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The integrability of time-dependent spherically symmetric Yang-Mills
equations is studied using the Fermi-Pasta-Ulam method. The phase space of
this system is shown to have no quasi-periodic motion spectfic for integrable
systems. In partfcular, the well-known Wu-Yang static solution fs unstable,

so its vicinity in phase space {s the stochasticity region.
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1. Introduction. Formulation of the Problem.

The present work 1s a continuation of the numerical experiments started
in Ref. [1] aimed at studying the important problem of inteqrability of
Yang-Mills (Y.M.) classical equations. In [1] we considered the case when
gauge fields depended on time only (homogeneous model). Such a system reduces
to a finite-dimensional mechanical system (“Y.M. classical mechanics *), whose

non-integrability was demonstrated by studying the instability of periodical

solutions [1] and Poincare cross sections [2] as well as by other methods [3-6].

The proof of existence of non-inteqgrable subsystem of Y M. equations is a
crucial serious argument in favor of non-integrability of these equations in
the general case. There are some other arguments too, based on the so-called
Penleve criterion and making this claim reasonable [7] .

A1l this testifies that it has become extremely necessary to investigate
the 3+1 -dimensional Y.M. classical field system from the viewpoint of its
integrability.

Here we investfgate Y.M. classfcal equations in case of spherical symmet-
ry, 1.e. when non-abelian vector potential Ji: depends on 1.=|1;l and T .
Effectively, this is a classical field theory in 141 -dimensional ‘space-time,

and the problem of 1ts integrabilfty is clearly de“inred in the sense. that
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the behavior of two-dimensional integrable classical systems of the tvpe of
equations of sin-Gordon, Korteveg-de Vriez, etc. is studied quite well,

In the problem under consideration one can simultaneously obtain an
answer to the question about stability of the well-known spherically svmmet-
ric static solutions of Wu-Yang type [8] .

Unfortunately, one cannot answer analytically. with comnlete definite-

ness the direct question on inteorability of eacuations of the form:

- o e u \ (o
g™ Uge™ F(X, U, Ug, Uy o)
oy . WL L etr, are a first, second, etc. derivatives with resnect to

carvasponding arguiment) the considered system reduces to. The razson is ciear:
information ebout the whole {infinite-dimensional) phase space of the system
i3 necessary,

Ure should bear in mind that as shown in [9] , the mecessarv condition
of integrabiiity by the inverse scattering method of some class of partial
differential equaticns {5 the beleongirg of the correspondine reduced ordirary
differential equations to these of Penleve type. However this conditicr is
not proved so far with sufficient gemerality [9,i0] .

Ancther appropriate method to investicate integrabilttv of eouations of
{1.1) type is the approach suggested in the well-known work of Fermi-Pasta-
Uiam [11] . It consists in the replacement of continupus nonlinear string
1a (i.1) by its discrete analog with finite number of oscillating rofnts -
the chain of coupled anharmonic oscillators., Integration of such a chatin with
modern computers offers no difficulties. The real problem is to find cut
criteria which would allow us to conclude whether the afven system is {intear-
able or not.

First, one could follow the string shape. In thefr well-known work [12]

Zabusky and Kru;kal carried out a similar numerical exnériment with Korteveq-
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de Vriez equation and discovered elastic scattering of solitons, i.e. the
string oscillations after scattering did not turn into "shapeless ripnles™.
Later on, 1t became clear that such a behavior is due to total inteqrability
of Korteveg-de VYriez equation, 1.e. availability of infinite number of intea-
rals of motion [13] and possibility of transition to variables of "action -
angle” type,

The progress achieved in investigation of classical and ouantum dynamics
of the 1+1 -dimensional integrable field theories is well known [14,15] .

More general and frequent is the situation when the system {s non-intear-
able, and 1ts phase space represents {nvarfant tori intermittent with reaions
of ergodic {chaotic) motion. (This situation at the case of small nerturba-
tions is described by the well-known KAM-theorem [16].) In this case the
following of the string shape 1s not informative, Therefore Fermi, Pasta and
Ulam followed the energy distribution in string oscillations harmonics rather
than 1ts shape. Such "fourier-analysis"” of the string afves a richer infor-
mation than the above-quoted following of 1ts shape, for i1t 1s quite possible
that the string shape changes substantially, whereas from the viewpoint of
the fourier-harmonic analysis there occurs a veriodical eneray transfer
between several harmonics, this corresponding, in cornection with above-
stated, to motion over KAM-tori. The authors of this cutstandino work, while
observing such a picture, naturally concluded that the system is "thermalized"
anomalously siowly. Later on [17] , there were carried out numerical expert-
ments according to the same scheme; however a greater number of harmonics
were excited tnitially, owing to which the system motion took place this time
in ergodic layer: this resulted in uniform energy distribution in harmonics.
As a result this means that the Fermi-Pasta-Ulam system is non-intearable,
and its phase space is described by the KAM-theorem. Exactly this anproach

we have chosen here to investigate the system of Y .M. equations possessing
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spherical symmetry.

It is shown that the phase space of this system is ergodic, while the
system itself is non-integrable. The result obtained convinces us again how
nontrivial is the dynamics of non-abelian gauge field.

In Section 2 of this paper the system of initial equations 1s formulated

-;nd analytically investigated; Sectio; 3 presents the results of numerical
analysis; in Section 4 the transition to continuous 1imit is considered,

while Section 5 is devoted to concluding remarks.
2. Spherically Symmetric Y.M. Field.

Let us define the class of flelds which will be considered below. Remind
with this aim some definitions.

An arbitrary tensor field is invariant under definite oroun of coordinate
transformations if its Lee derivative is zero. In case of gauge fields, 1t is
suffictent to impose a weaker condition with a demand that the Lee derivative
is compensated by gauge transformation.

A general form of spherically symmetric cauge field of the SU({2)-aroup

in 3+1 -difmensional space-time is given by the expression 18

o ¥ 6 - ]+_'+_512_.6 n_+A.nn
A7 =7 [~ nyna v Sjex kT e,

(2.1)

(upper indices refer to the SU(2)-group, @ = 1,2,3; lower ones -
JyK =1,2,3 refer to the Lorentz group), where the arbitrary functions
2 2 2,Y2
Y2 ad Ao, depend on T = (Xy + Xt T3) ana t

The class of fields (2.1) is invarfant under abelian cauge transformations

6
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with a matrix U =EXP{if(‘Z,t)xaT"‘} , where f 1s an arbitra-
ry function, and T s the Su{2)-group generator.

The action for fields (2.1) has the form:

ol a .a _
S=- Is.ﬂg gdxﬁ“'ﬁ“"

—g—;[dzgdt[ T (Qu )+ +(2.%)° - -
- - amm92-92)]
where
D f, = 3, + Ee Au'p
Fuo = a},ﬂv Sy Au ,
Mv=01 ; i, E=12 a,_z_-% ; GGEC%

Effectively, (2.2) represents a two-dimensional field theory coincidina
with the Higgs model in 141 -dimensional space-time. Corresnondina to (2,2}

equations of metion are:

1 2 =
2, 2%4, - 4% (197 ~9}) .70

(2.3)

53y (V1 Fup) = D i €4 Y, =0,

In what follows we shall study in detail a special case when ¥, = A, =

= .H1 =0 *). Then £qs. (2.3) reduce to a single equation ( ¥ = 'J°2 }:

*) .Flo may always be taken zero owing to abelian oauce transformatfon

mentioned above,

R ———
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1
(82 -8%)F=—7z $(¥*-1) (2.2)

which has the form of nonlinear string (1.1). The static solution of (2.4)

a 1
Y = 0 1s the Wu-Yang monopole [8] Hj = '-TL"EJ-QK Mg v Y =-11s
2
the vacuum solution of HJO =0, Y =1 aqives the field Hjar- T Ejax Mk

which 1s gauge-equivalent to vacuum one. £q.(2.4) can be considered as a
Hamiltonian system in infinite-dimensional phase space with coordinates
$(2,t) and canonically conjugated momenta 379 (2t) =85°/6t ; SO our
purpose {s to describe the motions in this space,

First of all we shall describe the equilibrium states of the system
( -'ﬂ'bo = 0) which correspond to static solutions of En.(2.4), In order tn

eliminate non-autonomy of Eq.{2.4), we shall pass in 1t to a new variable 6
1= exp(6) , 6e(-oo,+o=) 7.5

thus arriving at equation

3¢ -3y + (- ¥2)=0 (2.6)

il 4
which 1s a particular case of the well-known Duffing equation Y + ay +
By ")
+ H + y~ = o /
Separatrices of Eq.{2.6) (curves) and the field of ‘1ts directions (arrows)

are shown in Fig.l, whence one can obtain a aualitative information about

c— —

*} Two cases of this equation are known well in the 1iterature [19] :

a,B>0 ("strong spring”) and @ >0 , B< 0 ("weak sprina™).

Eq.(2.6) corresponds to A< 0 , B <O . This "antifriction”
(Ad< 0 ) responsible for "instability as a whole” {s a characteristic

feature of Y.M, equations.
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behavior df all solutions. The separatrices divide the plane ¥ , dg ¥
into six regions. Solutions 1n region Il come out from the coordinate origin
and go away to infinity at finite © =9O; . Solutfons in reaion II' (with
replacement Y — — & ) behave analogously.

In terms of (T}, for all the solutions we have (0} = 0,
Y(2)=to0 ( Ty=70e"

ing regions II and II' when the solutions start at a zero noint and tend

). An exception are two separatrices divid-

to t]1 at ¢ oo (see Fig.2 for EPc, ~= +1). In other words, the point
Y = 0 {(Wu-Yang "monopole") s an unstable focus.

In regions 1 and I' the solutions are determined in a finite interval of
values >0 , T, <7 < T; ; Y increases unlimitedly at boundaries
of this interval, whereas inside the latter, ¥ 1s always modulo laroer

than unity(kj’I('l)l::-,zw\oc . ‘:PII(T-)*‘* -oo | gfI(z)>1’ .
7

L P
‘J"I((Z) <=1y,

Finally, in regions 1I1 and III' the solutions are determined again in
the finite range T >0 2, < T < 'l; and

Pl (2ly= -9l yz v |, 9T (2))2 $Ul2)) = moo
note that az‘_f’m <0 , 9, ‘-,PEI>0 (see Appendix 1).

Thus, solutions ‘P = t1 are unstable saddle points. Their senaratrices
{correponding to P = 1) are shown in Fig.3 a,b,c.

As a result we see that already static solutions of spherically symmetric
Y.M. equations possess instability: small perturbations of initial conditions
{ ¥(z) and 650/8'2, ) sharply change the behavior of solutions, in
particular, singularities ‘f(’l.) either appear or chanae their position,
Only five solutions { ¥ =t1, ¥ = 0 and separatrices bocv.a (2) in
Fig.2) remain finite for all T = 0. It should be noted that solutions

‘f’c1 . (2) . coinciding at T == 0 with the Wu-Yana solution and at
)




- et

Srion A G

T — &> with vacuum ones, are new solutions,
Now let us proceed to investigation of trajectories in nhase space near
3?5,:0 plane, for which one should take account of time depender . of

Eq.{(2.4) solutions *).
For small perturbations ng( 2,t)  near static solutions in Tinear

approximation we have
2 1 2 - )
(d: - 3%)69 =~ 77 (39D (n)-1) by (2.7)

where ‘-f(o)(’d) is static solution described above. More interesting are

perturbations near the five non-sinqular static solutions mentioned. Separat-

ing variables 7 and t 1n (2.7) we shall obtain:

twt
Sy(z,t) = urye “ (2.9
where tL() satisfies equation
1 2
~Uqp + 32 (39 (1)~ 1) u(z) = @Pu(?) (2.9)

coinciding in its form with one-dimensional stationarv Schredinger eauation

.
with £ =W~ and a potential

V(z) = "%'z' (39@%zy-1) - (2.10)

Time instability corresponds to the presence of levels with necative
energy ( wa < G ). Therefore for 9(°)= +1 (vacuum solutions), as is
seen from {2.10), small perturbations are stable, while for $©=1n and

‘;fc(o)z (2) solutions of Fig.2 Eq.(2.9) has negative levels (see Fig.4):

*} Time-dependent spherically symmetric sclutions near Wu-Yang mononole

were considered from another viewpoint in Ref.[20] .

10
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for this reason, small perturbations grow exponentially with time for each
negative level whose number is infinitely large.

These levels exist for any coz'< O , and one can demonstrate that their
wave functions are normalfzatle (see Appendix 2).

Similarly one can qualitatively describe non-static perturbations of sin-
gular solutions as well, for which in regions where &?wa(z)< /3 . there
arise, generally speaking, negative levels and hence exponentiz! instability.
This also means that the one-loop correction to classical action near solu-
tions Y% () has an imaginary part. |

Evidently this analysis is impossible for finite nerturbations. Here, as
mentioned in Introduction, an appropriate method of investigation is nuﬁerica?

simulation of Fermi-Pasta-Ulam type, which is just carried out in section 3,
3. Numerical Analysfs of Equation (2.4) Phase Traiectories.

We carried out a numerical analysis for solutions of Eq.(2.4) in the vi-
cinity of static solutions described in Section 2.

The continuous string of (2.4) was approximated by 2 set of nonlinear
éoupled oscillators Y(i) ( L =1,2,...,N), whose number N in our numerical
experiments was taken equal to 64 and 128.

A numerically integrated discrete analog of Eq.(2.4) was written in the
form:

P+ 4,1 -29(Lt) + P (L-t)  FLE) (Ui - 1)

£3.1)
(a2)? (éaz)?

Y (i,t)=
where A'C {s the string discretization step which we took equal to 0.1
(dots over Y denote differentiation with respect to (continuous) time).

The result of integration of (3.1) was expanded in harmonics:

11
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N-1 ..
(i) =Jo/N 2 P, tysin(SL) (3.2)
J:

so that energy concentrated fn all harmonics when nealecting the right-hand

side of Eq.(2.4) (or the second term in the r. h.s. of Eq.(3.1)) 1s

2 N-1 . .
7 2 (ViU Qf viG:Y)]
J:
(3.3)

a

J

-
_C)_J-A,Zsu‘le )

P4

while total energy of string (2.4) discrete analog 1s aiven by the exoression

N-1

1-92(L0)° 4o (3.4)
01 (taz)?

1
E'tot ‘f

Let us choose initial position of string ';P(L,O) and boundary conditions

Yo,t) » ‘f(l\!,t) . While considering perturbations of static solution

Y = 0, it fs natural to put
T(L,O)=O7 ?(O,t)= ‘f(th):O {3.5}

whereas initial velocity B?(L,t)/atl_t___o not equal to zero, this corres-
ponding to non-deformed “string" at t = 0, ‘

The other choice of initia) and boundary conditions corresponds to de-

formed but inftially resting string:

s 2 Wi AL
?(L,O)—J—ﬁt—%w(hﬂ)s”’( N_) (3.6
3y, t) —
$(ot)= P(N,H=0 at +,=0—0 ?

12
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where { Jo } stands for a set of modes excited at t = 0; summation in the
Irst equality in (3.6) 1s carried out over this set.

The problem §s formulated analogously near solutions ¥ = +1 and separat-
rices 5901'2 (z) .

If after primary excitation of some set of harmonics {jc_} all the rest
ones become excited too, then as mentioned fn Introduction, we have all
grounds to regard the system thermalizable, and hence we deal with a non-
integrable system.

In case there takes place periodical energy transfer between some modes
1s occurred in the expcriment of Fermi, Pasta, Ulam, then the system {s in
stable region of phase space (KAM-tori).

Fig.5 gives examples of time dependence for energies of three modes
§ =8.9,10 at primary excitation of five modes (amplitude A = 0.1) j, =6-10.
Here we took N = 64, E, .= 4.8 (Afuq/fu¢//<:1 %). Modes = f,7 not pre-
sented in the figure behave analogously, while all the rest ones are nracti-
cally non-excited {(mean energy per one such mode does not exceed 1 %).

We can see that at small enerqgy the system has approximately auasi-
perfodical motion,

The picture changes essentially with increasina string eneray,

In Fig.6 (N = 64, Euo4 = 1100, AB¢y /E, 4= 0.1 %, j,= 30,31,32)
one can clearly see the process of equal distribution of eneracies for nrima-
rily excited (amplitude A = 1, jo- 30,31,32) and the rest of modes {Fig.f
presents energies of some modes, | = 29,33,34,57). The picturs remains
qualitatively the same at further thrice-enhancement of energy and corresoon.
ing increase of amplitude for the same modes J, = 30,31,32.

In this case the system thermalization is already explicitly evident,

The same 1s pointed to by Fig.7, where we have aiven a distribution of

energy Ej ( ] =1.2....,64) averaced over larae time (rance of averaaing

13
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780 with a step 0.04) with respect to modes. The fiaure shows that on the

average all modes became excited.

4, Continuous String Limit.

One important circumstance should be emphasized, which {is connected with
transition from a continuous to a discrete case necessary in numerical ex-
periments, Such discretization introduces scales to a system not containing
dimensional parameters 11ke which the Y. M, system is, Therefore the problem
of inverse transition to continuous 1imit of above-considered discrete mode}
1s hiohly important.

In the continuous case (2.4) under transformations
T g, t—opt (2.1)

the system with energy £ and coupling constant 9 transforms into a

system with £’ and g’ :
2 -1 2
E/gf - ﬁ Eg
which means similarity of phase trajectories of systems with different
energies and coupling constants, just as 1t was the case with Y .M, classical
mechanics [1] . In other words, to study the system, 1t is enouoh to investi-
gate trajectories with only one energy E and coupling constant 9 .

At discretization (which represents a regularization analoc 1n classical
field theory [21] ), there arise additional parameters N and AT so
that modes Slj in (3.3) 11e in the range Slm.m'v 1/NA'Z
S pax~ /A7 -

To continuous 1imit there correspond A7 0 , N -=>oo but such that

L= N AT+

14
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This 1imit can be realized as follows: first, by decreasing Al at
fixed N, then, by increasing N at fixed A7 and so on. Here in the first
case (N 1s fixed) the system motion 1s determined only by dimensionless para-
meter O = ng-A"L , in which one may be convinced by means of (4.1)
type transformation TpT t -*pt and expression for energy (3.3),
(3.4) in the discrete case:

A'LI'-_”'P A'?-, Elga =P-1 Ega )

This means that phase trajectories with different AT but the same I
are equivalent. In such conditions the ;ontinuous ¥imit is achieved by tend-
ing of only N to infinity,

Foliowing this remark, we have investigated what happens with our system
at increasing N.

Fig.8 gives energies of modes for a strina with doubled N (N=128) with
the same initial configuration ¥ as 1n the case with N=64,

One can see from the figure that with increasina N (1.e. at aporoaching
to continuous limit) the string 1s “thermalized" faster, the reaton covered
by invariant tori is narrowing. It should be thought that in real continuous
1imit (§ ==<) this reaifon 1s absent at all, exactly as in Yang-Mills-Hiags
classical mechanics [ 2] at tending of Higas field mean expectation value to
zero the invariant tori vanished thus leading to total stochasticity of

Y.M. mechanics [6].

5. Conclusion.

&s a result of the present investigation, we have all arounds to claim
that not only Yang-Mi11s classical mechanics [1] but also Yana=Mills classic-

al field theory describing a system with infinite number of degrees of

15
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freedom is non-integrable, i.e. possesses dynamical stochasticity.

In other words, one may claim that the real OCD is a field theory which
in classical 1imit manifests dynamical chaos.

A reasonable guestion arises here: whether the traces of this stochasti-
city remain in the real QCD ?

If yes, then the confinement problem finds as is well known (see. e.a.
[22]) a natural explanation. ‘

However the question on the relation between classical and quantum
thearies from this viewpoint is far from being simple.

There are known e.g. consequences for gquantum systems nossessing in clas-
sical 1imit dynamical stochasticity, which are related with their snectrum
structure and properties of wave functions (see, e.q. [23,24.22,6] )*).

This allows to think that real spectrum of hadrons must carry traces of
jrregularity corresponding to here proved dvnamical chaos of Y.M, classical
field theory.

It is quite possible that also other characteristics of hadronic nhenome-
na can be revealed, which reflect dynamical stochasticity nf non-abelian
gauge fields governing the world of hadrons.

A real progress is possible in this direction. Here first one should
note Monte-Carlo calculations on lattice [27] of snectra1 distr1hu+1on [ (cC)
of expectation values of Wilson loops W (C) = de P (d)e

As follows from these calculations, for d1stances (Yoop sizes}) T less
than confinement radius 7. spectral density Qc(d) has a neak at ol = N,
*) The recent investigation of Yana-Mills-Hiaas auantum mechanics carried out

in some works [25,26] has shown that distribution of distances hetween
neighbour energy levels of this problerm reflects stochasticitv of Yana-

Mi11s-Higgs classical mechanics [2] .

16
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which means strong correlation of fields at small distances. However for
Toops with 1 2 7. the distribution [ (k) turns out to be practically
uniform, i.e. flelds are non-correlated and the distribution of expectation
values of W(C) corresponds to disordered confiaurations.

This argument 1f not being an artefact of Monte-Carlo lattice calculations
points out that some amount of stochastic compcnent is really present in 0CD,

0f course, the qlestion on whether this component 1is really manifesta-
tion and "relict" of classical stochasticity remains open so far; so further
investigatiors are needed here.

It should be mentioned also some recent works [28] , 1n which multinle
production 1s considered from the viewpoint of those stochastic reaularities
which are typical of quite various phenomena of Nature, from developed turbu-
lence up to galaxies distribution in clusters,

Quantitative generality of these at first sight absolutely not related
phenomena is expressed by universal relationship between essential parameters
of these phenomena including fractal dimension [29] .

Apparently, the essence of this generality contains yet a classical
aspect rather than quantum one.

Note in conclusion that the observed instability of Wu-Yang solution and
new solutions Séuz (2) makes extremely important to examine the similar
question for a more realistic case - T'Hooft-Polyakov monopnle. In other
words, the study of spherically symmetric Yang-Mills-Higgs equations is nece-

ssary. The results will be published elsewhere.
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Appendix 1

Let 1s present asymptotics of Eq.(2.6) solutfons,
At Jy-1]|<<1 we have:

6
ym{+ce+ e
At [y[<<1 we have:
y=~ e¥?[Acos (F6) + Bsin (26)] .
Finally at Y[ > 1  we have:
‘B 1
y~*(5_6 arz‘)-

.These expressions are obtained via analysis of formal power series for

Eq.(2.6) solutions in corresponding reafons.

Appendix 2

At '~fm- +1 we have V(2)= 2/7,2 - singular renulsive potential,
Non-degenerate continuous spectrum exists at coaao . At T=0 V(Z)~2%,
J_ust the second solution ~1/'z, does not belong to continuous snectrum.
In region a)z<0 there are no quadratically {integrable solutions, {.e.
discrete spectrum. So, the spectrum occupies a semiaxis 2 >0.

Consider now the cases ‘f‘o)- 0 or 'f“”: ‘fc',z . At 7 oo
V('z)—»g/'z’- , where 3 = -1 for the former case, and 3 = 2 for the

latter one. Examine the differential operator

H=-6-¢2+V(‘¢) (A2 1

18
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from £q.(2.9). It is symmetric for functions from dense subset L2(0,°°)
and has defect indices (1.1). This means that it will be self-conjucated for
the definitior regions {z(H)}: ue L%(0,00) © , Hue L¥(C,o0)
cos(eltd (0)) + sin (A U/(0)) , where & {is real, | |< /2, and

existence of fim w(z) and EBim u’(2) 1s assumed.
i+0 2+0

At of = 0 we have a condition W (O) = 0, Then for wW°> 0  we have
double-degenerate continuous spectrum, while for wi< 0 vie have sinole
discrete spectrum occupying the whole semiaxis. This can be seen from asvmp-

totics of Eq.(2.9) solutions:

u(@)wﬁ[ﬂcos(gfnz)i- Bsin(%@nz‘)] (& 2.2)

. _‘wz
w(e) —Ae "+ Be at g-—o° (@ # 0)

t1+4149")/2 (i-d1-ug /e
3 + B2 N at T2 (w = 0)

w(e) —Az

Usually only the case o« = 0 {s considered. At o # 0 spectrum does
not exist and hence.'ls absent at %< U . However if considering the
interval (€,+ o9 ), € >0 , then at any o we shall have a countable
set of discrete spectrum levels at w?<0 . The spectrum 1s unlimited
from below. At £ -~ O the upper discrete level tends to — =< , and the

distance between the levels increases as &~ !

19
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