
@ Fermi National Accelerator Laboratory 

FERMILAB-Pub-86163-A 
April 28, 1986 

PARKER LIMIT FOR MONOPOLES WITH LARGE MAGNETIC CHARGE 

Hardy M. Hodges, Edward W. Kolb, and Michael S. Turner 

Theoretical Astrophysics Group 
Fermi National Accelerator Laboratory 

Batavia, IL 60510 
and 

University of Chicago 
Chicago, IL 60637 

Abstract 

The survival of galactic magnetic fields places a limit on the flux of 
magnetic monopoles, the so-called “Parker limit.” Previous discussions 
of the Parker lit have assumed that the charge of the monopole is 
the Dirac value, goiroc = 2r/e. However, if the grand unified group is 
broken by Wilson limes, as is assumed in some superstring models, the 
minimumvalue of the magnetic charge is not the Dirac quantum, but an 
integer multiple of it. In this brief report we investigate the dependence 
of the Parker limit on the charge of the magnetic monopole. 
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One of the most interesting predictions of grand unified theories (GUTS) is the 

existence of field configurations corresponding to magnetic monopoles. In standard 

GUTS the breaking of the grand unified symmetry is via the Higgs mechanism. 

With such symmetry breaking, it is possible to have non-trivial topologies for the 

gauge orientation of the vacuum expectation value of the Higgs field. One such 

example of a non-trivial topology corresponds to a magnetic monopole, i.e. a so- 

lution with Coulombic magnetic field B = gx/rs for ]r] -+ 00.r In these theories, 

the magnetic monopole has a mass of mu u Mc”T/e, where MGVT is the GUT 

symmetry breaking scale. For GUTS such as SU(5) or SO(lO), this mass is about 

10r6GeV. The minimum magnetic charge of GUT monopoles is the Dirac quan- 

tum, g = gDirac = 2r/e. Although monopoles with charge greater than the Dirac 

quantum exist in these theories, they are expected to be unstable and decay to the 

minimum-charge monopoles. 

The discovery of a magnetic monopole would be of tremendous significance. Not 

only would such a discovery be important for particle physics, but it would also have 

profound implications for cosmology, as the very early Universe (t 5 lo-s’sec) is the 

only possible source of such massive particles. At present there are many ongoing or 

planned experiments to look for superheavy cosmic-ray monopoles. A benchmark 

value of the flux of magnetic monopoles is the upper limit obtained by requiring 

that the magnetic monopoles moving through the galaxy do not drain the galactic 

magnetic field faster than astrophysical processes can regenerate it.3 For magnetic 

monopoles of unit Dirac charge and moving initially with v cz lo-se (the galactic 

virial velocity), the Parker limit is’ 

F&.f 5 lo-‘scm-ss-‘sr-’ (rn~ 5 10”GeV) 

FM 5 10-15(m~/101’GeV)cm-2s-‘sr-’ (mM 2 10”GeV). 0) 

[If galactic monopoles have large-scale coherent motions, they can possibly help to 

maintain the galactic magnetic field, and the Parker bound may be evaded. For 

a discussion of the possibility, see Wasserman, et a1.5 In this report we will also 

mention the effect of varying the magnetic charge on the coherent motions.] 

Recent work on unified theories with extra dimensions has led to the discovery 

of an additional mechanism for symmetry breaking.6 In theories with extra dimen- 
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sions, the vacuum geometry is of the form M’ x B, where M’ is four-dimensional 

Minkowski space, and B is a compact internal manifold. The most promising model 

at present is the superstring theory with gauge group E,, x Es.’ If B has SU(3), 

U(3), or O(6) holonomy, and the spin connection of B is embedded in one of the 

E8 factors, the ES will be broken to a subgroup G, which is Es, O(10) x U(l), or 

O(lO).s The symmetry can be broken further by means of Wilson lines if zr(B) 

is non-trivial. The Wilson lines may be thought of as Higgs bosons in the adjoint 

representation of G, but with some fundamental differences. The difference of inter- 

est here, is the fact that the minimum magnetic charge when symmetry breaking is 

done by Wilson lines is not the Dirac value (2z/e) ss with Higgs symmetry breaking, 

but rather k(27r/e), where k is an integer.s 

The production of monopoles in the early Universe has been considered for 

GUT monopoles lo and Kaluza-Klein monopoles In the case of GUT monopoles, 

the standard cosmology predicts an abundance of monopoles far in excess of that 

allowed by the present mass density of the Universe. The expected abundance of 

Kaluza-Klein monopoles is far more difficult to estimate, but could be as large as 

that for GUT monopoles. Of course, the monopole glut can be turned into a famine 

by inflation. In either case, it might seem unlikely that monopoles are present today 

in an abundance accessible to observation. Nevertheless, it is possible that some 

magnetic monopoles were produced in the very early stages of the big bang, survived 

annihilation and inflation (by being produced after inflation), and would be present 

in the Universe today. The surviving monopoles would today be quite cold, and 

would have velocities determined by the galactic virial velocity, v c- lo-sc. Even 

if monopoles are not bound to the galaxy, u N 10m3c would still be the relevant 

velocity, as this is about the peculiar velocity of our galaxy with respect to the 3K 

microwave background. In the absence of theoretical guidance, we will take the relic 

flux to be a free parameter, and the local monopole velocity to be 0(10m3)c. 

The application of the Parker limit to monopoles of arbitrary mass and unit 

Dirac charge was discussed in detail by Turner, Parker, and Bogdan’ (hereafter 

TPB). Here, we will review some of their assumptions and results relevant for the 

extension of their calculations to include monopoles of magnetic charge not equal 

to the Dirac quantum. 
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Observations of the galactic magnetic field suggest an average B-field strength 

of 3 x lo-sG, with a typical coherence length of I, = 300pc(e lO*‘cm), a spatial 

extent of Rs = 30kpc(= 10z3cm) from the center of the galaxy, and a regeneration 

time (via dynamo action) for the galactic magnetic field of trrg = 30Myr. We refer 

the reader interested in more details and references to TPB. 

The magnetic force on a monopole of charge g = kgoi,,, is 

Fmod = gB N O.OGeVcm-‘k&, (2) 

where B = B3(3 x 10-6G). The energy gain by a monopole (initially at rest) 

traversing a field B of coherence length le is 

AE = gB1, z 0.6 x 10zOeVkI~~B~, (3) 

where I, = IsrlOz’cm. Note that AE is proportional to k, and independent of rnM. 

The final velocity of the monopole is 

v,,,.# = 10-3e(kIzlB3/m1,)“2, (4) 

where mrr is mM/lO1’GeV. 

Now consider monopoles initially not at rest. Monopoles with initial velocity 

fJ L haag will suffer only a small change in velocity, while monopoles with initial 

velocity v 5 vmag will suffer a large change in velocity and will emerge with v = v,,,.r 

after traversing the magnetic field region. The Parker bound will depend upon 

whether v is larger or smaller than vmg. We consider the two cases in turn. 

(1) %mP > v. Upon encountering the first B-field region, the monopole will 

be accelerated to v II v,.~. In subsequent encounters with B-field regions, the 

monopole will gain or lose an energy given by Eq.(3). On average, the monopole 

traverses a distance comparable to the diameter of the galactic magnetic field region 

(2Rs) before leaving the galaxy. In its journey it traverses 2R~/l, coherent regions, 

gaining an energy of 

AErorar. = (2R~/l,)‘/2gBI, N 6 x 10”eV k BJ(I~~R~s)~/~ 

(R23 = Rs/1023 cm). The survival of the galactic magnetic field requires 

FM x (xsr) x (4nRi) x AEror4~ < (B2/8A)(4aRi/3)t;,‘,. 

(5) 

(‘3) 
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This results in the flux limit 

FM 5 lo-l5 k-’ cm-2.5r-1sec-1, (‘1 

for the fiducial values of B, Rg, l,, and 1,,,. Note that the limit is proportional to 

k-‘, i.e., as k increases the limit becomes more stringent. 

t2) vmag < v. In order to have v,,,.# < II = 10e3c, the monopole mass must 

satisfy rnM > IO” k GeV. Note that the critical maas increases in proportion to 

k. As TPB point out, the energy gained by a monopole in traversing a coherent 

field region is a second order effect; to lowest order, on average an isotropic flux of 

monopoles undergoes no net gain of energy. To second order, the average energy 

gain per monopole is proportional to mM(Av)2, where 

Au N (gB/mM)l,/v. (8) 

This leads to a change in the magnetic field energy of 

AE N 2 x 10”eV kZ Bif&/ml,. (9) 

Note that AE is proportional to k*, and inversely proportional to mM. The num- 

ber of monopoles which 1:ass through a coherent field region per time is FM x 

(49rIZ) x (KST). If we require the total field energy in the coherent field region, 

(Bz/8x)(4nl:/3), to have a dissipation time less than treg, the monopole flux bound 

becomes 

FM 2 lo-l5 k-’ m17cm-2sr-1s-‘. (10) 

Note that the tlux bound is proportional to kMZ. 

The results of the limits in the two regions are given in the two figures. To 

summarize the results, in the region v,,,.~ > u (which applies for rnw < 10”k 

GeV) the flux limit is proportional to k-‘, in the region u,,,.~ < v the flux limit is 

proportional to kp2: 

FM 5 10-‘6k-‘cm-Zs-1ss-1 (mM < 10” k GeV) 

FM 5 10~‘6(m~/10”GeV)k~2cm~2s~‘sr~’ (mM 2 10” k GeV). (11) 

As expected the flux bounds are more stringent for k > 1. 
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As mentioned above, it may be possible to evade the Parker limit if the monopoles 

undergo coherent motions. A necessary, but not sufficient, condition for coherent 

monopole motions is that the phase velocity, urh, of the monopoles associated with 

their coherent motions be greater than their internal velocity dispersion, (w*)~/*. 

The phase velocity is 

WI = (fJp/2r)4 021 

where a~,’ = 4sg*nM/mM is the monopole plasma frequency and 1 is the spatial scale 

associated with the coherent monopole motions. The condition uph > (Y*)~/* leads 

to the lower bound to the monopole flux 

FM 2 ~mM(v2)3/2(gl)-2 

2 ~O-‘*ml~(kpc/l)* k-’ cm-2st-‘sec-1, (13) 

where we have used the velocity dispersion appropiate for a galactic halo of monopoles, 

(r~~)r/~ N 10e3c. Note that increasing k decreases the flux needed to sustain coherent 

monopole motions. 

Finally, from Es.(a), the formula for the energy gain by a monopole with v > 

~l,,,.~, we CM estimate the time it takes for monopoles in the galactic halo to gain 

enough energy to evaporate from the halo. The evaporation time is about t,,,,s e 

1014m~,k-2sec. In order that the galactic halo population of monopoles have an 

evaporation time longer than the age of the Universe requires rnM 2 3 x 10’skGeV. 

The mass increases with k. 

This work wsa supported in part by the Department of Energy and NASA. 
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Figure Captions 

Figure 1. The Psrker limit for magnetic monopoles of magnetic charge g = 

k?mr.c = k(2n/e), with k = 1,2,3,4. 

Figure 2. The Parker Limit for magnetic monopoles of magnetic charge g = 

k?Diroc = k(an/e), with k = 10°,10',102, 103. 
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