{a} = u\hat{a}$$
, $a_n = u b_n u^{-1}$, $c = u e u^{-1}$, $b_n = u d_n u^{-1}$. (10)

It is not difficult to work out the explicit form of U; an ambiguity resulting from the distinction between so-called weak and strong Bogoliubov transformations does not matter for our present purpose (see [6]). Hormalizability of $\tilde{\Omega}$ yields necessary and sufficient conditions for the unitary implementability

$$\|P_{+}P_{-}^{0}\|_{HS} < -, \qquad \|P_{-}P_{+}^{0}\|_{HS} < -, \qquad (11)$$

where $\|\cdot\|_{HS}$ denotes the Hilbert Schmidt norm; note that contributions from the discrete spectrum do not matter, since P_g^0 and P_g are assumed to finite dimensional.

Next we may state our first result from

PERTURBING AROUND A KINK POTENTIAL

Theorem 1: Let $H_0 = a \frac{1}{1} \frac{d}{dx} + m \beta$ th x and $H = H_0 + \beta V(x)$, and assume that $\|V\|_p < \infty$ for $1 ; the two representations of the CAR corresponding to <math>H_0$ and H are unitarily equivalent.

<u>Proof</u>: Both conditions (11) are equivalent to finiteness of $\|P_+ - P_+^0\|_{HS}$, which we have to check; but projection operators can be expressed in terms of corresponding resolvents:

$$P_+ - P_+^0 = \frac{1}{2\pi} \int_C dz \left[R(iz) - R^0(iz) \right]$$
 (12)

$$R(z) = (H - z)^{-1}$$
, $z \in \sigma(H)$; $R^{0}(z) = (H_{0} - z)^{-1}$, $z \in \sigma(H)$,

where the path of integration C consists of lines $(-,-\epsilon]$ and $[\epsilon,-)$,

and a ha
(We note
tations,

In therefor

Ř(z

P - P⁰

We two-two and only

Sin

zero en

∥∫ dz :

where we

In this is a supers

with th

(A

and a half circle connecting $\neg \varepsilon$ to ε in the lower complex half plane. (We note that, since we are interested in unitarily equivalent representations, we may suppose that $\sigma(H) = \sigma(H_n)$).

In contrast to Ref. [4], both H and H have a zero eigenvalue; we therefore define

$$\hat{R}(z) = (i - P_a)R(z)$$
, $\hat{R}^0(z) = (i - P_a^0)R_0(z)$ (13)

and rewrite (12), using the second resolvent identity as

$$P_{+} - P_{+}^{0} = \frac{1}{2\pi} \int_{C} dz \left\{ -\frac{1}{iz} P_{s}^{0} + \hat{R}^{0}(iz) \right\} SV \left\{ -\frac{1}{iz} P_{s} + \hat{R}(iz) \right\}. \tag{14}$$

We note that both, P_s and P_s^0 are 2×2 matrix operators with only the two-two component nonvanishing, therefore P_s^0 8 P_s gives no contribution and only three terms in (14) have to be estimated.

Since $\|\hat{R}(z)\| = \text{dist}(z, \text{spec}(1-P_g)H)^{-1}$ and both \hat{R}^0 and \hat{R} have no zero energy bound state, the last contribution of (14) is estimated as

$$\|\int_{C} dz \, \hat{R}^{\circ}(iz) \, \delta V \, \hat{R}(iz) \, \|_{HS} \leq \int_{C} d\eta \|\hat{R}_{o}(i\eta) \, \delta V \|_{HS} \frac{1}{\sqrt{1+\eta^{2}}} \,, \tag{15}$$

where we have put m = 1.

In order to proceed, we need the explicite form of the free resolvent; this is easy to get since $A^{\dagger}A = -d^2/dx^2 + 1$, with A given in (2). Such a supersymmetric quantum mechanical situation allows to write down the resolvent as

$$R^{O}(z) = \begin{cases} z(A^{\dagger}A - z^{2})^{-1} & (A^{\dagger}A - z^{2})^{-1} A^{\dagger} \\ A(A^{\dagger}A - z^{2})^{-1} & \frac{1}{z} \left\{ A(A^{\dagger}A - z^{2})^{-1} A^{\dagger} - 1 \right\} \end{cases}$$
(16)

with the explicit kernel

$$(A^{\dagger}A - z^2)^{-1}(x,y) = \frac{i}{2/z^2-1} e^{i\sqrt{z^2-1} |x-y|}, \text{ for } Im/z^2-1 > 0.$$
 (17)

Next we have to find conditions on V such that the Hilbert Schmidt norm of k (in)8V in (15) is finite and o(1/n) for $|\eta| + \infty$. We estimate the norms of all four matrix elements separately; for example

$$\|[\hat{R}_{0}(i\eta)BV]_{11}\|^{2}_{HS} \leq \frac{1}{4} \frac{\eta^{2}}{\eta^{2+1}} \int dx \int dy e^{-2\sqrt{\eta^{2}+1}|x-y|} |V(x)||V(y)|,$$

$$\eta \in \mathbb{R}.$$
(18)

Hölder and Young's inequality yields

$$\|[\tilde{R}_{o}(in)\beta V]_{11}\|^{2}_{HS} \leq \|V\|_{p}^{2} \|e^{-2\sqrt{n^{2}+1}|\cdot|}\|_{r}, \frac{2}{p} = 2 - \frac{1}{r},$$

$$1 \leq r < n.$$
(19)

Since we need at least some decay for $|n| + \infty$, the allowed range of r is restricted to [1, ∞), which turns into a range for $p \in (1,2]$ as imposed in theorem 1.

The other matrix elements can be estimated in a similar way; the difference between $[R_o]_{22}$ and $[R_o]_{22}$, given by the zero energy bound state contribution, has to be taken into account. Again finiteness is implied by the assumption on V.

Thus it remains to estimate I_1 and I_2 :

$$I_1 = \left\| \int_C dz \, \frac{1}{z} \, P_s^0 \, g \, V \, \hat{R}(iz) \, \right\|_{HS} , \quad I_2 = \left\| \int_C dz \, \frac{1}{z} \, \hat{R}_0(iz) \, g \, V P_s \, \right\|_{HS} . \quad (20)$$

We note that $P_g^0 \beta V$ is a Hilbert Schmidt operator for the class of potentials above. Therefore

$$I_{\parallel} = \left\| \lim_{\varepsilon \to 0} \left(\int \frac{dz}{z} + \int \frac{dz}{\varepsilon} + \int \frac{dz}{z} + \int \frac{dz}{z} \right) p_{g}^{o} gvR(iz) \right\|_{HS} \le$$

$$\leq \left\| p_{g}^{o} gv \right\| \left(\pi \left\| R(0) \right\| + 2 \int \frac{d\eta}{\sigma} \frac{d\eta}{\sigma^{2} + 1} \right) < \infty$$
(21)

where the estimate $\|\tilde{R}(in) - \tilde{R}(-in)\|^2 \le 2n(n^2+1)^{-1}$, $n \in \mathbb{R}$ has been used. Finally we have

I₂ ≤ # || ₹(0

< = || R(0

which prove

REMARKS: As

potential!

The sa

therefore war PERTURBING

Theorem 2:

for ! < p < and H are u

REMARK: The one potenti asymptotics out of each

This l

Theorem 3:

and H = a 1

representat

Proof: If of explicit so priate norm

which proves theorem i.

REMARKS: As we expect, a large class of perturbations of a typical soliton potential like mth x do not change the field theory representation.

The same actually results if one perturbs around a potential with trivial asymptotics; the technique to prove this is similar to the above, therefore we state only the result for

PERTURBING AROUND A CONSTANT POTENTIAL

Theorem 2: Let $H_0 = \alpha \frac{1}{1} \frac{d}{dx} + \beta m$ and $H = H_0 + \beta V(x)$ and assume that $\|V\|_p < \infty$ for $1 ; the two representations of the CAR corresponding to <math>H_0$ and H are unitarily equivalent.

REMARK: The most essential question concerns a comparison of two problems: one potential with trivial asymptotics $\mathbf{v}_{\mathbf{I}}$ to another one with soliton asymptotics $\mathbf{v}_{\mathbf{II}}$. To check this, it is only necessary to take one example out of each class and compare both.

This leads to

Theorem 3: Let $H_0 = a \frac{1}{1} \frac{d}{dx} + \beta v_I$ with $\lim_{|x| \to \infty} |v_I - u| = 0$ and and $H = a \frac{1}{1} \frac{d}{dx} + \beta v_{II}$ with $\lim_{|x| \to \infty} |v_{II} - u| = 0$. The corresponding representations of the CAR are not equivalent.

<u>Proof</u>: If one takes v_I = m and v_{II} = m th x themselves, one may use the explicit solutions for the free case and eqs. (3a) and (3b). The appropriate norm turns out to be infinite

$$\|P_{+}P_{-}^{0}\|_{HS} = \int_{0}^{\infty} dx \int_{0}^{\infty} \frac{dq(1-\epsilon h \cdot x)^{2}}{1+q^{2}} = 0.$$
 (23)

REMARK: Due to the above facts a rigorous discussion of the occurrence of fractional charges has to be done with care. We are presently studying such questions following a constructive approach.

REFERENCE

- [1] R. J
- C21 A 5
- [3] R. F
 - **J**.
 - α.
 - A.Z.
- [4] H.
- G.
- [5] S. :

F.A

- [6] H.

REFERENCES

- [1] R. Jackiw and J.R. Schrieffer, Nucl. Phys. B190 [FS3] (1981) 253.
- [2] A.J. Niemi and G.W. Semenoff, "Fermion Number Fractionization in Quantum Field Theory" (Princeton preprint 1985).
- [3] R. Rajaraman and J. Bell, Phys. Lett. 1168 (1982) 151;
 - J. Bell and R. Rajaraman, Muci. Phys. B220 [FS2] (1983) 1;
 - R. Mac Kenzie and F. Wilcek, Phys. Rev. D30 (1984) 2194;
 - R. Blankenbecler and D. Boyanovsky, Phys. Rev. D31 (1985) 2089;
 - A.Z. Capri, R. Ferrari and L.E. Picasso, Phys. Rev. D30 (1984) 2:36.
- [4] M. Klaus and G. Scharf, Helv. Phys. Acca <u>50</u> (1977) 779;
 - G. Scharf and H.P. Seipp, Phys. Lett. 108B (1982) 196.
- [5] S. Shale and W.F. Stinespring, Journ. of Math. and Mech. 14 (1965) 315;
 - F.A. Berezin, The Method of Second Quantization (Academic Press, New York 1966)
- [6] H. Grosse and G. Kerner (to be published).

ļ