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ABSTRACT 

A model is presented for the large-scale structure of the universe in which two successive 

inflationary phases resulted in large small-scale and small large-scale density fluctuations. This 

bimodal density fluctuation spectrum in an R = 1 universe dominated by hot dark matter leads 

to large-scale structure of the galaxy distribution that is consistent with recent observational 

results. In particular, large, nearly empty voids and significant large-scale peculiar velocity 

fields are produced over scales of - 100 Mpc, while the small-scale structure over 5 10 Mpc 

resembles that in a low density universe, as observed. Detailed analytical calculations and 

numerical simulations are given of the spatial and velocity correlations. 
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I. IKTRODUCTIOIN 

Astronomers tell us, convincingly, that the universe is open, with density parameter 

RE 0.1. Particle physicists argue plausibly and strongly that it should be marginally closed 

with 12 = 1. Attempts to reconcile these diverse opinions have not hitherto carried much 

conviction. These include seemingly ad appeals t,o biasing of density fluctuations (Davis et 

al. 1985; Bardeen et al. 1986) and to decaying particles (Dicus et ai. 1977; Turner et al. 1984; 

Gelmini et al. 1984; Olive et al. 1985). Such schemes are designed to leave the dark matter 

distribution more uniform than the luminous matter, thereby resulting in an apparent R that is 

small. However not only are these schemes somewhat contrived, but they conspicuously fail to 

resolve ocher problems of large-scaie structure, most notable among these being the clustering 

of galaxy c1ustcrs. 

The problem, and the beauty, of infiation is that it provides highly specific initial data 

for the very eariy universe. It is precisely this specificity that has raised serious questions 

about the validity of inllation, and provoked the biasing and decaying particle schemes as 

rescue operations. However the difficulty may well arise through an oversimplified treatment 

of inflation itself. Two of us have recently described a novel approach to inflation that promises 

to resolve the 12 and large-scale structure problems (Silk and Turner 1986). Here we present 

some quantitative estimates of large-scale structure probes utilizing this new idea. We first 

review our scheme of double inflation for an astrophysical audience (511). \Ve next discuss 

an analytical model and its predictions of large-scale structure (SIII), and present numerical 

simulations of the non-linear structure in §IV. A final section discusses the implications of our 

results. 

II. DOUBLE INFLATION 

Guth (1981) proposed inflation to resolve the horizon, flatness, and monopole problems. 

IIowever, his original model was fatally flawed in that the Universe never exited the inflationary 

phase back to a radiation-dominated phase. ;\I1 inflationary scenarios are now based upon the 

variant, dubbed ‘new inflation’ , proposed independently by Linde (1982) and r\lbrecht and 

Steinhardt (1932). A generic prediction of all models of new inflation is adiabatic density 

perturbations with a scale-invariant spectrum which arises from quantum Auctuations during 
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the inflationary process (Guth and Pi 1982; Starobinskii 1982; Hawking 1982; Bardeen et al. 

1983). Below we will briefly desribe the aspects of new inflation relevant for double inflation. 

We refer the reader interested in more details to the recent review by Turner (1985). 

According to our present understanding, inflation occurs whenever a weakly-coupled 

scalar field (denoted by p) is displaced from the zero-energy minimum of its potential (denoted 

by CJ; V'(u) = V(a) = 0). While th e scalar field (D is displaced from the minimum of its 

potential, the associated potential energy density V(p), often referred to as ‘vacuum energy’, 

drives an exponential expansion of the Universe. Of course, a scalar field displaced from the 

minimum of its potential will evolve toward that minimum - just like a ball rolling down a 

hill. However, for a very weakly-coupled scalar field, the time required for p to ‘roll’ to ‘p = o 

is a substantial number of Hubble times, during which time all the scales in the presently 

observable universe grow from a size smaller than the Hubble radius (during inflation) to a 

size much greater than the Hubble radius. To be more specific, if the evolution time for p is 

greater than about 60 Hubble times, a small, smooth patch of the Universe (before inflation) 

will grow to a size which encompasses all that we see today. 

Quantum mechanical fluctuations in the scalar field ‘p, which arise as it is evolving to 

rp = o, ultimately result in adiabatic density perturbations with constant (albeit model- 

dependent) amplitude at the time they cross inside the horizon after inflation; this is the 

so-called Zel’dovich-Harrison spectrum of density perturbations. In particular, as a given 

scale L crosses outside the horizon during inflation, say at t = ti, quantum fluctuations in 

the scalar field lead to adiabatic density perturbations on that scale, with amplitude which 

depends upon the evolution of ‘p at that instant 

(sP/P)HOR = (ff*/ti’)lt,. 0) 

The simplest way to specify when the scale X crossed outside the horizon is by the number of 

e-folds of inflation, N, from horizon crossing until the end of inflation; it is straightforward to 

show that 

N(L) = 46 + ln(L/Mpc) + ‘In term’ (2) 

where the ‘In term’ depends logarithmically upon the vacuum energy during inflation (V(p)) 

and the reheating temperature after inflation. For the simplest scalar potential, V(p) = Xp4, 
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the amplitude of the density perturbations on astrophysically interesting scales (N Y 30 - 50) 

at horizon crossing is: 
(6p/p)Nox cz (32/3)+ XkN+, 

(3) 
N 10s xi, 

From Eqn(3) it is clear that to achieve an acceptably small amplitude, - O(10m4), the coupling 

constant. A, must be very small 

x cz lo-‘4, (4) 

i.e. , ;s must be very weakly-coupled. This result is generic to all models of inflation. 

At present there is no truly compelling particle physics model for inflation; however, there 

are many candidate models. They include models where the scalar field ‘p is associated with 

spontaneous symmetry breaking, supersymmetry/supergravity, superstrings, compactification 

of extra dimensions, exotic theories of gravity, or is just a ‘random scalar field’. The plethora 

of scenarios suggests that the Universe may well have undergone several episodes of inflation. 

Scales which left the horizon during the same inflationary epoch will have the same amplitude; 

however, different episodes will necessarily result in different perturbation amplitudes. Silk and 

Turner (1986) have advocated the simplest version of multiple inflation, ‘double inflation’, as 

a means of ‘decoupling’ perturbations on large and small scales, and have constructed several 

specific particle physics models where double infiation occurs. \Ve refer the reader interested 

in further details to their paper. 

In this paper we will consider a specific model of double inflation, one where the two 

episodes of inflation separately produce a Zei’dovich-Harrison spectrum of density fluctuations, 

of small amplitude (0(10-s)) on large scales due to the first inflationary phase, and of large 

amplitude (0(10-i)) on small scales due to the second phase. In the next sections we discuss 

in detail the consequences of such a scenario for large-scale structure in the Universe. 



III. GALAXY CORRELATIONS AND PECULIAR VELOCITIES 

We consider a universe containing hot dark matter. Owing to the large-amplitude density 

perturbations on small scales, seeds will condense early and eventually develop into galaxies. 

Here we will not be concerned with the details of this process and will treat this on a purely 

phenomenological basis. We develop a simple phenomenological model here; in the following 

section, we shall present numerical simulations of the galaxy distribution. 

Double inflation produces a gaussian fluctuation spectrum 

P(k) = Ps(k) + P,(k). (5) 

This is identical to the standard scale-invariant power spectrum PL(~) on large-scales, with a 

cut-off below comoving scale 2a/kD = LD = 13Mpc/Dhs due to the free-streaming of the hot 

dark matter with one species of massive neutrinos, where as usual h G H,/lOOkms-‘Mpc-‘. 

We shall subsequently set h = 0.5. We write (Bond and Szalay 1983) PL(~) = ALklO-fklkD)“‘. 

In addition, there is a non-linear small-scale seed contribution that we describe phenomeno- 

logically by writing 

Ps(k) = A,k4[1 + @k)‘exp Irk]-‘. (6) 

The physical origin of the seeds is due to the fact that our double inflation model yields 

large fluctuations on smail scales. These grow by gravitational instability to become non- 

linear seeds on galactic or subgalactic scales while the large-scale power produces only small 

amplitude density fluctuations. The seeds could be primordial black holes if they collapsed in 

the very early universe, or supermassive black holes such as are believed to lurk inside active 

galactic nuclei if collapse occurred after recombination. Or they could be a sub-population 

of massive galaxies that formed very early, at z >> 10. Such seeds play a crucial role in the 

explosive amplification theory of galaxy formation (Ikeuchi 1981; Ostriker and Cowie 1981; 

Bertschinger 1983; Carr and Ikeuchi 1985), and also arise naturally via accretion onto string 

loops in the cosmic string theory of galaxy formation (Zel’dovich 1980; Vilenkin 1985). We 

will not discuss the detailed mechanism of how these seeds transform themselves into galaxies, 

since our emphasis here is on large-scale structure. 

The seed contribution to the fluctuation spectrum is designed to match the observed non- 

linear galaxy correlations over scales 5 5h-’ Mpc, and to mimic the “minimal” 1;“ tail in the 
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longwave part of the spectrum (ko << l), that would inevitably arise due to mode coupling 

(Zel’dovich 1965). We adjust the parameters o = lh-’ Mpc to yield the separation between 

small galaxies and fl = 1Oh-’ Mpc to correspond to the separation between galaxy clusters. 

On scales larger than or of the order of the mean cluster separation, Ps(k) makes little or no 

contribution compared to P,(k). The effective correlation function is 

E(T) = Es(r) + h(7)> (7) 

and is the Fourier transform of Ps(k) + PL(k). The choice (6) yields 

Es(r) = c 
(0.8) sin(0.4r) r-,.s 

2+! 

for CL << r << 0 . Normalizing [s(r) to be equal to (r/r,)-‘.* with 

r. = 5/L-‘Mpc (9) 

yields 

C = 324(Mp~)~.*(r,/5h-‘Mpc)‘~*. 

Over larger scales, the galaxy correlations contribute only 

(10) 

Es(r) K r-7(7 > P). (11) 

The correlations yield the gravitational potential energy associated with galaxies as a 

function of increasing scale, and application of the virial theorem (Pcebles 1980) should, at 

least on small scales, provide a fair estimate of the rms velocities of galaxies. Use of the two- 

point correlation function gives the rms relative velocity of galaxy pairs, and we obtain for the 

observed correlations 

V(T) = 505 (&)“’ (k)“” (,,:kpc) kms-’ (121 

Now we may take the effective n on these scales to be Rs = 0.1. This is the contribution from 

the fluctuations driven by the primordial seed component that are responsible for forming 

galaxies. The hot dark matter contribution dominates, but only contributes to fluctuations on 

large scales. Thus we write fl = Rs + RL = 1, II, = 0.9, and infer that v 5 500 km s-l for 
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r z r, = 5h-’ Mpc. This is consistent with observations: indeed the contribution of EL(~) 

to E(r) on scales of (5-10)h-’ Mpc may result in an observable Aattening of the correlation 

function (Davis and Peebles 1983). This flattening also enhances the pairwise velocity field, 

and our model produces a slight increase of u(r) with increasin g scale (cf. equation (12)) that 

may match the pairwise velocity distribution as a function of scale better than any cold dark 

matter simulations (Davis et al. 1985). 

In Figure 1, we present the results of analytic calculations of EL(~) and the peculiar 

velocity field up(r). Normalization on large scales is accomplished by setting the 5s integral 

equal to 600 hh3 Mpce3, where the 5s integral is defined by 

dlnkPL(k)[sin(kr) - kr cos(kr)]. 

We have fixed A, in order to have E(5h-‘Mpc) = 1. We then have 

E(r) = & lrn k2 dk P(k)% 

/ 
m dkP(k)e-k2’2. 

0 

(13) 

Note that E(r) remains positive out to about 45 Mpc. This may be sufficient when filtered 

above a suitable threshold (Kaiser 1984) to account for much of the power in the cluster-cluster 

correlations. We cannot be very precise on this matter, since an adequate theory for the 

threshold amplification mechanism is lacking and because the systematic statistical errors in 

the cluster-cluster correlations are not well understood. However, we have applied the formula 

given by Politzer and Wise (1985) to compute the cluster correlations .& by setting a biasing 

t.hreshold of v = 4. The uncertainties in the data are taken from a recent analysis of the 

cluster correlations by Ling et al. (1986). The agreement-between predicted and observed t,, 

is reasonable, especially considering that E ec is only the expectation value of the correlation 

function at a given log f. 

The predicted large-scale peculiar velocity field is much harder to reconcile with observa- 

tion. In particular, we compare it on scales - 5h-’ Mpc where there is the dipole motion of - 

600 kms-’ (Lubin and Villela 1986), and at - 60 h-r Mpc where there is the recent cosmic drift 

measurement of - 600 kms -’ (Dressier et al. 1986). Since a randomly placed observer will, 
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five percent of the time. measure a dipole velocity that is below l/3 of the plotted value and n 

large scale peculiar veiocity that exceeds the plotted values by 1.6, our model only reconciles 

the large-scale peculiar velocity measurements provided that h is increased by about a factor 

of 4. This is marginally consistent with the cluster correlations and allows a significant peculiar 

motion on large scales, thereby avoiding the difficulties arising in biased cold or hot (conven- 

tionally normalized : <&p/p),,, = 0.6 at z = 3) dark matter scenarios (Vittorio and Turner 

1987). The normalization to cresting today is equivalent to setting (6p/p),,, = 0.6 at 2 = 1. 

Perhaps the most serious potential objection to our model concerns the amplitude of 

the galaxy peculiar velocities on small scales ( 5 5h-‘filpc) where the galaxy correlations are 

unity or larger: can we reconcile the relatively low observed values with an inflationary R = I 

cosmology? We address this in the following section. 

IV. NUhfERICAL SIMULATIONS 

No self-respecting theory of large-scale structure is complete today without verification by 

means of numerical simulations. To help substantiate the phenomenalogical model given in the 

previous section, we have studied simple numerical models that we see as first approximations 

to the problem at hand. 

We would like to generate an initial mass distribution with the correct initial power spec- 

trum. However, the number of particles and/or dynamical range in length scales in presently 

available N-body codes is not sufficient to specify in detail the initial large and small-scale 

structure present after recombination. For the initial exploration of our phenomenalogical the- 

ory, a simple model will suffice. We approximate the small scale structure by an initial Poisson 

distribution, which is represented by a flat power spectrum. The large-scale structure is ap- 

proximated by a single wave with a wavelength the size of the computational box, or a delta 

function in k-space. !Ve use a 3-D particle mesh code developed by JVV (Villumsen and Davis 

1986). We have 32768 particles and the initial conditions are generated using the Zel’dovich 

approximation (Efstathiou, Davis, Frenk and \Vhite 1985; hereafter EDFW). 

We have run four models past the point where the wave crests and one control model. 

In these models the only variable is the strength of the wave relative to the white-noise level. 

The Poisson noise is taken to be identical in the various runs. \Ve vary the strength of the 
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wave by setting the expansion factor ecr at which the wave crests. We nave tried Q,= 4.05(A), 

6.075(B), &l(C), 16.2(3), co(E), with the main difference being the time that the small scale 

structure has to amplify before cresting. hlodel C is the model we favor. 

Figure 2 shows snapshots of model C( a,,=S.l) seen in two projections. The pancake 

plane is the x-y plane. The strong clustering is evident even before cresting. The correlation 

function in Figure 3 shows nearly self-similar evolution over a large range. Points inside log 

T - -1.6 with r measured in grid units are strongly affected by the grid softening and are not 

reliable. The logarithmic slope 7 c -dlnE/dl nr is approximately 2.0. This compares favorably 

with the observed slope of 1.8. EDFW found that the initial power spectrum /6s(k)l had to be 

steeper than i62(k)j cx k-” with n > I. In the present models we vary the relative strengths 

of the large and small scale structure, which effectively varies the slope of the initial power 

spectrum. In model A we find that the correlation function is too shallow; y - 1.5. In model D 

the slope is slightly steeper than 2, while in model B, 7 - 1.7. Model E was run as a test model 

for the code, and it develops a very steep correlation function y - 3 at a = 11 in agreement 

with previous simulations (Davis et al. 1985). There is an obvious steepening of the correlation 

function with decreasing strength of the wave. This is equivalent to saying that the correlation 

function steepens with decreasing slope of the initial power spectrum. 

Outside the correlation length, the correlation function becomes shallower due to the effect 

of the pancake. On scales larger than the thickness of the pancake the density distribution is 

effectively two-dimensional. This large-scale density contrast, which constitutes the pancake, 

shows up as a plateau in the correlation function. After the wave crests, the plateau is at a 

fairly constant amplitude in time because the thickness hardly changes. The strength of the 

small scale structure, however, grows so the plateau moves to larger and larger scales. 

The pairwise velocity dispersion is calculated in units of the Hubble velocity across the 

box, excluding components in the z-direction, that is normal to the pancake plane. We can 

translate the velocities into physical units by settin g the correlation iength to 5h-i ~pc. 

Figure 4 shows the velocity dispersion at various epochs for our favored model (model C). The 

velocity scaling has been applied at a = 13. We see that the dispersion profile is quite flat at 

all epochs. At the end of the simulat~ion the velocity dispersion is in the range 400-500 km 

set-‘. This is the one-dimensional velocity dispersion averaged over the two components in 
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the pancake plane. If an observer were placed inside the pancake after the wave crested and 

then determined the pairwise veiocity dispersion by measuring only radial velocities, he would 

not measure the true velocity dispersion. Llost of his objects would be in the pancake plane 

and his velocity determinations would not be sensitive to the velocities perpendicular to the 

plane. He would thus underestimate the true velocity dispersion. If we apply the same scaling 

to physical units at the various epochs independently, we see that the amplitude of the velocity 

dispersion changes little in time. Models A and B have velocity dispersion profiles very similar 

to model C, while in model D the amplitude is over 1000 km see-‘. Due to the grid softening, 

these profiles are not meaningful inside log T --1.6. The magnitude of the coherent part of the 

velocity field is best seen in phase space; in Figure 5, we display plots of velocity versus height 

above the symmetry plane. The random component is between five and ten percent of the 

Rubble flow across the box, while the magnitude of the coherent flow amounts, after cresting, 

to about 60 percent. 

In Figure 6, we show the density profile as a function of height above the symmetry plane. 

After cresting, the density contrast averaged over a region containing 50 percent of the mass 

is about 10 to 1 between pancake and the void evacuated by the assymmetric collapse. This 

compares well with observations: for example, in the Bootes void, a 30 upper limit on the 

density of luminous galaxies is 25 percent of the mean background value (Oemler 1986). 

V. DISCUSSION 

Relaxing the conventional inflationary prediction of a single amplitude Zel’dovich- 

Harrison spectrum of scale invariant density fluctuations has allowed us to revive hot dark 

matter as a viable cosmological scenario for the evolution of large-scale structure. Our pre- 

ferred scheme, referred to as double inflation, yields large amplitude small-scale density fluc- 

tuations that form pregalactic objects, capable of clustering and producing the galaxy-galaxy 

correlations, together with small amplitude, large-scale fluctuations that dominate on scales 

longward of - 10 - 20h-’ Mpc. A wide variety of weakly non-linear initial conditions on small 

scales are capable of producing the k-’ power spectrum that characterizes galaxy clustering 

over 0.1 - 10 h-i Mpc, and we have developed a phenomenological model that is insensitive to 
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the detailed fine-scale structure of the early universe. It is the large-scale power that produces 

large-scale voids and sheets of galaxies. 

How close are our models to accounting for the observed large-scale structure? Our 

phenomenological model is designed to reproduce the galaxy-galaxy correlations. Large voids 

arise naturally: the typical dimension is the coherence length of the hot dark matter component, 

between 40-100 Mpc. The density contrast between pancake and void is about 10 to 1, and 

is consistent with upper limits on the absence of luminous galaxies at the voids. The quss- 

sphericai topology observed for the voids is likely to be a natural outcome of any model in 

which voids are generated by gravity. Our models have I7 = 1, but the effective R as measured 

by galaxy peculiar velocities is - 0.1. Thus no recourse to biasing schemes is necessary for 

galaxies. The low effective R is due to the fact that we take a snapshot of the pancake shortly 

after cresting occurs, before sufficient time has elapsed to randomize the coherent velocity 

field. Since we are not constrained by having to form galaxies out of the hot dark matter 

component, our model is not subject to the usual objections to a neutrino-dominated universe 

(see, e.g., Frenk et al. 1983). Our calculated peculiar velocities (- 400 - 500 kms-‘) are in 

reasonable agreement with galaxy-galaxy peculiar velocities on small scales ( ( 10 h-’ Mpc), 

while on large scales up is still consistent with the large peculiar velocities of - 600 kms-’ 

recently reported for galaxies clusters over scales up to - 60h-’ Mpc. Our adopted large-scale 

normalization must be increased to 5s z 2000 Mpcm3 in order to match these large-scale 

streaming motions and simultaneously allow a large enhancement in the cluster correlations. 

The gaussian nature of the fluctuations means that at least 5 percent of randomly placed 

o’bservers would expect to measure a value in excess of a factor 1.6 larger than that shown in 

Figure 1 for the large-scale drift out to - 60/z-’ Mpc around Virgo. in addition, it should be 

noted that our adopted normalization, using the galaxy correlation length on small scales and 

the 5s integral on large scales, is uncertain by at least a factor 2. 

The two observations that we have not explicitly evaluated by means of numerical sim- 

ulations are the cluster-cluster correlation function and the cluster peculiar velocities. Our 

simulation is of a single supercluster and lacks the dynamical range to examine larger scale 

structure. However it is clear that hot dark matter simulations must come much closer to 

producing sufficient clusterin g of galaxy clusters than do the biased cold dark matter simu- 

lations. Kow these latter models probably produce sufficient numbers of rich clusters and do 
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not fall far short of accounting for the cluster correlations when account is taken of the large 

statistical uncertainties in the data (White 1986); 1 lence we suspect that our model should be 

capable of meeting this challenge. \Ve have not unequivocally demonstrated this, of course, 

but it may be noted that the galaxy correlations do remain positive on large scales so that 

Kaiser’s (1984) amplification mechanism may play an important role in enhancing the cluster 

correlations (Figure 1). 

We note finally that there are only t,wo models presently capable of meeting the challenge 

of large-scale structure posed by the triple challenge of the observations of ‘Hubble bubbles’, 

cosmic drift and clustering of clusters. Cosmic strings coupled with hot dark matter can 

possibly explain the latter two phenomena (Brandenberger et al. 1986), but it is difficult to see 

how galaxy correlations can be enhanced relative to the cluster correlations without breaking 

the self-simiiarity and how galaxy formation around string loops is suppressed in the voids: 

moreover, the non-gaussian nature of the fluctuations in this model has hitherto prevented any- 

computation of the probability of our being associated with any specific observed large-scale 

flows. Double inflation with hot dark matter and decoupled small-scale structure appears to 

be capable of explaining all three of these phenomena, and the random phase nature of the 

fluctuations allows us to make specific predictions of probabilities for experimental tests. 

Microwave background anisotropy may eventually provide a discriminant between these 

two competing scenarios, and we note that our renormalized hot dark matter model (non-linear 

at z - 1) predicts 6T/T - 3 x 10-s on large and intermediate angular scales (Silk and Vittorio 

1987). Moreover any fine-scale anisotropy is likely to be suppressed due to reionization of the 

intergalactic medium in models with non-linear seeds developing at early epochs (z 2 30). 

This research has been supported in part by grants from DOE, NASA and NSF at the 

University of California, Berkeley, Fermilab, and the IJniversity of Chicago and by NSF grant 

AST 85-14911 at CalTech. LIST is also supported by an Alfred P. Sloan Fellowship. 
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FIGURE CAPTIONS 

Fig. 1. Large-scale peculiar velocity field vp and cluster-cluster correlation function Ecc versus 

scale T for either one, two, or three species of equal rnazs neutrinos with R = 1, normalized 

as described in the text. The cluster correlations are computed by biasing the galaxy 

correlation function predicted from linear theory with a threshold v = 4 according to the 

prescription given by Politzer and Wise (1985). Error bars on the observed cluster-cluster 

correlations (Bahcall and Soneira 1983) are shown due to sampling uncertainties (Ling, 

Frenk and Barrow 1986). Data on the peculiar velocity field refers to measurements of 

the dipole anisotropy (Lubin and Villela 1986), effectively the Local Group motion at 

Sh-’ Mpc (Aaronson et al. 1986), Collins et al. (1986) (at SOh-’ Mpc), and Dressier et 

al. (1986) (at 60 h-‘~ Mpc). 

Fig. 2. Snapshots of the evolution of the particle distribution looking perpendicular (x-z) to the 

pancake plane and looking down on the pancake plane (x-y). For a = 1,5,7,9,11,13(Model 

(7. 

Fig. 3. The correlation function at various epochs for Model C (a=5,7,9,11,13). The abscissa is 

the separation measured in grid units. Cresting is at a=8.1 

Fig. 4. The velocity correlation function for Model C in km see-’ (Vz = 0, with the scale nor- 

malised to 5 h-i Mpc at a = 13). The other curves are rescaied by a factor a/13. The 

abscissa is the separation measured in grid units. Cresting is at a=B.l 

Fig. 5. The reduced phase-space plot (z-V=) for Model C. The abscissa is height above the pancake 

plane in grid units. The ordinate is the peculiar velocity in units of the Hubble velocity 

across the box. The plots are labelled by the expansion factor. Note the absence of 

small-scale structure near the pancake plane. A zero temperature wave would crest at 

a=8.1 

Fig. 6. Evolution of the mean density p(t) as a function of height above the pancake plane for 

Model C. The abscissa is height above the plane in grid units. The ordinate is the log of 

the density in units of the mean overall density. The plots are labelled by the expansion 

factor. 50% of the mass is contained within the vertical dotted lines. A zero-temperature 

wave would crest at a=8.1 
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