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ABSTRACT S - T
.Fractal behavior associated with single-particle trajectories and
lzosets 1s observed in molecular dynamics sinulations of liquids and
superionic conductors. Fractal dimensions of tralls and isosets are found
to be 2 and 0.5, respectively. These values are shown to bz universal in
that they are independent of the spatial dimensionallity, the nature of the

interparticle interaction, and the thermodynamic state of the system.

The single-particle motion In liquids 1s conventionmally characterized
by the welocity autocorrélation function and diffusion constant. These
tharacteristics vary from system to system and are also functions of the
thermodynamic state of the system. How:ver, certain features of the -
single-particle motion are independent of the nature of the Interaction or
the thermodynamic state of the system. These universal features are
manifested in the fractal behavior of single-particle trajectorles and
isosets: thelr fractal dimenslons are always 2 and 0.5, respectively.

The fracfal behavior of single-particle trajectories iIs related to

their length.® When measured in units of a step distance g, the length of
a trajectory, L(c), decays algebraically over a certain range of €:

L(e) =€ . (1)
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! The exponent o is called Richardson's coefficlent, and the fractal
dimension D is defined as

D=1+a. (2)

The fractal behavior of isosets is related to Brown functions, x;(t),
y (t)....ghich describe the tine varlations of coordinates of a
part-cle. The instants of time {1} when the Brown function 1s equal to a
given value X, constitute an isoset, If Xo is the origin, the iIsoset is
known as the zeroset. The gaps between successive values of t are
described by a probability function Pr(G > g), for findins a gap of
duration ¢ greater than a glven value g. It can be shown™ that

Pr(G > g) « g-D (3)
where D is the frastal dimension of the isoset,

Fractal behavlor of single-particle trajectorles was first observed
by Powles and Quh:k.e3 in molecular dynamics simulations of Lennard-Jones
fluid. These authors concluded that the fractal dimension D = 1.65 and
that D may be a functlom of the thermodynamic state of the system.
However, Rapaport's M simulations for a hard-sphere system revealed that
the asymptotic value of D inferred from very long trajectories ylelds the
expected value D = 2,

.Iﬁ this paper we report the results of ocur molecular dynamics
calculations on several liquids whose Hamilvoalans may be written as
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Here u measures the strength of the interaction, and o the size of the
particles. The exponent n determines _the steepness and range of tie force
law. We have chosen thes& systems because of_the relative simplicity.in
characterizing their fhermodynamlc state by e single dlmenslonless
variable

r= u(% Vreg T, (5)

vhere r, 1s the mean Interparticle separation: nrz = p-l, p being the
number density of the system. By varying the exponent n we can study the
effects of the range and steepness of the interaction. Speclal values of
n correspond to experimentally studied systems.

(1) =n=1. If we write uc in Eq. (4) as e the Hamiltonian describes the
Interaction between electrons confined to move in a plane. Charge
neutrality is maintained by adding a uniform background of positive
charge. This Hamiltonian has been used to model electrons on the
surface of liquid helium, which has been _studied by & variety of
experimental techniques and simulations. % 1 particular, it bas
been shown that the system undergoes a fluid-solid transition at
Te = 125 ¢ 4.

(2) =n=3. Replacing ud3 by uz the energy of interaction in Eq. #)
corresponds to dipoles whose moments, u; polint perpendicular tec the
plane of motion. To a good approximation, this_model describes a
system of polystyrene spheres floating on water’ or immersed in a
ferromagnetic fluid sandwiched between glass plates and under the
influence of a magnetic field perpendicular to the plates.8
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Dynamical simulation39 have shown that the system sclidifies at
l'f = 62 5 3.

(3) ©n=12. The potential energy in Eq. (4) is the repulsive part of the
Lennard-Jones potential. It s used as a model for the interaction
of Inert-gas atoms at high demsities, Computer gimulation studiegl®
indicate a solid-fluid transition at I‘f = 0.98 7 ,

Trajectorles. of the particles in these systems were obtained by the

method of molecular dynamics (MD). As is well known, this technique {is
used to generate a sequence of dynamic states of the system by numexical
integration of the equations of motion. We usad a fifth-order predictor-
corrector method for this integration.” MD caiculations were performed

for systems containing 256 particles in a rectangular cell vwhose "sides I

and L were In the ratilo I'ley = 2/¥3. Periodic boundary conditions wer’e‘
impoagd on the system. :
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Figure 1: Variation of the len
with the step distance ¢ for n=
freezing temperature.

gth, L(c), of a single-particle trajectory
1,3 and 12 systems at Te/T=0.29. Tg 1s the

Molecular dynmamics simulations yield the positions :- (o), 4 (At),--

r (nAt) of the particles 1 = 1, 2,--N at regular time int%rvals it where
A% is the time step used in inte

grating the equations of motion., Since At
is sufficiently small, the particles may be assumed to travel along
etraight lines between successive time intervals, The length L{c) is now

calculated for a given value of the step distarice € by counting the number



of times a rigld rod of lemgth ¢ fits iuto the trajectory. End
‘corrections are taken as fractions. In the limit e+o, the length L)
corresponds to the lzngth of the trajectory as If it were stretchedlyat
into a straight line. This length s L. =¥ t where v = (2 k; T/m) is
the thermal speed and t the duration of the D sinulation. For large
values of € the length will be given by the separation between the end
points of the trajectory and this is close to the root mean square
distance of the trajectorles.

Figure 1 shows the log-log plot of the length L(e) as a function ~f
the step distance € for n=1, 3, and 12 systeas. It Is apparent that there
1s a range of € (~ 10) over which L(e) decrezses linearly on the
logarithmic scale. The slopes of these linear reglons give Richardson's
coefficient a which is related to the fractal dimension D by Eq. (2). The
data in Fig. ! show that D is always 2, regardless of the nature of the
interparticle Interaction in the system. Hovever, this is true only if
the trajectories are sufficiently long (~10° at). FPor shorter
trajectories (30,000 At) the fractal dimensicn D is less than 2; the
higher the temperature, the larger the deviation from D = 2. Thus, the
fractal dimension approaches 2 in an asymptotic way when the trajectorles
are-sufficlently lomg. MD calculations also show that the fractal
dimension has the sam: universal value In different thermodynmamic states.
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Figure 2: Time variation of a Brown function measured relative to its
value at t=0 for n=1 system. The function is plotted at intervals of 20
At where At=2.3x10""“ sec.

The probability function for gaps was calculated from Brown functions
{xi(t), y.(t)} generated by MD simulatioms. A plot of Brown function is
shown in *ig. 2. Members of an isoset are the Instants of time when the
Brown function equals a given value x_. Thess menbers tend to cluster,
but the clusters themselves are distrgbuted sparsely. The gaps G are the
durations between successive members of an isoset, The probability
function Pr(G > g) is the number of gaps of duration G greater than a
given value g, normalized by the total number of gaps. Figure 3 shows a
log-log plot of P(g) as a function of g for tie three systexs at the same
reduced temperature T_/T = 0.29. The slopes yield 0.5 for the fractal
dimension D in the three systems. That D = 0.5 holds at other values



of T too, implying that ¥ is also 1ndeyendent of the thermodynamic state *
of the system.

u L 4 r ¥ ' L 4
o {2}
. * . - n=1 .
-1 .°-° -
L R
D =05« 0.03
—2 o -

In Rr(Q@ > @)

-
» -
S~

e

PR e - . - s

»
M.
- ! - - R :___ R o

Figure 3: Tke probability function Pr(G>g) for flnding gaps G of dnration

greater than g at T IT—O 29. The gaps are measured in units of an MD time
step At. : ’

In conclusion, MD simulations for & variety of systems in 2 spatial
dimensions reveal fractal behavior assoclated with trajectorles and
isosets of single particle motion. The fractal dimensions of trajectories
and isosets are 2 and 0.5, respectively, irrespective of the nature of the
interparticle interaction or thermodynamic state of the system. Recently,
we'ﬁave investigated the fractal behavior of diffusing Ag lons in the
superfonic phase of Ag,S. MD calculations have shown that the Ag ions
diffuse anlsotropically along certain directions in the lattice of S
particles. Fractal dimensions D and D for Ag ions are again 2 and 0.5,
respectively, These results confirm the universal nature of fractal
dimensions of tralls and 1sosets.
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