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QUANTIZATION IN PRESENCE OF EXTERNAL SOLITON FIELDS
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Abstract

Quantization of a fermi field interacting wich sno externsl soliton
potencisl is considered. Classes of interactions leading to unicarily
equivalent representstions of the canonical anticommutation relations
are determined. Soliton-like potentisls compared to trivisl ones yield
inequivslent reprssentations.

+) Supporced in part by "Fonds zur Férderung der wissenschaftlichen
Yorschung in Usterreich”, Projeke Nr. P33588.
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INTRODUCTICN PPN I

Quantization of fermions interacting with solitons has attracted
people during the last few years, since fractional charged states may
occur [1]. Different approaches have been sdvocated (for a review see
[2]1); the simplest situation with external soliton fields has been
studied extensively too [3].

Similar probleas describing the interaction of electrons with
external electromagnetic fields have been treated in a rigorous way [4].
In particular scalar potentials decreasing rapidly enough at infinity
allow the application of a Bogoliubov transformstion which maps the
free electron-Fock representation to the representation of the inter—
acting field. For s large class of potentials, the Shale-Stinespring—
Berezin [5] criterion shows that the Bogoliubov transformation yields a
unitary mapping and the Furry picture holds.

We closely follow the above mentioned work desling with electro~
magnetic intersctions, but treat the one~dimensional case with potentials

having either trivial ssymptotics v_(x) ——> & or nontrivial "solitonic”

! xe2e

asymptotics A2t S o,
X+t

We study representations of the algebra of operators a(f), af(f).

which satisfy che canonical snticommutation relstions
(s(D),8(p)} =0, (a(6),a' ()} = (L9 1, 0

where { denotes & two component vave function £ € X e L2R) @ ¢ and
(f,g) is the scalar product of f snd g in H.

By comparing representations related to first quantited Dirac
operators ve determine classes of potentisls belonging to unitarily
equivslent representations. Comparing & problem with trivial asymptotics
v, to s solicon situation 11 yields inequivslent representations; there-
fore s discussion of charge quantum numbers (vhich will be discussed
separacely [6]) has to be done vith care and s regularization procedure
has to be used.




BOGOLIUBOV TRANSFORMATION

Ve start vwith the self-adjoint Dirac operator
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scting on N and use as & representacion for ¢ = - o, and for 8 = 9,
vhere oi's are Pauli matrices. There are two linear independent solutions
to the Dirac equstion (for fixed energy l!k[ > m), vhich correspond to

particles moving frcm left co right and vice versa:

eikx !
£ (k,x) = €(k) (3a)
- /Gn |, =ik + m th x
L zk
‘-ikx !
£{3 (k,x) = 8(k) (%)
- (1] ik + s th x
4
!k

vhere Ei = k? + 92, and * indicates positive and negacive energy solutions.
Deside the continuous spectrus there exists one gero energy bound staute

solution

0

£,(x) L } (3¢)

)
ch x

Spectral resolution of H° defines projection operators P:, P: and

P: onto the positive, negative respectively sero energy subspace of M.
The CAR (!) may therefore be split into parts by defining

b(E) = a(E),  c(f) =a(h) ,  a(f) =a'(E), )
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vhere f denotes the Dir:c-Fourier transform of f, f € PfH, £, € P':H and
the zero mode has been treated like positive energy statea.
The quantum nechanical many body representation corresaponding to

the filled negative energy states is defined by
wal) =0, e’ @) = (6.6 PDp. ., (D)

and is related via the GNS construction to the usual Fock space reslization.
Finally, the field operator can be expanded like

o) =b(E) +c(t) + a(L) . (6)

We compare the above situation to another one scarting from a
"perturbed” Dirac operator

Re=a i--:—; $8vp(x) , v (x) =mEhx e V(x) o))

assuming V(x) = 0. We obtain a different splitcing of N according
to projacuo;: onto continuous and discrete spectra of R. Finally, with
an obvious notation, we may vrite a decomposition of the field operator
of (6) like

o) =3y s c) o' ) . (8)
To simplify notation ler us choose an orthonormal base (;m) for

P:H and similarly (?“) for subspaces P:H corresponding to H, cthan (6)
and (8) can be expressed as

By s (ot b o @, LEye s @, 2 et (9a)
c ot 0n » X t0ce @ db (9b)
* . . < ot

o = e, 0, ¢ X E)e» X 2 4l (9¢)

vhere 'n - l(hn) cee o
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Next ve follow standard procedures {4]: Let fi be the vacuum corre- and a ha
sponding to the bare represencation defined by baﬁ - dnﬁ =0, and ?I be (Ve note
the vacuum corresponding tc the dressed representation defined by nn?l - tations,
- Dna s 0; assume both representations are unitarily equivalent; there- In
fore there exists a dressing transformstion with , therefor
Geua, B eub U', ceuct', b eug v’ (10) L{E

’ o o ' ’ n o )

It is not difficult to work out the explicit form of U; an ambiguity and revr
resulring from the distinction between so-called weak and strong Bogoliubov )
transformations does mot matter for our present purpose (see [6]). P, - P:
Normalizability of 8 yields necessary and sufficient conditions for the
unitary implementability We

two-two

(] 3 .

e, il g <= e, el o <= an and onl;

S1in

vhere Jj-}} us denotes the Rilbert Schaidt norm; note that contribucions zero en.
from the discrete spectrum do not matter, since P: and P. are assused to

finite dimensional. “é dz -

Next ws may state our first resul? from

PERTURBING AROUND A KINK POTENTIAL where we

. 1 d In
Ih_g_olgl_l_.htlo-cr-‘i;OllthxnndH-ﬂoosV(x),lndulu-t this is
chat {[v]| p<” for | < p < 2; the two represencations of the CAR corre- a super:
sponding to Bo and B are unitarily equivalent. resolve:
Proof: Both conditions (11) sre equivalent to finiteness of ]lr.-r‘:u is’
wvhich we have to check; but projection operators can be expressed in
terms of corresponding resolvents: R
1 .
P, - Py =30 [ 42 [R(is) - 8°(in)} (12)
c vith th
RGs) = @-2)"', céo®; @@ -0, seom),
(A

where the path of integration C consists of lines (=»,-¢) end [c.=),

L I 4
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and a half circle connecting -c to ¢ in the lower complex half plane.
(Ve note that, since we are int2rested in unitarily equivalent represen-
tations, we may suppose that o(H) = o(llo)).

In contrast to Ref. [4], both H and tlo have a zero eigenvalue; ve

therefore define
t2) » - )R(2) , @) = 4-PDR (2) (13)
and revrite (12), using cthe second vesolvent ideacity as
! 1 . 1 . ,
P, - P =3 {: dxf- — 0 + Pua)jevl- - P+ Wi2)) . (14)

We note that both, P' and l': are 2x2 matrix operators with only :qe
two—~tvo component nonvanishing, therefore P: 8 P' gives no contributicn
and only three terms in (14) have to be estimated.

Since ﬂ-ﬁ(z)ll = dist(z, cpec(l-P')H)-' and both X° and ¥ have no
zero energy bound state, the last contribution of (14) is estimated as
If ¢ ¥Garey R |l g < [ ol (dmev]f yg —— , (15)

c - ° —
/1+n2

vhere we have pug o = |,

In otder to proceed, we need the explicite form of the free resolven:;
this is easy to get since ATA = - d2/dx2 + I, vith A given in (2). Such
a4 supersymmetric qusntum mechanical situacion allows to wricte down the
rasolvent as

safa - 227! afa - 22)7" At
°(z) = (16)

aafa - 2y! -;- ata -y At -

vith the explicit kernel

- 2 y - a———
- 1) '(z.y) -t ci"/‘ N ", for Iw'z2-1 > 0 . (17)
2/22-)
- - - - b A, 7de et
— — T .




Next we have to find conditions on V such that the Hilbert Schmide
note of lo(in)ﬂv in (15) is finite and o(i/n) for [n| = =. We estimate

the norws of all four macrix elements separately; for example

2 - 2414
MO, Cindev], N2yg < 5 2 fan fay 2750 yepivent
néel

(18)
n€ R.
H8lder and Young's inequality yields
! i ’2/! i 2 i
hl.!o(m”"']n"zns 1""“;"0 nter]-| i . Se2-1,
(19)

l creco,

Since we need at least some decay for [n| = =, the alloved range of
r is restricted to [1,#), vhich turns into s range for p € (},2] as
imposed in thecrem |.

The other matrix elements can be estimated in a similar way; the
difference between [R"]22 and [10122' given by the zero energy bound
stace concribucion, has to be taken fnto sccount. Again fimiteness is
implied by the assumption on V.

Thus it remains co estimace l‘ and lz:
| | .
1, = ||£ dz — 208V Uin))) us+ Ll ‘]: & ;lo(u)avr.[l gs - (20)

We note that P:BV is a Hilbert Schmidt operator for the class of
potencials above. Therefore

. dz dz dz, 0
1, lim(fEsfE2, f E5p%vk(in) ] ., <
b "z40 -1 : { *  palf circle * ® Hs -

(21)

< Ne%vl] (o ikeosll o2 f 22 <
o nie)
vhere the estimate “t(in) -1(-;,,)“ < Zn(nzol)", n € B has been used.
Tinally ve have
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< = ¥(0)evil ys * 2 lim [ an tlioﬂn)io(-in)aw:n us <

1
2
0 ¢ 22)
- .
s v ilcoavll o+ 2 [ 22— I cimsvl] g < =
o /Iorgz
which proves theores |I.
REMARKS: As we expect, & large class of perturbations of a typical soliton

potential like mchx do not change the field theory representation.
The same actually results if one perturds around a patentisl with
trivirsl asysprotics; the technique to prova this is similar to the above,

therefore we gtare only the result for

PERTURBING AROUND A CONSTANT POTENTIAL

Theorem 2: Let H = o -5-‘—-
ey o 1 dx

for | < p 2 2; the twvo representacions of the CAR corrasponding to P‘o

*Bwand H = H ¢ 8V(x) and assume chat ] ;":p <=

and H are unitarily equivalent.

REMARK: The most essential question concerns a comparison of two problems:

one potentisl wvicth trivial asymptocics v, to another one with soliton

1

asymptoties v... To check this, it is only necessary to take one example

I
out of sach class and compare both.

This leads to

Theores 3: Lec U = a -:v-‘— + Bv_ vith lim va--l =0 and

dx 1 'ﬂ"‘

sd =g %%i + Bv,, vich lis |v.. ~mth x| = 0. The corresponding

lg-o.

| § ¢

representations of the CAR are not equivalent.

Proof: 1f one takes v and vig ® athzx themselves, one msy use the
explicit solutions for the free case and ags. (Ja) and (Ib). The appro-

priate nosm curns out to be infinite

- -
dq(1 ~¢ch x)?
ir pg" - dx _S.(____L..., (23)
¢ o -‘!' { 1 ¢ q?
—e— e,




REMARK: lue to the above facts a rigorous discussion of the occurrence REFERENCE

of fractional charges has to be done with care. We are presently study-

ing such questions following a constructive approach. (11 Rr.J
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