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Abstract 

The MORSE neutron gamma-ray transport code has been modified to allow for the 
transport of scintillation light. This modified code is used to analyze the light collection 
characteristics of a large liquid scintillator module (18X18X350 cm3). 
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1. Introduction and Method of Calculation 

Efficient collection of scintillation light produced by the energy deposition of a charged 
particle is important in the overall performance of a scintillator detector system. The 
detection efficiency is determined by many factors including the geometry of the modular 
section, the index of refraction of the scintillator material and external material (usually 
air)* which determines the internal reflection characteristics, the absorption length of 
scintillation light, the photoelectron conversion efficiency of the phototubes, and the size of 
the phototubes. The MORSE1 Monte Carlo code was modified to include all of the above 
factors so that accurate scintillation light transport could be carried out. 

The wavelength distribution of the isotropically distributed scintillation light is shown 
in the upper graph of Fig. 1. The wavelength distribution was used by employing standard 
sampling techniques to define the source wavelength for the transport calculation. As 
implied by the histogram in Fig. 1, the calculation was carried out using IS scintillation 
light wavelength groups, each group being 10 nm wide. 

The absorption length for all wavelengths of light considered was assumed to be 75, 
150, or 225 cm. Three sets of 15-group cross sections (reflecting the above absorption 
lengths) with no downscatter were generated. During the transport, scintillation light 
which traveled the sampled flight path before reaching the phototube was assumed to be 
absorbed and therefore would not contribute to the detector response. 

Scintillation photons which reached the sides of the modules were allowed to either 
escape or undergo specular reflection. Any photon whose angle of incidence was greater 
than the critical angle was internally reflected. Any photon whose angle of incidence was 
less than the critical angle was allowed to escape from the system and therefore would not 
contribute to the detector response.* The critical angle is defined from the following 
expression: sin 6 = 1 /n, where 9 = angle of photon relative to the normal at the surface 
and n = the index of refraction of the scintillator material which for these calculations has 
been taken to be 1.5. 

Scintillation photons which are not absorbed or dc not leak from the system reach the 
phototubes (represented by the 2 cylindrical holes in the geometry) and can produce a 
detectable photoelectron. The probability of this occuring is given by the bottom graph in 
Fig. 1. Analytically, these data can be represented by the following expression: e = 0.26 
e-5.2xi0-'(\-400.)J Generally speaking, most phototubes are approximately 20-25% 
efficient, requiring 4 to 5 scintillation gamma rays to produce one photoelectron. 

'Generally for liquid scintillator systems, the box, usually lucite, containing the liquid has an index of 
refraction very similar to that of the scintillator. Internal reflection will then occur at the box/air interface 
and not at the scintillator/box interface. 

'Some reflection is possible due to surface irregularity contamination for angles less than the critical angle. 
However, this effect is neglected in these calculations. 
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Fig. 1. Scintillation light output and phototube efficiency versus wave length. 
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No statistical weighting was used in any of these calculations. A source particle which 
started with a weight of one had a statistical weight of one when or if it finally produced a 
photoelectron at the phototube. Statistical weighting would have yielded the same average 
results, but with these calculations analog fluctuations are also necessary if the detector 
efficiency with respect to light collection is to be properly determined. 

The detector module size considered for these calculations is 18.3x18.3x300.3 cm3 (x, y, 
z coordinates were chosen such that 0, 0, 0 represented the center of the module).* The 
wall thickness of the container is 0.1S cm which yields an active scintillator volume of 
18.xl8.x300. cm3. Attached at each end of the detector is a 7.62 cm diameter phototube. 
Thr geometry of the detector module was set up using the combinatorial geometry package 
in MORSE. The phototubes were represented by a cylindrical hole cut into each end (z 
= ± 150.) of the module. 

II. Results 

The number of photoelectrons produced in both phototubes as a function of the number 
of source scintillation photons and as a function of scintillation photo absorption length is 
given in Fig. 2. These results are for a source of photons located in the center of the 
detector module. As can be seen, only a small number of photoelectrons are produced 
relative to the number of initial scintillation photons. A fit to these curves yields the 
following expressions: 

!

1.125x10° S for X = 75 cm 
4.113xl0"3 S for X = 150 cm 
6.688xl0"3 S for X = 225 cm 

where S is the number of scintillation photons and PE is the number of produced 
photoelectrons. 

For liquid or plastic scintillator approximately 100-125 eV of energy deposition is 
required to produce one scintillation photon. Therefore, 4000 photons correspond to 
0.4-0.5 MeV in energy deposition. Figure 2 defines the energy normalization for the 
detector module. Over the range covered by these calculations, the response is very linear 
with respect to energy deposition. 

The energy resolution of the detector module was determined not by the average 
number of photoelectrons produced, but by the fluctuations in the number produced. An 
example of these fluctuations is illustrated in Fig. 3 for 2000 source scintillation photons 
located in the center of the module. The solid curve was obtained directly from the 

"fi/201 

calculated data and the dashed curve was obtained from a Gaussian (ae ) fit to 
the data. The data are very well fitted by a Gaussian curve. The fluctuation as measured 
by the standard deviation a as a function of scintillation gammas is given in Fig. 4. As 

'This detector module is being constructed for use at the KfK/SNS neutrino experiment. 
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Fig. 2. The number of photoelectrons produced versus the number of source scintillation 
photons. 
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one would expect from statistical theory, the curve in Fig. 4 is proportional to the square 
root of the number of photons. A best fit to the data yields the following expression: a — 
6.54x10"2 Sw for X = 150 cm and S is the number of scintillation photons. Data points 
for X = 75 and 225 cm are also given. However, by using the data in Fig. 2, the data for 
X = 150 cm can be used to obtain <r's for X = 75 and 225 cm. For example, 4000 
photons for X = 75 cm correspond to approximately 1200 photons for the X = 150-cm 
case relative to the number of photoelectrons produced. Comparing these values in Fig. 4 
yields the same a. 

The data presented so far have been for an isotopic source located in the center of the 
module. The spatial variation of the average number of photoelectrons detected as a 
function of distance from the center of the detector module toward one of the phototubes 
is given in Fig. 5. The coordinates (x,y) remain on axis. A strong variation in the average 
number is evident for all absorption lengths especially as the edge of the module is 
approached. Ideally, these curves should be as flat as possible. By using timing 
differences between the two phototubes to locate the energy deposition site and the above 
curves, the spatial variation of light collection as it influences energy resolution can be 
partially minimized. 

Calculations have also been carried out to determine the variation in signal when the 
source is moved along the x-axis and the y and z coordinates are fixed. This variation in 
source location leads to very small changes, except at the very edge of the active 
scintillator region and should not lead to any serious resolution degradation. Fluctuations 
in the data presented in Fig. 5 can be obtained from the the data given in Figs. 2 and 4. 
Similar data are presented in Fig. 6 as were given in Fig. 5 except that only one phototube 
has been considered. 
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Fig. 5. Spatial variation in the number of photoelectrons produced as a function of distance 
from the center of the module. 
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