
Preprint ЕФИ-876(27)-86

ЕРЕВАНСКИЙ ФИЗИЧЕСКИЙ ИНСТИТ /т

S,G. MATINYAN, Б.В. PROKHORENKO, G.K. SAVVIDY

NON-INTEGRABILITY OF TIME-DEPFNDENT SPHERICALLY

SYMMETRIC YANG-MILLS EQUATIONS

ЦНИИатоминформ

EPEBAH-1986



EMi-876(27)-86

о. i .im$Mj3ivu ,ь. p .

вдюппи nrvutena

ф ^Ш1}шишрпцГ\|Ьр|1 plimbqpb^pni

Ь^шЪш1(т|: BriLjg t тр1|шЬ, np tojrj ^LTui^uipqp i(inL^mj[ili шшрш-

1(ш pbmbqpb^p ЦикГ qpmlig tTnin 'iuiii'iuL(mpqbppli

ш1|фпфп[и ^ntbriLiTp iulil(mjnL\» t » ujinqbu np Ърш 2f^"'ЧшJPt?

inppnLj(9 t :

tipliuiliji •''Jiqpliuijfi pliuinpmnt in

19.46



Preprint ЕФИ-876(2?)-86

5.G. MATINYAN, E.B. PROKHORENKO, G.K. SAVVIOY

i

NON-INTEGRABILITY OF TIME-DEPENDENT SPHERICALLY

SYMMETRIC YANG-MILLS EQUATIONS
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Методом Ферш-Паста-Улама изучен вопрос жнтегрмруемости

сфвржчески сиумвтржчннх уравненхИ Явга-Маыса, завжсящжх от

времвнж. Показано, что в фазовом пространстве этой системе

отсутствует условно периодическое движение, свойственное ин-

тегрируемым или Фт«*ци к ним системам. В частности, извест-

ное статическое решение Ву«Янга неустойчиво, так что его ок-

рестность в фазовом пространстве является областью стохасти-

чности.
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1. Introduction. Formulation of the Problem.

The present work 1s a continuation of the numerical experiments started

1n Ref. [l] aimed at studying the Important problem of 1ntegrab1l1ty of

Yang-M1lls (Y.M.) classical equations. In [l] we considered the case when

gauge fields depended on time only (homogeneous model). Such a system reduces

to a finite-dimensional mechanical system ("Y.M. classical mechanics"), whose

non-1ntegrabH1ty was demonstrated by studying the Instability of periodical

solutions [1] and Poincare cross sections [2] as well as by other methods [3-6]

The proof of existence of non-1ntegrable subsystem of Y.M. equations 1s a

crucial serious argument In favor of non-1 ntegraMHty of these equations 1n

the general case. There are some other arguments too, based on the so-called

Penleve criterion and making this claim reasonable [7] .

All this testifies that 1t has become extremely necessary to 1nvest1qate

the 3+1 -dimensional Y.M. classical field system from the viewpoint of Its

Integrability.

Here we Investigate Y.H. classical equations 1n case of spherical symmet-

ry, I.e. when non-abel1an vector potential S\u depends on "b = I "2. ( and t .
j*

Effectively, this 1s a classical field theory In 1+1 -dimensional space-time,

and the problem of Its integrabiHty 1s clearly de'fned 1n the sense, that



the behavior of two-dimensional integrabie classical systems of the type of

equations of sin-Gordon, Korteveg-de Vriez, etc. is studied quite well.

In the problem under consideration one can simultaneously obtain an

answer to the question about stability of the well-known spherically symmet-

ric static solutions of Wu-Yang type [8] .

Unfortunately, one cannot answer analytically, with cowolete definite-

ness the direct question on inteorability of eouations of the

( '-Ч. • '-Чс • et
r
- are з first, second, etc. derivatives witi resnpct to

correspor.dina argonrent) the considered system reduces to. The rossnn is

information about the whole (Infinite-dimensional) phase space of the system

is necessary.

One should bear in mind that as shown 1n [9] , the necessary condition

of inteqrabTiity by th*» inverse scattering method of sow» class of partial

differential equations is the belonging of the corresponding reduced ordinary

differential equations to those of Penleve type. However this condition is

not proved so far with sufficient generality [9,10j .

Another appropriate method to investigate Integrabilitv of pouations of

(1.1) type is the approach suggested 1n the well-known work of Fermi-Pesta-

Ulam flij . It consists 1n the replacement of continuous nonlinear string

1n (5.1) by its discrete analog with finite number of osdllatinq points -

the chain of coupled enharmonic oscillators. Integration of such a chain with

modern computers offers no difficulties. The real problem 1s to find out

criteria which would allow us to conclude whether the qiven system is inteqr-

able or not.

First, one could follow the string shape. In their well-known work [12j

Zabusky and Kruskal carried out a similar numerical exoeriment with Korteveq-



de Vriez equation and discovered elastic scattering of solitons, i.e. the

string oscillations after scattering did not turn Into "shapeless ripples".

Later on, 1t became clear that such a behavior 1s due to total inteqraMHtv

of Korteveg-de Vriez equation, I.e. availability of Infinite number of Integ-

rals of motion [13J and possibility of transition to variables of "action -

angle" type.

The progress achieved 1n Investigation of classical and quantum dynamics

of the 1+1 -dimensional Integrable field theories 1s well known [14,15] .

More general and frequent 1s the situation when the system is non-1nt.eor-

able, and Its phase space represents Invariant tori Intermittent with regions

of ergodic (chaotic) motion. (This situation at the case of small oerturba-

tions is described by the well-known KAM-theorem [I6j.) In this case the

following of the string shape 1s not Informative. Therefore Fermi, Pasta ami

Ulam followed the energy distribution 1n strfnq oscillations harmonics rather

than Its shape. Such "fourler-analysis
11
 of the strlnq gives a richer Infor-

mation than the above-quoted following of U s shape, for 1t 1s quite oossible

that the string shape changes substantially, whereas from the viewpoint of

the fourier-harmonic analysis there occurs a oeriodical eneroy transfer

between several harmonics, this corresponding, 1n cornection with above-

stated, to motion over КАМ-torl. The authors of this outstandino work, whilp

observing such a picture, naturally concluded that the system 1s "thermalizeri"

anomalously slowly. Later on [17j , there were carried out numerical experi-

ments according to the same scheme; however a greater number of harmonics

were excited Initially, owing to which the system motion took place this time

1n ergodic layer: this resulted 1n uniform energy distribution 1n harmonics.

As a result this means that the Fermi-Pasta-1Лam system 1s non-1nteorable,

and its phase space is described by the KAM-theorem. Exactly this anproacn

we have chosen here to Investigate the system of Y.M. equations Dossessinq



spherical symmetry.

It is shown that the phase space of this system Is ergodic, while the

system Itself Is non-1ntegrable. The result obtained convinces us again how

nontrivial 1s the dynamics of non-abe11an gauge field.

In Section 2 of this paper the system of Initial equations 1s formulated \

and analytically Investigated; Section 3 presents the results of numerical 1

analysis; 1n Section 4 the transition to continuous limit 1s considered, \
i

while Section 5 1s devoted to conciudinq remarks. •

2. Spherically Symmetric Y.M. Field. \

Let us define the class of fields which will be considered below. Remind

with this aim some definitions.

An arbitrary tensor field 1s Invariant under definite orouo of coordinate

transformations 1f Its Lee derivative 1s zero. In case of gauge fields, 1t 1s

sufficient to Impose a weaker condition with a demand that the Lee derivativp

1s conpensated by gauge transformation.

A general form of spherically symmetric gauge field of the Sli(2)-aroun

In 3+1 -dimensional space-time 1s given by the expression 18 :

" к *

(2.1)

л"-

(upper Indices refer to the SU(2)-group, a « 1,2,3; lower ones - ,

j , К • 1,2,3 refer to the Lorentz group), where the arbitrary functions

%
г
 and Л

о
,1 depend on г = ( x f + x | • 0с|)

У г

 a
nd t .

The class of fields (2.1) Is Invariant under abelian gauge transformations



with a matrix U = exp | i { ( 2 , t ) X a T a ] , where f 1s an arbitra-

ry function, and T Is the SU(2)-group generator.

The action for fields (2.1) has the form:

s = "

where

j u ^ - 0 , 1 ; L,E= 1,2 ; d f s ^ ;

 a ° = at .

Effectively, (2.2) represents a two-dimensional field theory coindrfinq

with the Higgs model 1n 1+1 -dimensional space-time. Corresnondinn to (?.?)

equations of motion are:

In what follows we shall study 1n detail a soecial case when ^ » Л

Л
п
 • 0 *h Then Eqs. (2,3) reduce to a single equation ( tf

 э
 % >

*) Л
о
 may always be taken zero owing to abelian aauoe transformation

mentioned above.



(г.*)

which has the form of nonlinear string ( Ы ) . The static solution of (?.4)

f = 0 1s the Wu-Yang monopole [8] Л * = \ E j
a K
 П

к
 , f » -1 1s

the vacuum solution of A ? = 0 , У
 a
 1 oives the field fi^ = "£'€

which 1s gauge-equivalent to vacuum one. Eq.(2.4) can be considered as a

Hamiltonian system In 1nf1n1te-d1mens1onal ohase soace with coordinates

f i ^ t ) and canonically conjugated momenta 3lu> (2/t) -d¥/dt ; so our

purpose 1s to describe the motions 1n this space.

First of all we shall describe the equilibrium states of the system

( JTy? * o) which correspond to static solutions of Eo.(2.4). In order to

eliminate non-autonomy of Eq.(2.4), we shall pass 1n 1t to a new variable 6" :

thus arriving at equation

which Is a particular case of the well-known Duffinq equation Lj + а
У +

+ У + Sy
3
 » 0 *\

Separatrices of Eq.{2.6) (curves) and the field of Its directions farrows)

are shown 1n F1g.l» whence one can obtain a oualitative Information about

*) Two cases of this equation are known well in the literature [19] :

0,8 > О (""strong spring") and а > 0 , б < О ("weak SDrina").

Eq.(2.6) corresponds to a < 0 , 6 < 0 . This "antifriction"

( CL< 0 ) responsible for "instability as a whole" is a characteristic

feature of Y.M. equations.



behavior of al l solutions. The separatrices divide the plane у , Э© f

Into six regions. Solutions 1n region I I come out from thp coordinate origin

and go away to infinity at f in i te 6 = 6 1 . Solutions in reaion I I ' (with

replacement У -» - f ) behave analogously.

In terms of <f ( t ) , for al l the solutions we have f{0} » 0,

У ( г 1 ) = ± ° о { X i = гов^ ) . An exception are two separatrices divid-

ing regions I I and I I • when the solutions start at a zero point and tpnd

to ±1 at Z—"-co (see Fig.2 for y C i - ^ ±1). In other words, the point

*f = 0 (Wu-Yang "monopole") is an unstable focus.

In regions I and Г the solutions are determined in a f in i te Interval of

values Z>0 , Z? < 1 < 1Z ; y> Increases unlimitedly at boundaries

of this Interval, whereas inside the latter, У is always modulo laroer

thanunity ( f ^ 1 ^ I

Finally, in regions I I I and I I P the solutions are determined aqain in

the f in i te range 1 >O %i < г < 1g and

note that ^ г у ^ < 0 , д г ^ Й > 0 (see Appendix 1).

Thus, solutions у • ±1 are unstable saddle points. Their senaratrices

(correponding to f = 1) are shown 1n F1g.3 a,b,c.

As a result we see that already static solutions of sohericallv symmetric

Y.M. equations possess Instability: small perturbations of in i t ia l conditions

( 5f (Z) and сЗУ/Зг ) sharply change the behavior of solutions, in

particular, singularities \P(i) either appear or change their position.

Only five solutions ( f =±1, f = 0 and separatrices f с , г t'O 1 л

Fig.2) remain f inite for all 1 ?> 0. I t should be noted that solutions

*fc ( г ) , coinciding at 7- -*• 0 with the Wu-Yano solution and at



t -— еда with vacuum ones, are new solutions.

Now let us proceed to Investigation of trajectories in ohase SDace near

3T«,-0 plane, for which one should take account of time dependent of

Eq.(2.4) solutions *\

For small perturbations o y ( 1 ; t ) near static solutions in linear

approximation we have

-О

I
where *f {1) is static solution described above. Horp 1nterest1nn are !

i
perturbations near the five non-singular static solutions mentioned. Separat- \

Ing variables 1 and t 1n (2.7) we shall obtain: ;

Loot •

where U-(,t) satisfies equation

coinciding In Its form with one-d1mensional stationary Schredinger eouation

with E = Ot> and a potential

Time Instability corresponds to the presence of levels with neoative

energy ( CO < С ). Therefore for % * ±1 (vacuum solutions), as is

seen from (2.10), small perturbations are stable, while for y><°>= f) and

f ^ ( г ) solutions of Fig.2 Eq.(2.9) has negative levels (see Fig.4);

*) Time-dependent spherically symmetric solutions near Wu-Yang monooole

were considered from another viewpoint In Ref,[20] .

10



for this reason, small perturbations grow exponentially with time for each

negative level whose number 1s Infinitely large.

These levels exist for any CO < О , and one can demonstrate that their

wave functions are normalizatle (see Appendix 2).

Similarly one can qualitatively describe non-static perturbations of sin-

gular solutions as well, for which 1n regions where ^f
(0
* l^)< '(ъ - there

arise, generally speaking, negative levels and hence exDonenti?I Instability.

This also means that the one-loop correction to classical action near solu-

tions y
l 0
\ i ) has an Imaginary part.

Evidently this analysis 1s Impossible for finite perturbations. Her*», as

mentioned In Introduction, an appropriate method of Investigation 1s numerical

simulation of Fermi-Pasta-Ulam type, which 1s Just carried out 1n Section 3.

3. Numerical Analysis of Equation (2.4) Phase Trajectories.

He carried out a numerical analysis for solutions of Eq.(2.4) 1n the vi-

cinity of static solutions described In Section 2.

The continuous string of (2.4} was approximated by a set of nonlinear

coupled oscillators f ( L ) ( I • 1,2,...,N), whose number N 1n our numerical

experiments was taken equal to 64 and 128.

A numerically Integrated discrete analog of Eq.{2.4) was written 1n the

form:

where AT, 1s the string discretization step which we took equal to 0.1

(dots over *f denote differentiation with respect to (continuous) time).

The result of Integration of (3.1) was expanded 1n harmonics:

11



N-1

so that energy concentrated 1n all harmonics when nealecting the right-hand

side of Eq.(2.4) (or the second term In the r.h.s. of Eq.(3.1)) 1s <

N - 1

j=1
(3.3)

while total energy of string (2.4) discrete analog 1s alven by the exDression

= Е
tot
 t

o
 ^

Let us choose Initial position of string У ( ц О ^ and boundary conditions

O,t) • f ( N , " t ) • While considering perturbations of static solution

« 0, 1t 1s natural to put

whereas Initial velocity d*f{i№/et \. __ not equal to zero, this corres-

ponding to non-deformed "string" at t = 0.

The other choice of Initial and boundary conditions corresponds to de-

formed but Initially resting string:

•fc =

12



where { j
0
 J stands for a set of modes excited at t * 0; sunnation 1n the

Mrst equality 1n (3.6) 1s carried out over this set.

The problem 1s formulated analogously near solutions f * ±1 and separat-

H c e s
 * c

f | 8
 <-

г
> •

If after primary excitation of some set of harmonics { j
o
j all the rest

ones become excited too, then as mentioned 1n Introduction, we have all

grounds to regard the system thermalIzable, and hence we deal with a non-

Integrable system.

In case there takes place periodical energy transfer between some modes

»s occurred 1n the experiment of Fermi, Pasta, Ulam, then the system 1s 1n

stable region of phase space (KAM-tor1).

F1g.5 gives examples of time dependence for energies of three modes

j • 8,9,10 at primary excitation of five modes (amplitude A * 0.1) j
0
 =P-in.

Here we took N - 64, E
i o t

 «4.8 {^ифьл/ <• I t ) . Modes « К J not pre-

sented In the figure behave analogously, while all the rest ones are practi-

cally non-excited (mean energy per one such mode does not exceed 1 16).

We can see that at small energy the system has approximately nuasi-

periodical motion.

The picture changes essentially with Increasinq string eneroy.

In F1g.6 (N = 64, E
i o t

 = 1100, d E t < * / E
t o t

 • 0.1 <• J > 30,31,32)

one can clearly see the process of equal distribution of eneroies for nrima-

rily excited (amplitude A » 1, j
o
 • 30,31,32) and the rest of modes (F1g.fi

presents energies of some modes, j * 29,33,34,57). The nicturs remains

qualitatively the same at further thHce-enhancement of enerqy and corresoon.

ing increase of amplitude for the same modes j
0
 • 30,31,32.

In this case the system thermalization 1s already explicitly evident.

The same 1s pointed to by Fiq.7, where we have alven a distribution o*

energy E | ( j = 1,2....,6Л) averaoed over larop time (ranoe of avpraoino

13



780 with a step 0.04) with respect to modes. The figure shows that on the

average a l l modes became excited.

4. Continuous String Limit.

One Important circumstance should be emphasized, which 1s connected with

transit ion from a continuous to a discrete case necessary 1n numerical ex-
f

periments. Such discretization introduces scales to a system not containing |

dimensional parameters l ike which the Y.M. system 1s. Therefore the oroblem ;
f

of Inverse transit ion to continuous U n i t of above-considered discrete model I

I1s highly Important. >

In the continuous case (2.4) under transformations

t—J3Z , t — J 3 t (4.1)

the system with energy E and coupling constant Q transforms Into a

system with E and Q :

which means s imi lar i ty of phase trajectories of systems with dif ferent

energies and coupling constants, just as 1t was the case with У.М. classical

mechanics [ l ] . In other words, to study the system, 1t 1s enounh to Investi-

gate trajectories with only one energy E and coupling constant Q .

At discretization (which represents a regularized on analog 1n classical

f i e l d theory [ 2 l 3 ) i there arise additional parameters N and ДЧ£ so'

that modes Л - j 1n (3.3) He 1n the range Q~m-n~ ~\/b\AZ »

To continuous l i m i t there correspond Д"£~»-0 , N-* -oo but such that

14



This limit can be realized as follows: f i r s t , by decreasing A1 at

fixed N, then, by Increasing N at fixed Л1 and so on. Here in the f i rs t

case (N 1s fixed) the system motion Is determined only by diwensionless para-

meter Я s o Е-ДТ. , 1n which one may be convinced by means of (4.1)

type transformation %-+•£>% , t-*-fit and expression for energy (3 .3 ) ,

(3.4) 1n the discrete case:

АЪ — " ( З Д ' г , E Q = S C.Q •

This means that phase trajectories with different Л 1 but the same Ж

are equivalent. In such conditions the continuous Hm1t 1s achieved by tend-

ing of only N to Infinity.

Following this remark, we have Investigated what happens with our system

at increasing N.

F1g.8 gives energies of modes for a string with doubled N (N*l?8) with

the same Initial configuration <f as in the case with N«64.

One can see from the figure that with Increasino N (I.e. at aporoaching

to continuous limit) the string Is "thermaMzed" faster, the reoion covered

by invariant tori 1s narrowing. It should be thought that 1n real continuous

limit (N = °"=> ) this region is absent at all, exactly as 1n Yano-Mms-H1qgs

classical mechanics [ 2 ] at tending of Higgs field mean expectation value to

zero the invariant tori vanished thus leading to total stochasticity of

V.M. mechanics [б] .

5. Conclusion.

As a result of the present Investigation, we have all qrounds to claim

that not only Yang-Mills classical mechanics [l] but also Yanq-MUls classic-

al field theory describing a system with Infinite number of deqrees of

15



freedom 1s non-integrable, I.e. possesses dynamical stochasticity.

In other words, one may claim that the real 0C0 1s a field theory which

1n classical limit manifests dynamical chaos.

A reasonable question arises here: whether the traces of this stochasti-

d t y remain 1n the real QCD ?

If yes, then the confinement problem finds as 1s well known (see. e.g.

[22 j ) a natural explanation.

However the question on the relation between classical and quantum

theories from this viewpoint 1s far from being simple.

There are known e.g. consequences for quantum systems nossessinq In das- I
)

t skal limit dynamical stochasticity, which are related with their snectrum |
\ ''

' structure and properties of wave functions (see, e.g. [23,24,2?,6] ) . j

This allows to think that real spectrum of hadrons must carry traces of

Irregularity corresponding to here proved dynamical chaos of Y.M. classical

field theory.

It 1s quite possible that also other characteristics of hadronic phenome-

na can be revealed, which reflect dynamical stochastidty nf non-abe11an

gauge fields governing the world of hadrons.

A real proqress 1s possible 1n this direction. Here first on*3 should

note Monte-Carlo calculations on lattice [27j of spectral distribution p (oC)
of expectation values of Wilson loops W ( C ) = \ d<* £. (oC}

- Jt
As follows from these calculations, for distances (loop sizes) Z less

than confinement radius Zc spectral density p (ot) has a peak at °(- * П

*) The recent investigation of Yann-MUls-Hiqqs auantui" mechanics carried out

in some works [25,263 has shown that distribution of distances hptwpen

neighbour energy levels of this problem reflects stnchasticitv o

M1lls~H1rjgs classical mechanics [2] .

16



which means strong correlation of fields at small distances. However for

loops with Z %> tc the distribution £ (ot) turns out to be practically

uniform. I.e. fields are non-correlated and the distribution of expectation

values of W ( C ) corresponds to disordered confimirations.

This argument 1f not being an artefact of Monte-Carlo lattice calculations

points out that some amount of stochastic component 1s really present 1n OCD.

Of course, the qiestion on whether this component is really manifesta-

tion and "relict" of classical stochasticity remains open so far; so further

Investigations are needed here.

It should be mentioned also some recent works [28] , in which multiole

production 1s considered from the viewpoint of those stochastic reoularities

which are typical of quite various phenomena of Nature, from developed turbu-

lence up to galaxies distribution In clusters.

Quantitative generality of these at first siqht absolutely not related

phenomena is expressed by universal relationship between essential parameters

of these phenomena Including fractal dimension [29] .

Apparently, the essence of this generality contains yet a classical

aspect rather than quantum one.

Note In conclusion that the observed Instability of Wu-Yang solution and

new solutions {ft. {Z) makes extremely Important to examine thp similar

question for a more realistic case - T'Hooft-Polyakov monopole. In other

words, the study of spherically symmetric Yang-Mi11s-Higgs equations Is nece-

ssary. The results will be published elsewhere.

17



Appendix 1

Let 1s present asymptotics of Eq.(2.6) solutions.

At | Lj - 1 | « 1 we have:

<3 26

у » i + с, е + сг е ,

At | y f « 1 we have:

ys= е^СЛ 003(^6^+ BslnCf 6

F i n a l l y at | y | » 1 we have:

У * ±

These expressions are obtained via analysis of formal oower series for

Eq.(2.6) solutions In corresponding reqions.

Appendix 2

At *f « ±1 we have viJZ)-2/Z - singular renulsive potential.

Non-degenerate continuous spectrum exists at CD ̂ 0 .At I-*
1
0 V(Z,)~t

2
 .

Just the second solution ~1/"г does not belong to continuous snectrum.

In region Ci)
2
<0 there are no quadratically Integrable solutions. I.e.

discrete spectrum. So, the spectrum occupies a semiaxis c£> >0 .

Consider now the cases * f C 0 ^ 0 or f (°;= < .̂( . ftt г - * ° °

г
 , where Q » -1 for the former case, and Q * ? for the

latter one. Examine the differential operator

18



from Eq.(2.9). It is symmetric for functions from dense subset L 2 (0,ooj

and has defect indices (1.1). This means that i t will be self-conjuaated for

the definition regions { Я ( Н ) | • u e L2(0,oo) , H u e L2(O, oo) ,

coS(o£U(O)j + Sltt(cCU'{0)) , where o£ 1s real, | d | < ЗГ/2 , and

existence of tim U{1) and tlm а ' сг ) Is assumed.
г го

At об « 0 we have a condition U(O) * n. Then for cc
z
 z О we have

double-degenerate continuous spectrum, while for c o
2 <
 О

 у;
р have sinale

discrete spectrum occupying the whole semiaxis. This can be seen from asvmp-

totics of Eq.(2.9) solutions:

Y &гг)+ Вз1гг(-|-Еаг)] (А 2.2)

at г -—О

at г—«»rca » о)

Usually only the case of = 0 1s considered. At oC t 0 spectrum HOPS

not exist and hence 1s absent at CO
2
< 0 . However 1f considering thp

Interval ( £, + oa ), £ > O , then at any oC we shall have * countable

set of discrete spectrum levels at CO2 < О . The spectrum 1s unlimited

from below. At &~*~O the upper discrete level tends to ~ <=*= , and the

distance between the levels increases as £~* .
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Fig.L. Separatrices and field of directions of

Off-

1 £ 3 4 S 6 7 8 S Ю
Fig.2. Non-sinoular static solution (separatrix) of Eq



07
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F1g.3. Singular solutions (separatrices) of Fq.(?.6) corresponding

to a saddle point

ki \
\ \

«f - 1.

— i 1 _ , _ j iV

"S" 6 7 8 9 70
I ~ ~ ** / - • - -

-г

-3

-5

-6
•7-

•8-

-9

-Ю

F1g.4. A "potential" of Eq.(2.9) соггеьрогк!1по to static solutions

= 0, ±1 and
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0 +

f i g . 5 . Quasi-periodical motion at small amplitude of I n i t i a l perturbat ion

(Л = 0 . 1 ; j o = 6,7.8,9,10; N = 64).

м д . 6 . Energy of modes J = 29,33,3d, 57 as a funct ion of timp

at larqe amplitude of i n i t i a l perturbat ion 'A = 1 : i « 3fi 31 ??•
Jo

N = 6 4 ) .



e » *•«•"<». ~*'U>Z j.'X,3t.ia л.1

г •

F1g.7. Distribution of averaged over larqe time Interval (to^al Interval

of integration 780, step 0.04) eneroies Ej ( j = l,?,..,,fi*)

with respect to modes.

Curve I - averaqino Interval tj. • 10, i^ = &Ю.

Curve II - averaging Interval t
-

t
 = 40, tr = 7ЯП.

60

Fig.8. Time-dependent eneroies of rrodes j ж 58, 66 at laroe

amplitude of Init ial perturbation (A « 1 ; j - 60,6?,64) for

doubled string length (N * 128).
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