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Abstract

We investigate the relation between finiteness of a four-dimensional
quantus field theory and global supersymmetry. To this end we consider
the most general quantum field theory and analyse the finiteness conditions
resulting from the requirement of the absence of divergent contributions
to the renormalizations of the paramsters of the theory. In addition to
the gauge bosons, both fermions and scalar bosons turn out to be &
necessary ingredient in a non-trivial finice gauge theory. In all cases
discussed, the supersymmectric theory restricted by two well-known
constraints on the dimensionless couplings proves to be the unique

solution of the finiteness conditions.
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1. Introduction

The most exciting feature of supersyrmetry is ics abilicy of soften-
ing the high-energy behaviour of quantum field theories by reducing the
oumber of uncorrelated ultraviolet divergences. This property rendered
possible the construction of finite supersysmetric quantum field theories
in four space-time dimensions [1): Supersymmetry suffices to ensure
finiteness in quantum field theories singled out from the general case
by certain relations -~ called "finiteness conditions™ - betveen the
dimensionless couplings in the theory. Simple supersymmcry in co-opera-
tion with two finiteness conditions guarantees finiteness up to two loops.
Extended supersymmecry imposes, of course, still sore restrictions or a
theory. As a consequence, (N = 2) supersymmetric theories constrainec by
only a single finitene s condition are finite to all orders of perturbation
theory.

In this work we invert the logic and invescigate the problem: Which
classes of theories are sllowed vhen imposing the requiremenc of finite-
ness upon the most general renormalizable quantum field theory? In
particular, we are interested in the quastion if finiceness necessarily
implies supersymmetry for the particle content and the interaccions in
the theory. To this end we analyse the finiteness coanditions obtained by
demanding the absence of divergeant coatributions to the renormalizations
of the parameters of a general gauge theory.

Motivated by the observation that supersymmetric theories are free
of quadratic divergences, similar investigations have been performed
previously vwith respect to the absence of quadratic divergences in a
renormalizable quantum field ctheory [2]). In all specisl cases studied,
the requirsment of cthe cancellation of the quadratic divergences - either
up to ctwo-loop order or with che additional restriction of renormalizas-
tion~group invariance of the one-loop conditions -~ uniquely leads to the
(softly broken) supersymmscry of the theory. Supersymmcry then ensures
the absence of quadratic divergences to all orders in the loop expansion.

This paper is organized as follows: In order to embed the present
investigation in the on-going developments and to establish our notation




wve give in Section Il a brief sketch of supersymmetric finite quantum
field theories. Section [Il is devoted to the renormalization of s
general gauge theory. [n Section IV wve formulate the finiteness conditions
for an arbitrary gauge theory and deduce some immediate implicationa. In
their wost general forw these finiteness conditions conscitute, however,
an extremely complicated non~linear set of equations for masses and
caupling constants. Lonsequently, in Section V, ve consider a somevhat
restricted class of theories which, nevertheless, still comprehends all
supersysmetric theories and hence sll finite quantum field theories in
four dimensions kpown so far. Although not fully genersl, the discussion
of these models is quite instructive in order to ansver the question
vhether or not finiteness isplies supersymmetry. Our conclusions are

susmarized in Section VI,

I1. Finize Supersymmecric Quantum Field Theories

The most genersl renormslizable, gauge invarisnc and (N = ) super-
symmetric theory is described by the Lagrangian
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Here the folloving notation is adopted: Vector superfields, which re-
present a massless vector boson Vu as well as s two-component Weyl spinor
3, both of them rransforming according to the adjoint reoresentation G
of the gauge group, are dencted by V,

- u h 4 8
V. (x.,v.) ~ 6, VeV & v. T . (2.2)

Chiral superfields, which represent a two-component Weyl spincr x as vell
as a cooplex scalar boson A, both of them transforwing according to soms
represencation R of the gauge group, are denoted by ¢,

L

o s (Ax) VR, D -0 . (2.3)
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The chiral field-strength superfield Ua is respensible for the kinecic
La;r:ngian of gauge bosons and gauge fermions, H° - - i% o0 e-ZgV Da 8,
Da. D& label the 5USY-covariant derivatives. W(8) is the so-called super-
poteatial, a gauge iavariant, analytic function of the chiral supecfields
.i describing all w=sss terms, Yukava couplings, and scalar self-inter-
actions in the theory. Renormalizability restricts it to be a polynowmial
of at most third degree,

i ! ,
MO = s 0 v gm0 e % (2.4)

Finally, 6 labels the fecrmionic Grassmann coordinates of the superspace
N -
(K .Oa,Qa).
The group invariants for a (possibly reducibie) representation R

are defined in terwms of the generacors T® as usually: The quadratic
Casimir operator Cz(l) is defined by

o .o a_.a
?, CuRIEL == (T T (2.5)

vhere E° denotes the projector onto the irreducible rspresentation Rb in

the decompositica R =~ @ .c' The second-order Dynkin index T(R) is defined
a

by

T, = Telr,t 701, tm =T ) . (2.6)
g

These invariants are related to each other by the dimension of the group,

d(C), and the dimension of the representation R, d(R), sccording to
T(R)d(C) = ‘{, C,(R)4(R) . (2.1
Specified to the adjoint representation G, the sbove definitions read

. c.c - - a_b -
Cz(c)é‘b ‘e (rc Tc )ub (‘cd 'bcd Tr[Tc TG ] = 1(6)6ab , (2.8)

i.e.

€,(6) = T(C) , (2.9)




vhere £ is the structure constant tensor of the gauge group, [T‘.‘l’bl -

. (3
-3 fcbc T.
The only possible supersymmstric and gauge invariant extension of

the Lagrangian (2.1) would be a so-called "D terw”
Ly=n s v (2.10;

associated with a U(1) factor of the gauge group. This D terw receives,
at the one-loop level only, a quadratically divergeat comtribution pro-
portional to the trace of the U(1) charge [3]). It will thus not be present
in any theory based on s semi-siaple gauge group.

Suppresaing all indices, one counts six renormslization constants
for the theory characterized by the Lagrangian (2.1), viz. the vave

functioa renormslizations for vector and chiral superfield,

1/2 v

- - '/2
v° lv » 0° Z. e, (2.11)

the gauge coupling constant renormelization,
5 "% 8. (2.12)

as vell as che renormslization of the parameters in the superpotential
2.4),

.o-z.-. no-l.-. co-lcc. (2.13)

Hovever, oot all of thess remnrmslizacion comstants are independent. The
genersl line of arguments for this runs as follows:
First of all, in the background field method - when cqloycd’ - the

P4
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£

#) Of course, the dependence of the wave function renormalizacions on the
gsuge - manifesting itself in this particulsr case as the freedos of
choice to adopt the background field gauge or not - axpressas nothing

alse but the fact thst the corresponding divergences are not essential
ones.
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product of gauge coupling constant g times veccor superfield V is not
renormalized at all (4], gV, = sV, which implies the relation

1/2 B
Z' lvl =] (2.14)
for the corresponding renmormalization comstants.

Tucrthermore, there is a non-tenormalization cheorem, valid for
theories invariant under N-extended supersymmecry. In its general form
this theorem states that in sa FN-extended supersymmetric theory any
quantue contridution to the effective action must be an 1ntegral over
the full extended superspace (x",#%.85), L = 1,2,...,0, snd chac any
coatribution arising adove the on:loop level must be a gauge invariant
fuaoction of the matter superfields and the Yang-Mills pctentials
(connections) A: oanly [5]. N

In the case of (W = 1) supersymmetry the above one—loop exception
does not exist. The (N = 1) non-renormslization cheorem simply states
that any quantum coatribution to the effective action has to be an inte-
gral over the complete superspace (‘u'.a’;&) (6,7]. Consequencly, all
counter terms in the Lagrangiaa (2.1) must be of cthe form

Lo g, = Jd%0 £V, 0, (2.15)

vhere £ is a function of che superfields and cheir covarianc derivatives.
This in turn implies that the superpotential W(¢) - being integrated over
only s subspace of the whole superspace - is not renormslized at all,
vhich is expressed by the relations

1/2

] le.l
]

), l-l -, ch.

zlz [

(2.16)
for the renormslizacion constants of the parameters in the supsrpotentisl.
As a consequence of Bqe. (2.14) and (2.16), one is left wvith only

tvo independent renormalization con.suun. for instance l' and Z.. Yor
a supersymmstric theory the whole renormslisacion procedure casn be carried
through vith the gaugs coupling constant renormslization as vell as vave
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function renormalizations of the chiral superfields. Only the gauge
beta function B‘ i,y : g and the snomalous dimensions AN ij ]

-IIZ) 1/2
* ik ¥

the discussion of the high-enesrgy behaviour of supersymmetric theories.

- (2 (l )kj of the chiral superfields are of interest for

The one-loop contributiocus to the 8§ function and the anomalous

dimensions are givea by

]
ai” - - A — 13,00 - 1MW)} (2.17)
(40)2
[” a PS
[;3(1"7 ., . €c...1. (2.18)
u “.) ikt 3kt

Heace, imposition of the finiteness conditions

i

3C,(G) = T(R) (2.19)
* 2 a
€yt © g2(r'r )i (2.20)

guarantees the finiteness of an otherwise srbicrary supersymmetcic theory
at the oane-loop lcvcl’. Even a certain amount of soft supersymmecty
Sreaking can be tolerated without upsetting one-loop finiteness {3]. The
anomaly-free sulutions of the finiteness condition (2.19) may be found
in Refs. (10].

Moreover, it has been shown that (io supersymmetric theories) one-
loop finiteness automatically implies two~loop finiteness, i.e. the
finitenass conditions (2.19) and (2.20) suffice to enfor:e the venishing
of the two-lcop eontributions to the 8 function and anomalous dimsnsions
too [11]). Piniteness will, hovever, in general be destroyed at the three-
loop level [12]). Nevertheless, sttempts have been undertsken in order to

(1)

#) Note chac 8 ®» 0 demands C (C) 40, i.e. a non-Abelian gasuge group,
while 1‘(‘;] ® 0 requicres m-vauhhin; super-Yukswva couplings cxjt
The latter is the reason why the sescch for a tw~loop fimite (W = 1)
supersymmetric pure Yang-Mills theory without superpotential was

doomed to fail [8].




construct 8 reslistic two-loop finite SUSY SU(S) GUT [13].
Renormalizable (X = 2) supersymmetric theories know of two basic
. building blocks: The (N = 2) vector multiplet V._z. transforming accord-
ing to the adjoint representation G of the gauge group, contains an
(M = 1) vector superfield V and & chiral superfield ® in the adjoint

representation,

v,_z-(v.o)«-c; v~G6, *e~G ., (2.21)
The hypermultiplet M, transforming according to some representation tﬂ

; - - . + -
} of the gsuge group, contains two chiral superfields ¢ 02 of opposite

ll
chirality - a circumstance which makes every (N = 1) supersymmetric

theory non-chirsl, i.e. vector-like,
+ ., 3
H-(Ol.Oz)‘\-ln H 0‘ ‘\-l. . 02 -l‘ . (2.22)
‘ The most general renormalizadie, (¥ = 2) supersymmetric Lagrangianm,

expressed in terms of (N = 1) superfields, reads
,(‘l'y

T
o [4*a e’ 28V + -2gv + 2gv
Liazy = [4"800, ™% 0 o0, o 9, +0 0
e (2.23)
2a¢_1 .
s (faigay T Vi +ig/Z 0 00 ] e nc) .
e Note that (N = 2) supersymmetry restricts the superpotenctial W(e) co a
unique trilinear interaction fixed by gauge invariance,
.ag
: 2
ns V(®) 2y ® ig/? 00 . (2.24)
ree~
to Hence, there is only s single coupling constant, that is the gauge
0 coupling constant g, and only one independent renormalization constant,
z.. The gauge B function is the only relevanc quancity for finiteness
1) considerations. .

Nov, the spplicstion of the nou-renormslization theorem to the ¥ = 2
case shows, on dimens.onal grounds, that (N = 2) supersymmetric theories




are finize above the one-loop lavel [14]. The only possible contribution [Il. Renor
to the B function arises from one-loop graphs and can be obtained by
secting T(R) = cz(c) - 21('..) in Eq. (2.17), as demanded by the (N = |) The ¢
¢ superfield content of the (¥ = 2) superwmultiplets: to) a spo:
3
IS -
'(N-Z) 2 lCz(C) ‘l’(l')l . (2.25) L= -
(4w)
Thus, tiniteness to all orders of perturbatiom theory is achieved for
Cz(C) - T(l") . (2.26)
Agsin, this finiteness is preserved by certain soft supersymmetry break- The parcc -.
ing operacors [15]. The solutions of the finiteness condition (2.26) fields ¥
form a large class of finite (N = 2) supersymmetric quantum field theories spinor f'
in four space-time dimmnizions [16]). However, all efforts to build gaLge g-
realiscic models, based on (N = 2) supersymmetry amended by suitably ing to s
chosen soft breaking terms, face a number of phenomenological obstacles be assuc
O17). simpiici:
The (N = 4) super—Yang-Mills theory proves to be a cpecial case of genecali.
the (N « 2) theories for ths hypermsltipler B transforming according to covarian.
the sdjoint represencaction of che gauge group, i.e. lu = G. Renormalizable
(¥ = %) supersymmatric theories allow for exactly one (N = 4) super-
sultiplet, namely the (N » §) vector multiplet V'.l., wvhich consists of
an (¥ = 2) vector multiplet V'_z and 8 hypermultiplec H in the adjoint The covar
Tepresentation, given by

V'_‘ . (V'_z.ll) - (V,O'.Oz.oj) ~G . (2.27)

Piniteness to all orders of perturbation theory, !('_‘) 20, is then &

: trivial consequence of Eq. (2.9) [18].

. Table | susmarizes the evoiution of the one-loop contribution to vhere T
the gauge B8 function from the well-known expression in s general gauge of the ga.
theory to its sutomatical vanishing in the (N = 4) super-Yang-Mills represen..
theory. ace assumr




III. Renovmalization of a Ceneral Gauge Theory

The most general renormalizable quantum field theory is (equivalent

to) a spontaneously broken gauge theory [19], described by the Lagrangian

--l' uv . — 1 T .,
L ‘Fuvf. ’IOL.OL’z(D‘_O) D%

-3 [0Sy = 1% Do, o mc] - V(o) 3.

+ gauge-fixing terms + ghost terms ¢ counter terns .

The particle content of this theory consists of hermitean vector gauge
fields Vu. associated vith a cosapact gauge group, two-compoaent Weyl
spinor fields L transforming according to some representation F of the
gruge group, ¢, F, and hermitean scalar fields Y transforming accerd-
ing to scme representacion S of the gauge group, ¢~ S. All fermions cay

]
be assumed o be, say, left-handed because of 0.‘ 3 C 'o_: - 0CL. (For
siaplicity, we consider oaly the case of s simple gauge group. The
generalization to non-simple gauge groups is straightforward.) The gauge
covariant field strengcth tensor 'u\.' is given by

a a

F =3V -2V
uv BV v

'} b, ¢

g !abc V“ ‘Jv . (3.2)

The covariant derivatives Du scting on the fermion and scalar fields are

given by
. s
DHOL (Ou ig Vu 'l'.)oL R (3.3)
- - s
Du. (au ig Vu L.)o R (3.4)

where T. and l.. are the hermicesn representacion macrices for the generators

of the gauge group in the fermion representstion P and in cthe scalar boson
representation S, resp. Since, for che sake of generality, the scalars ¢

are assumed to be resl, the representstion msatrices L“ have to be anti-
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L2 " -

Mm&maz»-wﬂmwmw??ﬂ%?m;-,.,__.,; s

symmetric and purely imagirary. The fermion mass metcix ., vell as
=
ik
Tue scalar potential V(¢) is a fourth order polyromial in the scalar

the Yukawa coupling matrices h. are symmetric in the fermion indices.

fields o.,

i
(X ) 0, vy ‘mpq.-.n.p. . (2.5)

- 1 !
V) % ' 2 bm‘-‘n M 1 cnp aa

vith real and totally symmecric coefficients. Cauge invariance demands

- a
-ji ‘jk » 'jk rji (1] (1.6)
for the fermion mass,
Y. Tl en® 12 en® L2 a0 3.n

ii Tik " "k G * ik bna

for the Yukava couplings, and

s log=© (;.8)
L L:. *be L:n -0 (3.9
cqﬂp L:- + cycl. perm.(mp) » O (3.10)
4 pa L:_ + cycl. perm.(mpq) = 0 a.n)

for t*s paraseters in the scalar potential.

At this point, s closer inspecCion reveals that the linesr ters in
the scslar potentisl can be dropped v.l.0.g. Tor gauge non-singlet
scalars, in order not to violate gauge invarisnce explicitly, s has to
vanish as a consequence of Eq. (3.8). For gauge sirglet scalars che
linear cerm can be aade to disappear by an appropriace shift of singlet
scalar fields without destroying the msnifest gauge invarisnce of the
Lagrangian. Hence, ®Q" 0 in sny case.

furcharmore, finiteness is, of course, only relevant for the high-
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energy limit 3f the theory, i.e. ian the unbroken phase of the gauge
syometry, far above all spontznheous symmetry breaking thresholds, while
at lover energies the decoupling of the comparatively heavy degrees ot
frecdom vill result in a non-trivial renormalization-group behaviour of
the parameters of the theory. According to this spiric, '+ » focus our
cttention to a theory with sn unbroken gauge symmetry. Then the real and
symmetric sca:iar boson mass-squared matrix uz-‘ iz given by uz-‘ - b-‘.
The most convenient gauge for performing high-energy iavestigations

is the IC gauge, vhich yields a propagator for massless vector bosons of
the fors

D(k) =-—(g - (1-D E.P&] (3.i2)
uv k2 &y € K2 ' T

vhere the gauge parameter { is left arbitrary. This choice determines
the gavge-fixing and ghost terms in the Lagrangian (3.1).
The renormalization cor.tants required for the renormalization of

a general gauge theory are defined in the usual fashion:

ez, v-2'v, AR KA IR NE)
-o---a-. u:-uz-auzz (3.14)
;o-z'g. h°-zhh; (3.1%)
‘o'“' co-z‘c. do'zdd' (3.16)

where all group indices hsve been suppressed. The one-loop contributions
to these renormalization constancs, calculated by dimensional regulariza-
tion in D = &~ 2¢ space-time dimensions {20] in che minimal subcrsction
scheme, read for the vector vave function

1 1,13 ) 2 1
2,0 = —— p2[=(==-2)C,(C) - = T(F) - = T(S)] , (3.17)
v (4v)2¢ EAN TRt Dl 6

for the fermion vave function

T A, o S et
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R Lyet o
(Z9 ')ih (b')Zt ( ¢ T. T. . 3 h h), {(3.18)

for the scalar wave function

a  nt

- -t 22 - ]
2z, -1) {3 c)g (L. l..)“n Re Telh b )Y ; (3.19)

¢ - (6w)2e

for the fermion mass

]
(6l)zt

(dm),, = (3g%al T, - 2" h? - %(h“h"’. . -n“’h“))“ , (3.20)

for the scalar mass

|
(Av)2¢

Gud) = (3g2GAL,L) |+ 4Re Te(am W) + 20e Te(h®a'n"’] -

- %(u:’ ke Te(nPn®") o ":p ke Te(h®h™] »

d 2 ; .
* dpq "pq + apq cnpq)) H (3.21)

for the gsuge coupling constant

18 e -1 - s, (3.22)

)
Z -1 =-
& (COL

for the Yukawva coupling constants

]
(43)2¢

- (""" . % G SN -;- LA IR

|
((Zh - l)h)ik .-

3 (3g2 ey -
7 {38 [(h.rara)ik * & 'ara)kil

> 1® e (0™ ) (1.23)
for the paramster of the linear terw in the scalar potencial

]
(4w)2e

1 + +m 2
] {4Re Tr(momh ) + €anp "np, . (3.24)

(60). -

for the ¢

((z - l)L
C

and for ¢

(@Z,=-1

Diz¢
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for the three-scalar coupling constant

i
((Zc - l)c)_‘ - -

1 2 - qt -
0 ot ? {(3g (L‘L‘)n Re Trih™ 1).:"p

q
(3.25)

- BRe Tt[-fh.hn*hp] -d } * cycl.pera. (mnp) ,

C
anqr pgr

and for the four-scalar coupling constant

(2= 1) oo =

: - 8P nt p.qt, |
3" s 2 (e L L) (L) - 8P Te(h™ " hPad7 )

- b
d-'" dpq" + cycl.perwm. (npq) ] (3.26)

+ cycl.perm. (mnpq) !>

- 2 - rt
[Gs2L L) Re Tr[h™h LI

Dimensional considerations show that quadratic divergences can only
arise in one- and two-point Creen's functions of scalar fields as vzl
as in two-point Green's functions of vactor fields. More precisely, they
can only appear in the renormalization of the parameter of the linear
tern in the scalar potential and of the scalar and vector boson masses.
The quadratically divergeat one-loop contributions to Sa and 8u2,

evsluated by cuct-off tegulariution.. are

AZ
(4%)2

() = - % {4Ra Trla'h®] » e} ¢ O(ln AD) (3.27)

and

) oA (32 - ot, L}
6D, -y (g2W,L) o, - 2 ke TN o 34 )+ 00 A,

(3.28)

where A denotes the momentum cut-off, On che other hand, the quadratically
divergent contribution to the vector boson mass - which turns out to be

proportional co cz(c) - T(F) » 1'-1'(3) ~ vioiates gauge invariance and is

®) Quadracic divergences do not contribute in dimensionsl regularizacion

D
since chere lin [ 3K

80  ki-m?

0.
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merely an artefact of a bad regularization schese. In order to restore
gauge invariance he reiormalized vector boson mass must be required to
vagish (vhich can be achieved by an appropriate counter term). The above
combinaticn of group invariants vanishes, however, automatically in a

supersvametric gauge theory.
{2}

Finally, we will also mske use of che two-loop contributica 8 to
the gauge 8 function [21],
S
Bizl -~ —E— (3 1,17 - £ c (o) + 2c,m 1) -
(4 (3.29)
-l } nt a
3 C2(6) * 2C,(S)IT(S) » Telh™n T T 0,

g2d(¢)

vhere in the terms Cz(l)‘l'(l). R« 7,5, summation over irreducible repre-

sentations is implicitly understood.

IV. General Considerations

The point in the discussion of finite quancum field theories which
deserves most care and attention is the definition of vhat is meantc by
zhe term "finiteness”. In a more technical sense, the crucial point is
the formulation of the finiteness cond.tions, i.e. the circumstances
under which the theory will be regarded as finite. The fundamental problem,
vhich entails s lot of ambiguity, is represented by the gauge dependence
of the vave function renormslizations. The renormalizarion of tields
depends oa the chosen gauge whereas the renormalizstion of the parameters
enteting in the Lagrangian, i.e. masses and coupling constants, is gauge
independent (in the minimal subtraction schems).

As far as the renormslization behaviour of supersymmetric theories
is concerned, the siaple state of affairs sketched in Sec. 11 relies
heavily on the msintenance of manifest supersymmetry by adopting super-
graph techniques throughout the whale computation of Green's functions.
On the other hand, taking into account, in s component formulstion of the
chsory, only ths physical degrees of freedom of the (N = |) wvector

e
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supermultipiet (2.2) corresponds to the employment of che Wess-Zumino
gauge which breaks supersymmetry by eliminating all the gauge degrees

of *reedoa that would othervise show up in the vector supermultiplet

(and contribute to the Green's functions). In that case the renormaliza-
tions of the componerr fields belonging to one and the same supermuitiplct
are no longer identical [22]. In fact, in the non-supersymmetric Wess-
Zumino RE gauge the vave funccion renormalizacion constants read for the
vector supermultiplet (2.2)

] 2,3 [
zZ,- 1= g%(5(3 -=)C,(G) - T(R})] *%.1)
v 2 ]
(4n)2¢ M
1 27) .
Z, -~ l=- g2l-¢c (G) » T()] , (4.2)
A (4n)%¢ ¢ 2 !

and for the chirsl supermultiplet (2.3)

zZ -1),, »- 2+ 1), ® e, 4.

( x )u i {g2( 'E)( .‘l'.)“l * 2., cJul (4.3)
§ 1 »

zZ,-1),, = 2(1==)(T.T.),. - 2¢. . . 4.4

( A )1) (4%)2¢ (s*a E)(Tl a)x_; Zﬂu cju] ( )

EZvan in a finite theory these wave function renormalizstions will not
vanish. In contrast tc that, the evaluation of the renormalization
constants (3.20) ~ (3.26) for the supersymmetric values of the para-~
meters shows that in an (N « 1) SUSY gauge theory sil renormalizacions
of masses and coupling constants vanish at the one-loop level, providud
the gauge group, matter reprasentation R, and super-Yukawa couplings cijk
are related by the finiteness conditions (2.19) and (2.20).

In viev of cha sbove, an infinity encounterec in the zomputation of
Green's fuactions has to be regarded as an essential divergence vith
respect to finitenass oaly if it cannoc be absorbed inco some save func~
tion renormalizations. Consequencly, ve find our finiteness conditions
by the requirement of the absence of all divergent contributions to cthe
renormelizacions of che physical psrsmecers, i.e. masses and coupling
constants, of the quantum field theory. (For coupling constants this

requiremant is equivalent to demsnding finitensss of the S—mstrix elements

P - e
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wvithout divergent renormalizations of coupling constants.) Accordingly,
finiteness msans that the bare parameters of the Layrangian are related
to the renormalized ones by a finite amount of renormalization and thus
are finite themselves.

In order to construct s non-trivial finite gauge theory let us scart

with the requirement of a vanishing one—loop 8 functien (cf. Eq. (3.22))
1 C,(6) - 2T(P) - 3 T(S) = 0, (6.5)

wvhich implies that, in addition to the wvector boscas, fermions or scalars
sust be present in the theory.

To begin with, let us try to find & model without scalars, i.e. a
model which contains only gauge bosons and fermions. In this case one
has only two one-loop finitenzss conditions, viz. from the gauge coupling
renormalization (3.22)

11 Cz(G) =2 T(F) , (4.9)
and from the fermion mass renormalizaction (3.20)
» T‘ T. =0 (%.7)

which simply states that gauge non—-singlet fermions must be msssless. I¢
is noct haxrd to find groups and representations in accordance with Eq.

(4.6) which thus constitute a large set of one-loop finite gauge models.
Hovever, finiteness is destroyed slready at the two-loop level. Insert-
ing (4.6) into the two-loop contribution (3.29) to the 8 function yields

5

82« £ (11c,@12 + 2¢,(NT (M), (4.8)
8 (")h 2

which shows that B' won't vanish except in the trivial case CZ(C) = T(F) =

= 0, Consequently, we can sske the folloving observations: (i) The occur-

reuce of scalar particles is ineviteble in a finite gauge theory. (ii)

Contributions from beyond the one-loop lsvel have to be taken inco account

TR, RETTREY il

in order
field t*

As
In thas
one demd

bosons

Ig" (2(T:

The lef-
which 1
for lhe
drent

S
gauge :
must be

rence o

V. Sone

Ln
are, al
we wil,
vhat s:

T:
is char
supersy
i.e. nc

definy




in order to obtain a definite answer in the search for a finite quantun
field theory.

As our next step, we attempt to banish all fermions from theé theory.
In this case, by inserting the relation which results from (3.28) when
one demands a vanishing quadratic mass renormslization of the scalar

bosons into ((Ed - 1)d) = 0 derived froa (3.26), one obtains

32Tl L D? » (L L) (L L) e 8L L) (L) ) e
(4.9)

+ d c.

d -
mnpq wnpq
The left-hand side of this condition is a sum of squares of real gquantiries

. . . - 2 1 ~ . 0D
wvhich implies g = dmpq o, 6unn from Eq. (3.21) then gives %npa )
for che same reason. Thus fermions are elevated to an unavoidable inyce-
dient in a finite gauge theory.

Summarizing, we arrive at che conclusion that in a (non-trivial)
gauge invariant quantum field theory vector bosons, fermions, and scalars
must be present in order to solve the finiteness conditiors - the occur-

rence of one particle species calls for both of the others.

V. Some Simple Models

Unfortunacely, the finiteness conditions for a general gauge theory
are, slready at the one-~loop level, extremely cowplicated. Consequently,
we will concentrate our discussion to the investigation of several some-
vhac simplified andels.

The simplest class of gauge theories one can imsgine in this respect
is characcerized by consisting of the particle content of the (N = 1)
supersymmetric Yang-Mills theory of Sec. II but sllowing for arbitrary,
i.e. non-supersymmetric, vaiues of the coupling constants, The Lagrangian

defining these models is cthen, in the nocation of Sec. II, given by




1l g a v . - . — L ST
L = bruvrn’lXL'lL’le'XL.(DuA) DA ¢+

1 4 ¢ a c
. (ui l. R Ai.j ij + ri..jk ‘i xj . T h.c.) - (5.1)
-d.. A. K. ¥ Af + mass terms
ij .kt "1 7j ﬁ L :

Apart froms the obvious symsetry requirements

ri.jk - ri.kj . : (5.2)

R TR TR TR TN (5.9

. a .
cthe couplings ‘ij' ri_jk. and dij,kl are completely arbitrary. (N = I)

supersymmetry would specify cheir values to

AR B X,

’ 5.4
1) 7 i (5.5)
ri.,j'.. - - cijk (totally symmetric) , (5.3)
2
- * f a a a
45kt Sijm “kta * 6 Tii Ty * Tuj Tai) - (5.6)

Since masses and three-scalsr couplings are of no relevance for the pre-
sent discussion, only finitensss condi:ions relating solely dimension-
less coupling constants have to be taken into account. At the cne-loop
level we obtain as our finiteness conditions for the model (5.1) from

the gauge coupling renormalization (3.22)
3 cz(c) = T(R) (5.7)

(which coincides, of course, with Bq. (2.19)), from the Yuksva coupling
] renormslization (3.23) for ‘:j

' 3 s ,3 .2, - ¢ 40
g 7 8°C(00; + T8O Ty 7 5 keli el

e i e i s e




8

b
+ (8 fA").klaf - a?

- (r ol (S
( im jk[rj.l.-‘l..lt.

L b bt
TSR MELUI FES B

b
- A:k Te(a®a"") = 0 (5.8)

and for l‘i ik

3 2 - ae 2 _ - at a
8 rl,jk(raTl)jl ‘rj.hAinajl ri.kl[rj.mrj.nl. s (as )-!.] -
- l [ ] ay 8,80 -
3 rj.ki[rj.nri.m + 2(AA )ji] *(k>1)=0, (5.9)

from the four-scalar coupling renormalizacion (3.26)

o

. - a2 a» e
88T, Ty) (T, Ty beg - 168080T T

s bt b _at
8(a s )P-(A a )qn 1y

L 2 *
r
m,iy p.j'xrn.kl.rq.l.i *

dm.kl ‘u.,;q - “ﬂ,pl dnl.,qk - (5.10)

- F My @I A @ T

» a st
d . .
-n.n"q.klri.kt * Use )411 *

» 2, st
. d_j'"[rj.nrn.u + 2(a"A )’.n) +(m+~n)+ (pe—>gq)=~0,

snd from the quadratic mass renormalizacion (3.28) of the scalasr bosons

3 2 - s at _p®
T8 “nrn)ij 2872 )ij ri.urj'n +a 0. (5.11)

ik, ik ©

Beside these one-loop finitenass conditions, the vanishing of the two-
loop contribution (3.29) to the gauge B8 function will also be an essentisl

criterion:
J[cz<c)11 = 26, (G)T(R) = 3C,(RIT(R) '+ (5.12)
2 s, st bt b

*

Ar

L ]
(cz(c) Tefa™a" ) + (1'.1")‘J t.jkrt,ki. + (A A )ji]) =0 .

g24(C)
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One solution of the above finiteness conditions is certainly pro-
vided by the tvo-loop finite (N = {) supersymmeccic gauge theory of Sec.
{1. [t is easy to check that the supersymmetric values (3.8) - (5.6) of
the dimensionless coupling constsnts, when restricted by the constraints
(2.19) and (2.20), satisfy Eqs. {5.8) - (5.12). Soft supersymmetry break-
ing of the form mentioned in Sec. II is, of course, aluays possible.
However, as can be explicitly seen already from Eqs. (3.22), (3.23),
(3.26), (3.28), aad (3.29), the corresponding mass terms and three-
scalar couplings do not affect the finiteness conditions for dimeasion-
less couplings.

Now the folloving question arises: Is the supersymmetric theory
defined by (5.4) - (5.6) and (2.19), (2.20) cthe unique solution of the
finiteness conditions (5.8) ~ (5.12) or do other, non-supersymmetric
solutions sxist? To investigace this prodblem we consider several special
cases vhich we obtsin from the class of models (5.1) by imposing scme
group~theoretically motivated conscraints in order to simplify tha

analysis.

Model 1

This model is defined by the Lagrangian (5.1) and the following

additionsl constraints:
(i) R is an irreducible representacio: r of tha gsuge group, R = r.
(ii) The adjoint representation occurs only once in the Kronecker
product rxr.
(iii) The singlet occurs st most once ins ths cubic Kronecker product
gRE T,

The smsllest possible (anomsly-free) group and represencation which
solve 362(6) = T(r), i.e. the requirement (5.7) of a vanishing ons~locp
gauge 8 function, snd sacisfy che constraines (i) - (iii) is 30(9) wich
t = 84 [23). Here the sdjoint representation is C » 36 and 846 x 84 =
- 'S * 36‘ . bbs . le + higher representations.

Conseraine (ii) implies cher Azj is proportional to che generator
t:j in the irreducible representation r,

wvhere the
mation on
open that
all, ' &

1t Cexr -

«§... Th
1]

where \FE
tequiremé.

and (5.12

vhich has

correspor
coupling

Our
four-sca.
structur
depend or

the scal
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et c.. , (95.13.

vhere the parameter T can be made real by an sppropriate phase transforc-
mation on the fermions l.. Constraint (iii) leaves the two poiasibilitics
open chat either there exists no invariant teasor of the form 'ijk ac

all, 1 €rxr=y, or v. ijk is uniquely determined up to an arbxtrary factor,

t Crugxg, In the lltt.t case we normalize y i according to Y. ‘l it b
= §... Then the Yukawva coupling . . will havc the form
ij i,jk
- 2 =-c.. 5.14;
SRR ST -1

where 'ijk must be completely symmetric in order to meet the symmetry
requirament (5.2). Inserting (5.7), (5.13) and (5.14) incto (5.8), (5. %
and (5.12) yields

2
r(r2 'lz” -0

<(l<|2 - g% ()} =0, (5.15)

:’2- (|2 + 120, (6) + C ()]} = €,(6) = 3, (x) =0,

which has the unique solution

2
12 . %T

(5.16)
le|2 = gicy(m) ,

corresponding just to the suparsymmstric form (5.4) of the Yukawa
coupling A:j and to the finiteness condition (2.120).

Our lasc task is to satisfy Cqs. (5.10) and (5.11). The form of the
four-scalar coupling dij.kl' i.e. the nuaber of different types of vertex
structures as vell as their explicit expressions, vill, in general,
depend on the gauge group and on tha representation R according to which

the scalar fields Ai teansform. Hers we assums that d coutains only

ij.kt




S
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those interaction terms which one encounters also in 2 supersymmerric
theory. Hence ve make the ansat:
- . e 8 a .8
4iiokt ™ % Cijm Suem B 8Ty Tys ¢ Tp Ty .17
vhere a, 8 are two paramsters to be determined. Eq. (5.11) chen impiies
a+* B =5/ while inserting this ansacz into (5.10) gives a = 1, 8 = 1/4,

i.e. the supersymmetric form (5.6) of dij WO only possible solucion.

Model I

In addition to the Lagrangian (5.1) the group—-theoretic constraints
defining this wodel are:

(i) R is che direct sum of two identical irreducible representations r,

R = r + r, vhere again:

(i1i) The adjoint representation occurs only once in the Kronecker product
r=r.

(iii) The singlet occurs at most once in the cubic Kronecker product
r=rsr,

Here the sasllest possible (snomaly-free) group and representacion
satisfying 3C2(G) ® 2T(r) is SO(10) wich v = S& [23]). The adjoint repre-
sencation is G = 49 and 54 » 54 = Is * LSA + Sbs + higher representations.

Por our further discussion we replsce the index i by (I,a), where

I 1,2 is s mlciplicity index corresponding to R *r + r while o is

related co cthe irreducible representation r with generators ::'. Wich
this convention
ri‘j -8y thg s (5.18)
835 ~ "1y g (5.19)
r (5.20)

ik " 1,3k Yasy *

vhere { o (I,a), j = (J,8), k @ (K,y). By an appropriate rotatfon of the

fields AI s and Xg e Tyg c80 be transformed into a real, positive semi~
’ 1]

definite diagonal mactrix



3uct

Ty "% 6[.1 , o 20 (no sum over I) . (5.21

*
Th i A i - .
e normalization of Yuh again reads Yavé '376 633

Remesbering the relation JCZ (G) = 2T(r) which guarantees the one-
loop finiteness of the gauge coupling constant, the finiteness conditions
(5-8), (5-9) and (5.12) nov take the form

2 2 - 2 . l 2
HEC,M6) ¢ glC,(r) - 2, () - 5 T(D) E ofle, &, »

+2 | (=

E J * E J
R I BT A . i S R TR R T oyl =0 (5.22)
1 ]

(no sum over 1,X) ,

2902 - a2 a2 N .
(38% = 201 = op = p)C.(EIxy g * 26(0)(xy 1y 0p P * g 1t °1 Ok

L 4 * *

- 1 (p 0 “M,0p “M,LP * “w,xy “M,NP I.LP * M,xL “M,NP "I, NP

M,N,P

) =0

(no sum over I,K,L) , (5.23)

2 _ (c . 2 21 .
36, (612 + 9€,(GIC, (x) -;f—l (e,@ + ;i Lo+ 1 legglt-o.

(5.2%)

The iavariant tensor YaBy is either totally symmetric or totally
sntisysmetric. Let us look st these two cases in more detail:

1f Vasy is totally anctisymmectric, g, IK must be antisymmecric in
J, K in order to preserve the symmetry (5.2). In this case a supersymme~
tric solution of ocur finiteness conditions cannot exist because in two

dimensiocas a totally antisymmscric object « vanishes identicsally so

K
that the finicteness condicion (2.20) cannot be satisfied. Raquiring,
however, only antisysmecry of “r K in J, K, our independent varisbles
are o.. 92. c' 12° and € 12 A straightforvard calculation then shows
that Bgs. (5.22) ~ (5.24) have no solution st all.

44 1“' is totally symmecric, ‘I.JK must be symmstric in the last

two indices and our independent variables are Oys Pae %y yyv By 20




A e 4 s

%

€ aae Saopgr S2.20 and ‘2.22. In this case a tedious calculation gives

as the only solution of Eqs. (5.22) - (5.24)

14

Y

2
- 2-L
°2 2

(5.25)

1,12 " 52,11 1,22 “ 2,12

corresponding to the supersymsetric form (5.4), (5.5) of the Yukaws
couplings, and

- g? C,(r) & (5.26)

2
1.k *J.x we

KL

vhich is just the finiteness condition (2.20). Again, ansatz (5.17),
wvhen iaserced into Eqs. (5.10) and (5.11), leads to the supersymmetric
form (5.6) of the quarcic scalar self-coupling.

Modal III

This model {s characcerized by the following two basic assumpcions
regsxding the Yukswa couplings in the Lagrsngisn (S.l).:
(i) The coupling A:j is proportional to the group generator T;; in the

(atbitrary) represencation R,

s a
Aij -1 Tij . (5.27)
{ii) The coupling ri ik is totally symmetric,
ri,jh -~ cijk (tocally symmetric) . (5.28)

In this case, introducing for convenience the abbreviation

LS (5.29)

.o .
ij " Cikt Sjae ’

#) Note that, in contrast to the previously discussed models, here ve do

not impose any (explicit) constraint on the represencacion R.

&
.
£
]
-

g2d (G

No
condit
allows
serted

leaving

as the

remsi;
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the finiteness conditions (5.8) - (5.12) read
3 » - 2 a b2 _ 2 T‘ b . b "
{3 £7C,(0) Jel TRIT, * Y5 8 ItiHar 1 r Ypl=0. G
3
(e, gl 82 - 171D T 4 -k 1 ¢ (k= 0)} »

203 o2 -
ocjuuhj (r r)ji xjil “-0, (5.31)

o

6 ,pl b | - [y ) b b _a -
k| ),.(f'-“"q., sieirat 1y at T

2,98 8 L4 - L »
SlTI3TT T i Sanj ~ “Cmij Spik Sake Squi *

* dln.kl dkl.pq * ‘dnk,pl dnl.qk ¢

+

b o5l 211 -3 gyt ™ ¢ Kod * (5.32)

1212 -l 2 4 - - -
td @it -3 @ T, ek T e @) paq) =0,

3 22 (7t 7% -
G 8- 2rHat . - e d

ij jk.ik =0, (5.3

Tar] 2
3(C,(G) )2+ 2dxll . NE,ETR) + (2 2 _y Iyt «
‘2 '2 b g g

s—_ 1 k-0, (5.34)
$2d(G)

Now, first of all, for representations satisfying the finiceness
condition for the gauge coupling constant, JCZ(G) » T(R), Eq. (5.30)
sllovs for the two solutions 1 @ 0 and /12 % 32. When, hovever, in-
sercted into Iqs. (5.31) and (5.34), v = O results in & trivial theory,
leaving cthus the supersymmetric value

M?-%;z (5.35)

as the only possible solution of Eq. (5.)0). For this value of v tha

remaining finiteness conditions are given by



26

c“l.[g:(‘l‘. T‘)-‘ - Kd.] * cycl.perm. (ikt) =« 0 , (5. 16)
3w e b e b, L .3 .b b .a -

28 (T T )p-(T T 'an (T T )p-(T T )qn

.

- 2,78 S8 - - - )
(1" T )ji €pat cmj ‘cnij cpjk okt cqli

*» -1 2 a ')
dan ke Ykt.pq * “dak.pt dnt.qrk * dmmpjlqy T T T Tl e
L P - —— .
* d-j.pq“jn 78T T‘)jn] *(mesn) s (pe>gq) =0, (5.37)
- l 278 o8 - -
Yk,ik T T ET T m K 20, (5.38)
’ Tt ' - 2P ™) -0 (5. 39)

Once again we sdopt the ansatz

* a .
d % € Ckta * 8T Tyy ¢ T Tep) (3-40)

oo -
1) ,kt

for the quartic scalar coupling dij entering in £q9s. (3.37) and (5.38),

: ki
¢ the latter of which then reads

(@=1)%; + (8 - % 5?)(1° r‘)u .0. (5.41)

At this point one has to distinguish the following two possibilities:

Case (A): The patameters c and § take the supersysmtric values
a=t, 824 (5.42)
which solve £q. (5.41). Defining for brevity che heraitesn mstrix

\4

‘. - g2 -
CARLE Y (r* 1")ij . 9 =q, (5.43)

one is left vith the finiteness conditions
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Civm n.‘ + cycl.perm. (ikt) = 0 , (5.44)

c. [ Q + * Q * * '] *
pik “mnk "iq * “pk “mjk “in * Spak “mmj “jk

+ (m*=-n) +(pe=>gq)=0, (5.45)

Te(t®* ™ g1 -0 . (5.46)

By making use of the gauge invariance of the Yukawa coupling ¢ Eq.

ijk’
(5.45) can be reduced to Eq. (5.44). Eqs. (5.%4) and (5.46) can be
combined to Tr[A2] = 0, which implies 2 » O due to the hermiticity of

fl, i.e. the finiteness condition (2.20),
- g a .
K-8 * )ij - (5.47)

Case (B): Ifa ¥ I, 8 ¢ % 82 Eq. (5.41) shows that ‘ij has to be
proportional to * T‘\ij; the factor of proportionality may be resd off
from £q. (5.39):

- g2(T8
K = 82a ""’aj (5.48)
satisfies Bqs. (5.36) and (5.39). By a careful analysis one can then
convince oneself that in case relation (5.48) holds the remaining finite-

oess conditions, (5.37) and (5.38), have no solution except the super~
symmetric one,

ael, g=1g2. (5.49)

Thus, in any case one ends up with the supersymmet~ic four-scalar
interaction (5.6) and the tiniteness condition (2.20).
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V1. Summary Referenc
In the present work we have discussed the conditions for the finite- (1] P.C

vess of the most geoeral renormalizable quantum field theory. This A.

finiteness criterion yields, order by order in the loop expension, s set
of velations between the parameters of the theory. A large class of (21

solutions of chese finiteness conditions, provided by the supersymmetric

x E ~
. . .
~ o

theories described in Sec. II, has already been known for some time. We

vere thus particularly interested in the question whether there exist 13}

o

non-supersymmetric finite quantum field theories.

General consideracions showed that within & non-trivial gauge theory, [s}]

®
1

in addition to the gauge bosons, fermions as well as scalar bosons have Is]
to be present in order to be able to solve the finitemess conditions at (6]
sll. The most general case being, already at the one~loop level, rather
involved, wva focused our attention to a somevhat simplified class of
theories. In all models studied ve were unambiguously led to supersymmetric
velations between the dimensionless coupling constants. Supersymmetry 7
together vith the finiteness coanditions (2.19) and (2.20) proved to be (8]
the unique solution of the finiteness requirement for these models. | (91

W L o L
o T

Consequencly, all our finite modeis belong to the class of constrained l

(2N
.

supersymmstric theories of Sec. II. Thus the analysis of Refs. (11} (10]
applies. Although wve did not need the full two-loop divergence structure .

for our investigation, the mndels discussed will nevertheless be finite ri1}
up to the two-loop level.

(12]
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Table |

3

3l
The gauge 8 function from N =0 to N = 4, 8 := y —:—- g~ -E _bso@H.

g (4m)?

Supersymmetry Supermltiplet Contribytion to b
- n
NeO v“ ~ G 3 Cz(c)
2
v F - 3 ()
1
¢S % T(S)
Ne@-3tm-g100
Neil Ve (x,vu) ~C 3 cz(c)
o= (A, x)~R - T(R)
3 cz(c) - T(R)
e 2 V'.z a (V.8) G 2 CZ(G)
+
R (0|.02) ~ I.- -2 T(ﬂl)
2 (cz(c) - T(ll)l
Ne b V'.‘ » (V'_z,\l) ~C 0




