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ABSTRACT . - . - .

Fractal behavior associated with single-particle trajectories and
isosets Is. observed in molecular dynamics simulations of liquids and
superionic conductors. Fractal dimensions of trails and isosets are found
to be 2 and 0.5, respectively. These values are shown to ba universal in
that they are independent of the spatial dimensionality, the nature of the
interparticle interaction,, and the thermodynamic state of the system.

The- single-particle motion in liquids is conventionally characterized
by the- velocity autocorrelation function and diffusion constant. These
characteristics vary from system to system and are also functions of the
thermodynamic state of the system. However, certain features of the
single-particle motion are independent of the nature of the interaction or
the thermodynamic state of the system. These universal features are
manifested In the fractal behavior of single-par t i d e trajectories and
isosets: their fractal dimensions are always 2 and 0.5, respectively.

The fractal behavior of single-particle trajectories Is related to
their length. When measured in un!.ts of a step distance e, the length of
a trajectory, L(e), decays algebraically over a certain range of e:

L(e) « e " a . (I)
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The exponent a is called Richardson's coefficient, and the fractal
distension D is defined as

D = 1 + a . (2)

The fractal behavior of isosets is related to Brown functions, j
Yj(t)....which describe the tine variations of coordinates of a
particle. The instants of time {x} vhen the Brown function is equal to a
given value x constitute an isoset. If x o is the origin, the isoset is
known as the zeroset. The gaps between successive values of T are
described by a probability function Pr(G > g), for finding a gap of
duration G greater than a given value g. It can be shown that

Pr(G > g) « g"° (3)

where D is the fractal dimension of the isoset.

Fractal behavior of single-particle trajectories was first observed
by Powles and Quirke in molecular dynamics simulations of Lennard-Jones
fluid. These authors concluded that the fractal dimension D = 1.65 and
that D may be a function of the thermodynamic state of the system.
However, Rapaport's4 simulations for a hard-sphere system revealed that
the asymptotic value of D inferred from very long trajectories yields the
expected value D = 2.

In this paper we report the results of our molecular dynamics
calculations on several liquids whose Hamiltonians may be written as

2

Here u measures the strength of the interaction, and cr the size of the
particles. The exponent n determines.the steepness and range of the force
law. Vie have chosen . thesef systems because of -the .relative simplicity, in
characterizing'their thermodynamic state by a "single"dimensionless
variable . ' . . . - .

T = u(f f /kB T , (5)
° 2 - 1

where r i s the mean interparticle separation: irr = p , P being the
number density of the system. By varying the exponent n we can study the
effects of the range and steepness of the interaction. Special values of
n correspond to experimentally studied systems.

(1) n=l. If we write uc? in Eq. (4) as e the Hamiltonian describes the
interaction between electrons confined to move in a plane. Charge
neutrality is maintained by adding a uniform background of positive
charge. This Hamiltonian has been used to model electrons on the
surface of liquid helium, which has been studied by a variety of
experimental techniques and simulations.^*6 In particular, i t has
been shown that the system undergoes a fluid-solid transition at
r f = 125 ± 4.

(2) n=3. Replacing utf3 by u the energy of interaction in Eq. (4)
corresponds to dipoles whose moments, u , point perpendicular tc the
plane of motion. To a good approximation, this model describes a
system of polystyrene spheres floating on water or immersed in a
ferromagnetic fluid sandwiched between glass plates and under the
influence of a magnetic field perpendicular to the plates.



Dynamical simulations9 have shown that the system solidifies at
If »» 62 •£ 3 .

n=12. The potential energy in Eq. (4) is the repulsive part of the
Lennard-Jonea potential. I t Is used as a model for the interaction
of inert-gas atoms at high densities. Computer simulation studies1 0

indicate a solid-fluid transition at I"f = 0.98 v .

( 3 )

m * H , J 5 i v r l e i ° f J* C ? a r t * c * e 3 l t t t h e s e systems were obtained by the
method of molecular dynamics (MD). As is well known, this technique i s
Ztt M " * * * ? * , . * sequence of dynamic states of the system by numerical
integration of the equations of motion. We usad a fifth-order predictor-
STST » f°f t h i 3 i n t e S r a t i ° n ' «D calculations were performed
for systems containing 256 particles in a rectangular cell whose sides
£ " S T 0 V ^ " ^ "«*«* — * editions

1 • 1 • % 1

°f

freeing

l e n g t h » L < £ ) » o f a single-particle trajectory
TJ is

^ n s yield the positions xAo), T , (At>, -
P " t l C l " * = l - 2 » - N a t r e8«la* time intervals i t where
S t e P " s e ^ i n ^tegratitig the equations of ootion. Since At

. t ? ff ^ y . S m a I f ^ P a r t i c l e s "V t>e assumed to travel along
straight lines between successive time intervals. The length L(e) i s now
calculated for a given value of the step distance e by counting the number



of times a rigid rod of length e f i t s Into tie trajectory. End
corrections are taken as fractions. In the l io i t e+o, the length L(c)
corresponds to the length of the trajectory_as If It were stretched^ l
Into a straight l ine. This length is L = v t where v « (2 kR T/ra)
the thermal speed and t the duration Of the K) sinulatiou. For large
values of e the length will be given by the separation between the end
points of the trajectory and this is close to the root mean square
distance of the trajectories*

Figure 1 shows the log-log plot of the length L(e) as a function r>?
the step distance e for n=l, 3, and 12 systeas. It Is apparent that there
is a range of e (~ 10) over which L(e) decreases linearly on the
logarithmic scale. The slopes of these linear regions give Richardson's
coefficient a which Is related to the fractal dimension D by Eq. (2). The
data In Pig. 1 show that D is always 2, regardless of the nature of the
interparticle interaction in the system. However, this Is true only If
the trajectories are sufficiently long (~105 At). For shorter
trajectories (30,000 At) the fractal dimension D Is less tlian 2; the
higher the temperature, the larger the deviation from D = 2. Thus, the
fractal dimension approaches 2 In an asymptotic way when the trajectories
are-sufficiently lo»g> MD- calculations also show that th* fractal
dimension has the saint universal value in different fchermodynanslc states.
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Figure 2: Time variation of a Brown function aeasured relative to Its
value at t=0 for n=l system. The function Is plotted at intervals of 20
At where At=2.5xl0~12 sec.

The probability function for gaps was calculated from Brown functions
{x.(t) f y , ( t )} generated by MD simulations- A plot of Brown function is
shown In Fig. 2. Members of an isoset are the Instants of time when the
Brown function equals a given value x . These neobers tend to cluster,
but the clusters themselves are distributed sparsely. The gaps G are the
durations between successive members of an Isoset. The probability
function Pr(G > g) Is the number of gaps of deration G greater than a
given value g, normalized by the total number of gaps. Figure 3 shows a
log-log plot of P(g) as a function of g for the three systeas at the same
reduced temperature T /T = 0.29. The slojpes yield 0.5 for the fractal
dimension "D in the three systems. That D = 0.5 holds at other values



of r too* Implying that
of* the system.

Is also independent of the thermodynamic state
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Figure- 3r The- probability, function PrCG>g) for finding gaps G of dnra-tton
greater than g at T,/T=0.29. The gaps are measured in units of an MD time
step At.

In conclusion, MD simulations for a variety of systems in 2 spatial
dimensions reveal fractal behavior associated with trajectories and
Isosets of single particle motion. The fractal dimensions of trajectories
and isosets are 2 and 0.5* respectively, irrespective of the nature of the
interparticle interaction or thermodynaralc state of the system. Recently,
we have Investigated the fractal behavior of diffusing Ag ions in the
snperionic phase of Ag,S. MD calculations have shown that the Ag ions
diffuse anisotropically along certain directions in the lattice of S
particles. Fractal dimensions D and D for Ag ions are again 2 and 0.5,
respectively*. These' results confirm the universal nature of fractal
dimensions of trails and isosets.

REFERENCES

1. R. K. Kalia, S. V. de Leeuw, and P. Vashishta, to be published;
S. W. de Leeuw, R. K. Kal ia , and P. Vashishta, to be published.

2 . B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San
Francisco, 1982) .

3 . J . G. Powles and N. Quirke, Phys. Rev. Let t . 5 2 , 1571 (1984) .
4 . D. C. Rapaport, Phys. Rev. Le t t . 3 , 1965 (1984T.
5 . C. C. Grimes, Surf. Sc i . 73j 379 T l978) ; R. Hehrotra, B. M. Guenln,

and A. J . Dahm, Phys. Rev. L e t t . 48, 641 (1982 ) .



6. P. Vashlshta and R. K. Kalia, in Melting, Localization and Chaos,
ed. R. R. Kalia and P. Vashishta (North-Holland, NY), 1982, p. 43 .

7 . P. Pieranski, Phys. Rev. Lett. jj5_, 569 (1980).
8 . A. T. Skjeltorp, Phys. Rev. Let t . j i l , 2306 (1983).
9 . R. K. Kalia and P. Vashishta, J. Phys. C14, L643 (1981).

10. F. van Swol, L. V. Woodcock and J . N. Cape, J . Chem. Phys. _73_, 913
(1980); J. Q. Broughton, G. H. Giliner and J. D. Weeks, Phys. Rev.
B25, 4651 (1982).


