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Diagonal Padé Approximations for Initial Value Problems

Alichael F. Reusch, Lee Ratzan, Neil Pomphrev, and Wonchull Park
Plasma Physics Laboratory, Princeton University
James Forrestal Campus
Princeton. New Jersev 08544

Abstract
Diagonal Padé approximations to the time evolution operator for initial value problems
are applied in a novel way to the numerical solution of these problems by explicilly fartoring
the polynomials of the approximation. A remarkable gain over conventional methods in
efficiency and accuracy of solution is obtained.
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Introduction
We consider homogeneous linear evolution equations of the form,

where (1) is a linear operator. The solution of this equation is
w(t) = (2. 0pe(0). (2)

{" is the familiar time evolution operator.

!
U0y = e:.:p(/u dt H{t)). (3)

When H(l,) does nat commute with #(ts) Eq.(3) must be interpreted in the time-ordered
sense.

Al numerical methods for the solution of Eq.(1) approximate U in some way. often
by the first fewv terms in the Taylor series for e”. Eulers method. for example, retains just
the first term in this series and has U(t — Af,¢) = 1 — ALH{t). The Padé methods are

based on rational function approximations Lo e,

ot Pl
Onlz)

Here Pariz) and (Qa(z) are polynomials in = with real coefficients of order M and V.
respectively | . We will treat for the most part only the diagonal Padé approximations to
e’ for which N M and Qas(z) = Pyr(~z). The simplest of these diagonal Padé methods
is the “Crank-Nicolson”or “trapezoidal®method [2] for which A/ =t and P\(z) = | - 2/2.
Like all of the N > 0 Padé methods the Crank-Nicolson method is implictt in that it
requires the inversion of an operator,

(4)

[$]

ALH(L)
-~

AtH (1)
2

=1

(1 Yot + At) = (1 - ) (f). (

Although widely studied "3-9], higher-order implicit Padé methods are not commonly
used, presumably because of their apparent complexity 3., Diagonal Padé methods are
known to have optimal accuracy 4! and the odd order melhods alsu preserve positivity 5.

The main alms of this work are firstly to point out that higher-order implien Pade
methods need be no more complicated 1o implement than the Crank-Nicolson methnd,
and secondly to show that surprising increases in accuracy and efficiency can be obtained
by using these methods.

The original motivation for scudving these methods comes out of our efforts to numer-

ically simulate the behavior of plasmas in controlled thermonuclear fusion experiments.
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The analytical model used for such plasmas is a system of resistive magnetohydrod:-
namic (AMHD) equations. This is a svstem of nonlinear hyperbolic equations which contain
parabolic and elliptic components. An enormous range of time scales is contained in these
equations. Fast compressional waves have a characteristic time of 107° seconds in a tyvpical
fusion device. while the typical length of an experiment is several seconds.

Our main interest however is in accurate simulation over the shear Alfvén wave times
of 1073 seconds or even lunger resistive times of 1073 seconds.

Analytical methods exist for eliminating the faster time scales in these problems but
they are too restrictive to apply in the general case. The convenient solution is to use
implicit methods with 1ime steps appropriate to the longer times which are numerically
stable in the presence of the fast waves. These latter are then not faithfully simulated.
However, in a dynamically stable plasma configuration, thev are thought to be unimportant
and can be safely neglected.

The usual technique by which the MHD equations are given an implicit numerical
character are variations on the Crank-Nicolson method. Given the longer time steps al-
lowed by these implicit methods, the simulation of an entire l-second plasma shat would
still take a prohibitive amount of time, even on a paralle] vector computer. Methods which
would allow us to further increase the time step or reduce the number of operations needed
to simulate to a given accuracy would be invaluable. The diagonal Padé methods to be
described ar. bopefully such a method, but more work is required to establish this.

The Factorization Method
We write the numerator polvnomial of the Mth order diagonal Padé approximation
to € in factorized form as,

Al

Py(z)= T (1- (:—) (6)

m=1 om
Here the (', are the roots of Pp(z). An important fact is that all of these roots are
distincl. nonzero, and have negative definite real part Real(C;) < 0 ,6-10;. Table 1
gives numerical values of the roots of the diagonal Padé polynomials up to 3/ = 11.
and an interesting illustration of the poles and zeros of the first twenty diagonal Padé
approximations to €® is given in Fig.1.

The roots of Qar(z) = Pas{—=) are just —C4,. Since these roots are cither real or
occur in complex conjugate pairs, the poles of the diagonal Padé approximation are just
the reflection of the zeros across the y axis. We can then write the Mth order diagonal
Padé approximation 1o e?, with C!, as the complex conjugate of (. as

. Al
Pur(z) — | —2/C,
1 H (

- z/Ch

ll
—

Qni=)

Each of the factors in the above form of the approximation has the A-stability property.
namely that jor real part of = < 0



1 =2/ Cn <1, (8)

1-z/0L 7~
This A-stability property is shared by the whele approximation given by Eq.(7) and is a
well-known property of all the Padé approximations to € for which .V = M. A ~ 1 or
A -2 8.9,

We now observe that Eq.(7) is a valid approximation to the time step evolution aper-
ator U(1 + At 1) if AtH(t) is substituted for = and a proper interpretation is made of the
inverse operators. Our solution procedure is to unfold the products of Equation (7) pair
by pair. Each substep of a given time step is of the form,

(1 20 Wy = - =2y, Q
ch Cn
where 1 < m < AL, W9 = ¥(t) and W(t — A1) = M.

Although complex arithmetic must be used, each step of this process is as simple as one
step of the Crank-Nicolson method requiring only an algorithm for numerical inversion of
H{#}). As we shall see, the extra wurk done by using complex arithmetic is more than made
up by an increase in accuracy. Further, the same numerical zlgorithm can be conveniently
used far an arbitrary order diagonal Padé method. We also see that each substep of the
method is A-stable so that no transitory instahilities can occur.

If we start from real initial values for ¥ and H(?) is a real operator. then alter the first
substep of the method we have complex values. Cleariy. after 1/ steps we must have real
values again since the overall product is real. The magnitude of the complex part after
M substeps then gives us an error estimate of the process. On the other hand. if H(¢) s
a complex operator, i.e.. has complex eigenvalues, or if ¥ is a complex variable, then the
overhead associated with complexification of the problem is saved. Complex ¥ are implied
in multidimensional problemns where onc or more periodic dimensions are Fourier analyzed
to vield a simpler and sometimes decoupled form for H(t) which is then also more easily
inverted.

Since the roots of Par(z) are all distinct and well separated in the complex plane. it
is ecasy to obtain numerical approximations to them. All that is necessarv is that thev
multiply up 1o the correct coefficients within a tolerable error. The slight error introduced
by using truncaled numerical approximations to them is not an essential limitation of the
method.

The coefficients of Pyy(z) are known in closed form[4,6,9,10".

Al

M2 - m)!
P, =™,
ml Z « (231)'mi(3] = m)! 1o

The numerical values of Table 1 when combined vield the known analytic values of the
coeflicients of the numerator pelynomial to better than one part in 10!



The polynomials satisfv a number of useful recursion relations and the error in the

approximation is [11,

e PM(‘-"‘) _ R.-\!(:) where,

Qui(z)

m—1)M =2 =12 _
RJ\I(:):W(]‘O(-’”‘J)L {11)
so that tolerable errors are possible even when = > 1, i.e., the time step is larger than the
characteristic time T, of H(t). The latter may be defined as the inverse of the magnitude
of the largest eigenvalue of interest in the spectrum of H{t). Tc = 1/1Amaz -

Qur numerical studies indicate that the sometimes surprising convergence of Padé
approximations carries over into the initial value problem. Faithful simulations are ob-
tained in some problems even for inordinately large time steps (Af = AIT,). In fact, the
permissible time steps are so large that explicit variation of H(¢) over a single time step
becomes important, Until now we have tacitly assumed that this variation was neglegible.
In our desired application of MHD simulation this may not be true.

Inclusion of a titme-varying inhomogeneous term or boundary conditions in Eq.(1) leads
to a similar problem for large time steps. These are also present in tiie MHID equations.
Possible resoiutions for these problems exist via the method of variation of parameters
and transfoimation of A (¢} to an almost time invariant form. We plan to treat these in a
future work and will not discuss them any further here.

Although fundamentally linear, the factorized diagonal Padé method can be applied
1o autonomous nonlinear ordinary differential equations by embedding these in a linear
svstem via the technique of Carlemani12-16!. This application will also be treated in a
future work.

The {actorization technique given here can also be nsed to approximate the exponential
of a badly conditioned matrix. as, for example, the two by two dimensional test case of
Mioler and Van Lean|)7:. Since for a large enough order method the condition number of
each of the substeps remains tulerable, orie thereby avoids the problem of a large condition
of the total numerator or denominatar expansions.

Finally, we should point out that there exist a number of implicit Runge-Kutta for-
mulae eguivalent 10 diagonal znd subdiagonal Padé approximations which use entirely real
math. These have been studied by Ehle !8,9] and others. The low-order methods of this
type are slightly harder to implercent than the method of this paper and may be preferable
in some circumstances. However, the numerical solution of a syvstem of N eguations by
these methods requires the inversion of a N - A] by N - I svstem, where M is the order
of the implicit Runge-Kutta method. A high-order method applied to a large system is
cleaily unwieldy.

A Numerical Example
We have selected the homogenrous one-dimensional heat equation as a simple example
for the numerical testing of our method.
v 80
A 2
o Tz (12)
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where 0 < z < 1", ¥(0,¢) = ¥(11.¢) = 0 and o can be complex. We use a centered
difference formula for the right-hand side diffusion operator sc that the exact eigenvalues
of the discrele system are,

Ap = %(tos A?;L - 1. {13)
Here 1 < & < K and Ar = II/K.

The discrete version of the right-hand side diffusion operator is a tridiagonal matrix.
as is the substep matrix of Eq.(9). The inversion is accomplished by the well-known
recursive algorithm equivalent to an LU factorization 18 so that the work involved is only
proportional to K.

We compare diagonal Padé methods implemented in the factorized form with complex
arithmetic Lo a real math versicn of the Crank-Nicolson method and several real arithmetic
explicit methods. To compare the methnds we select a single eigenmode of Eq.(12) as our
initial condition and follow it for a time period equal t~ a given number of characteristic
times T, = 1/ Mg,

We repeatedly solve the problem for this period while varying the total number of
time steps from one 1o the number at which the maximum error saturates. For the explicit
methods we start at the minimum number of time steps {or which the method is stable.
At the final time the result of each different time discretization is compared to the exactly
known solution. Maximum and average errors are extracted and the processing time is
recorded. The maximum error results are similar to thuse for the average error and are
not presented.

Figure 2 shows the results of runs made on a Cray-1 computer using diagonal Padé
approximations 1o order 11, labeled C1 - Cl1, Eulers method (E), and Runge-Kuila meth-
ods of order iwo (RK2), four (RK4), and six (RK6). All these runs were made for a period
of ten characteristic times of the lowest & = 1 eigenmode and are typical in that similar
results are found for real, imaginary, or complex ¢ and for shorter or longer time periculs,
In this set of runs the loop vectorization of the Cray-1 was turned off. The log of the
average error is plotted against the log of the CPU time used. The average error is defined
as the average of the absolute values of the difference between the computed and exact
solutions divided by e*7 where T is the total time period.

For all the implicit methcds and for those explicit methods which are not already at
the precision limit the logarithm of error decreases linearly with the logarithm of PU
time until saturation due to rounding sets in at a machine, methed, and period dependent
precision level, This is in agreement with expected behavior since the error is proportional
10 (AtA)?M*! for the implicit Padé methods and (AMA)M =1 for the explicit methods. while
the work involved varies as the inverse of the time step and the slope is proportional ta
the order =i the method.

The Al = 1 Padé case which was implemented with real arithmetic labeled R1, is
seen 1o use only about half the time of the fully complex C1 method. A factor of four
might have been expected and the difference is due to the fact that the Cray-1 unavoidably
vectorizes some of the complex calculations even with veciorization off.

RK2 is seen to give about the same accuracy and use aboui the same time as Rl
since the operation count and error of both methods is roughly the same. The Al > 1
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Padé approximations saturate at an error lower than the 3/ = 1 approximation. Efficiency
of solution of the Padé methods improves as order increases, although the incremental
improvement from order to order becomes smaller with order.

Gains of 100 or more in CPU time over the A/ = 1 Padé method and all the explicit
methods are obtained with the higher-order Padé methods depending on the required
accuracy. These gains are had in spite of the extra work implied by complex arithmetic.
For the AJ = 11 method an accuracy of 107 was obtained with just one time sten. The
A = 15 Padé method ( not shown ) was at the precision limit in cne time step.

We note that our selection of the lowest eigenmode of the system has accentuzted
the achievable improvement in efficiency over the explicit methods and that for the higher
maodes this improvement would not be as dramatic or even exist. Fig.3 presents the results
of runs made for Len characteristic times of the eleventh eigenmode of the heat equation.
Here the RK{ methad is more efficient than the C2 method while the RK6 and C3 methods
are of comparable efficiency.

Figure 3 also illustrates the fact that the minimum attainable errors of the high order
real math explicit methods are smaller than those of the camplex math implicit methods.
In this example they are an order of magmitude smaller. This is due to the increase of
rounding error of the complex calculations over that of the real calculations. On the other
hand, the implicit complex methods seem quite stable in the presence of rounding error in
that an excessively short time step does not tend to increase the atiainable error.

When the Cray loop vectarization is turned on, the appropriately coded explicit meth-
ods increase in speed by approximately a factor of 3 while the nonvectorized recursive
inversion of the implicit Padé methods is only slightly faster. Even then. the high-order
Padé methods are still more efficient in the stiff system of Fig.2. We nate that. although
not implemented for this paper, techniques exist {or partially vecturizing the recursive in-
version of tridiagonal matrices {19,20]. It is likely that even further improvement might be
obtained with the incorporation of one of these techniques and that, in principle. certain
clernents of the complex calculations might be further vectorized as well,

Conclusions

We have presented a convenient method for the implementation of high-order implicit
diagonal Padé approximations for the solution of homogeneous, exactly time-invariant
or aulonomous, linear operator, initial value problems and demonstrated the remarkable
effictency of these methods in comparison with both explicit methods and the Crank-
Nicolson method. The central idea is a factorizalion technique which yields an algorithm
of simplicity comparable to the Crank-Nicolson method. The same algorithm can be used
for an arbitrary order diagonal Padé method and might be applied with advantage to
nondiagonal Padé approximations and other methods.

The main limitations of the method to date are the requirements of exact or approx-
imate time invariance, linearity, and ease of inversion of the operator. Since the same
algorithm can he used for an arbitrary order method, an adaptive scheme can be con-
structed where a low-order method with a small time step is used when the operator varies
appreciably in time and a high-order large time step method is otherwise used.

Further work is needed to establish whether this method can be applied to more
practical problems which lie outside these limitations. However, the accuracy of the higher-
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order diagonal Pade methods is such that careful consideration should be given concerning
modification of codes, which presently use the Crank-Nicolson rnethod or its variants, 1o
use the scheme of this paper.
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Table - 1

oats of the first eleven diagonal Padé approximations to e*
Only the roots of non-negative imaginary part are giyen.
Order Real Part Imaginary Part
1 -2.0 0.0
2 -3.0 1.732050807568877
i3 -4.644370709252172 0.0
-3.677814645373914 3.508761919567444
4 -5.792421205640744 1.734468257869007
-4.2075787943.°9256 3.314836083713505
5 -7.293477190659323 0.0
-6.703912798307045 3.485322832366408
; -41.649348606363293 7.142045840675948
; 6 -8.496718791726729 1.735019346462726
i -7.471416712651628 5.252544622894256
: -3.031864495621643 8.985345907307884
T -9.94357371 7055878 0.0
-9.516581056309254 3.478572122261069
-8.140278327276275 7.034348095419513
-3.371353757886532 10.84138826143350
8 -11.17577208652617 1.735228890705300
-10.40968158127378 5.232350305285130
-8.736578434404781 8.828885000943038
-3.677967897795266 12.70782259720976
9 -12.59403836343024 0.0
-12.25873580854839 3.475696766962232
-11.20884363901552 6.996313835771842
-9.276879774360831 10.F3454335087136
-5.958521596360136 14.58292737668437
.10 -13.84408981085430 1.735330390904285
: -13.23058193095358 5.223135841397920
i -11.93505665717623 8.769894377885137
| -9.772439133717648 12.449970964 54290
I -6.217832467298239 16.46539891814719
11 -15.24467969165087 0.0
-14.96845972142817 3.474205641536712
| -14.11578477534349 £.978029007087853
j -12.60267490974686 10.55238348739988
: -10.23129656781539 14.27404151778648
-6.459444179840646 18.35422313741710




Figure Captions

Figure 1 - Poles and zeros of the first twenty diagnnal Padé approximations to e are
ilustrated. These critical points of the approximation for fixed order generate a roughly
elliptical figure whose radius increases with order. The zeros are well separated in the
complex plane. Odd order approximations have one negativc rcal zero while even order
approximations have no real zeros.

Figure 2 - The efficiency of factorized, complex arithmetic, diagonal Padé methods
of orders 1 through 11, labeled C1 - C11, are compared to Euler’s method, labeled E,
the Crank-Nicolson method, labeled R1, and Runge-Kutta melhods of orders 2 through
1. labeled RK2 - RK4, implemented with real mathematics. for ten characteristic times of
the first eigenmode of the one-dimensional heat diffusion equation.

Figure 3 - The efficiency of diagonal Padé methods through order eleven, labeled C2-
(11, are compared 1o Runge-Kutta methods of order four (RK4), and six (RK6) for ten
characteristic times of the eleventh eigenmode of the one-dimensional heat equation. The
achievable gain in efficiency of the Padé methods over the Runge-Kutta methods is reduced
for this case which is not as stifl as the system of Figure 1. C3 and RK6 are of comparable
cficiency and the curves for these methods actually overlap at several points. Complex
arithmetic is seen tc increase the rounding error by an order of magnitude over that of the
real methods in this figure.
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