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Diagonal Pade Approximations for Initial Value Problems 

Michael F. Reusch, Lee Ratzan, Neil Pomphrey, and Woiichull Park 
Plasma Physics Laboratory, Princeton University 

James Forrest al Campus 
Princeton, New Jersey 0854-1 

Abstract 
Diagonal Pade approximations to the time evolution operator for initial value problems 

are applied in a novel way to the numerical solution of these problems by explicitly factoring 
the polynomials of the approximation. A remarkable gain over conventional methods in 
efficiency and accuracy of solution is obtained. 
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I n t r o d u c t i o n 
We consider homogeneous linear evolution equat ions of the form. 

^ - H(t)v. (1) 

where / / ( / ) is a linear operator . The solution of this equat ion is 

w ( 0 - r ( t , 0 ) i - . ' ( ( l ) . (2) 

( is the familiar t ime evolution opera to r . 

U(t,0) = exp{[ dt H[t)). (3) 
Jli 

When H(t[) does not commute with H{ti) Eq.(3) must be interpreted in the time-ordered 
sense. 

Alt numerical me thods for t he solution of E q . ( l ) approximate I' in some way. often 
by the first few terms in the Taylor series for e". Eulers me thod , for example , retains just 
the first t e rm in this series and has U(l — A<,/) = 1 - AtH{t). T h e Pade methods are 
based on rational function approximat ions to e". 

' * < ? * < = ) • H ) 

Here P,\i{z) and Q\(:) are polynomials in : with real coefficients of order M and .V. 
respectively I . We will t reat for the most part only t he diagonal Pade approximat ions to 
c: for which .V .1 / and Q,\t(:) - Pm(-s). T h e simplest of these diagonal Pade methods 
is the "( ' rank-Nicolson"or "trapezoirfal"method [2] for which M = I and P\{:) = I - ; / 2 . 
Like all of the .V > 0 Pade me thods the Crank-Nicolson method is implicit in that it 
requires the inversion of an opera tor . 

0-^W + i i 0 , ( 1 - ^ ) * ( 0 . f,, 

Although widely s tudied 3-9j. higher-order implicit Pade methods are not commonly 
used, presumably because of their apparent complexity 3 . Diagonal Pade methods are 
known to have optimal accuracy [4 : ami the odd order me thods also preserve posilivitv o . 

T h e main aims of this work are firstly to point out tha t higher-order implicit Pade 
me thods need be no more complicated to implement than the (Yank-Nirnlson method . 
and secondly t o show that surprising increases in accuracy and efficiency can be obtained 
by using these me thods . 

The original motivation for s tudying these methods corin-s out of our efforts to numer
ically s imulate the behavior of plasmas in controlled thermonuclear fusion experiments . 
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The analytical model used for such plasmas is a system of resistive magnetohydroc!;-
namic (MHD) equations. This is a system of nonlinear hyperbolic equations which contain 
parabolic and elliptic components. An enormous range of time scales is contained in these 
equations. Fast compressional waves have a characteristic time of ]0"° seconds in a typical 
fusion device, while the typical length of an experiment is several seconds. 

Our main interest however is in accurate simulation over the shear Alfven wave times 
of 1 0 - 5 seconds or even longer resistive times of 10~ 3 seconds. 

Analytical methods exist for eliminating the faster time scales in these problems but 
they are too restrictive to apply in the general case. The convenient solution is to use 
implicit methods with time steps appropriate to the longer times which are numerically 
stable in the presence of the fast waves. These latter are then not faithfully simulated. 
However, in a dynamically stable plasma configuration, they are thought to be unimportant 
and can be safely neglected. 

The usual technique by which the MHD equations are given an implicit numerical 
character are variations on the Crank-.\icolson method. Given the longer time steps al
lowed by these implicit methods, the simulation of an entire 1-second plasma shot would 
still take a prohibitive amount of time, even on a parallel vector computer. Methods which 
would allow us to further increase the time step or reduce the number of operations needed 
to simulate to a given accuracy would be invaluable. The diagonal Pade methods to be 
described ar- hopefully such a method, but more work is required to establish this. 

The Factorization Method 
We write the numerator polynomial of the Mth order diagonal Pade approximation 

to e: in factorized form as, 

M w=nc-r)- (6) 
Here the C'm are the roots of Pm(z). An important fact is that all of these roots are 
distinct, nonzero, and have negative definite real part Real(C m ) < 0 '4,6-10i. Table 1 
gives numerical values of the roots of the diagonal Pade polynomials up to .1/ = 11. 
and an interesting illustration of the poles and zeros of the first twenty diagonal Pade 
approximations to ez is given in Fig.l. 

The roots of QM{:) = P.\i[ — z) are just —C'm. Since these roots are either real or 
occur in complex conjugate pairs, the poles of the diagonal Pade approximation are just 
the reflection of the zeros across the y axis. We can then write the Mth order diagonal 
Pade approximation to e 1 , with Cj, as the complex conjugate of C,n . as 

PM(=) _ r r 1 ~ '-!Cm 

Each of the factors in the above form of the approximation has the A-stability property, 
namely that for real part of z < 0 

3 



—- c / --:- ' < i. (8) 
1 - zfCl 

This A-stabilily property is shared by the whole approximation given by Eq.(7) and is a 
well-known property of all the Pade approximations to ez for which .V - M, M - 1 or 
.1/ - 2 8.9. 

We now observe that Eq.(7) is a valid approximation to the time step evolution oper
ator U(t 4- At,!) if AtH(t) is substituted for z and a proper interpretation is made of the 
inverse operators. Our solution procedure is to unfold the products of Equation (7) pair 
by pair. Each substep of a given time step is of the form, 

(].^!.v=(i-^.y-. (9) 

where 1 < m < M. 1>° = *(<) and *(/. - Ai) = ** ' . 
Although complex arithmetic must be used, each step of this process is as simple as one 

step of the Crank-Nicolson method requiring only an algorithm for numerical inversion of 
H(t). As we shall see. the extra work done by using complex arithmetic is more than made 
up by an increase in accuracy. Further, the same numerical algorithm can be conveniently 
used for an arbitrary order di.igonal Pade method. We also see that each substep of the 
method is A-stable s» thai no transitory instabilities can occur. 

If we start from real initial values for tp and H(t) is a real operator, then after the first 
substep of the method we have complex values. Clearly, after M steps we must have real 
values again since the overall product is real. The magnitude of the complex part after 
.1/ substeps then gives us an error estimate of the process. On ihe other hand, if II(t) is 
a complex operator, i.e., has complex eigenvalues, or if \P is a complex variable, then the 
overhead associated with complexification of the problem is saved. Complex ^ are implied 
in multidimensional problems where one or more periodic dimensions are Fourier analyzed 
to yield a simpler and sometimes decoupled form for H(t) which is then also more easily 
inverted. 

Since the roots of PI\I(Z) are all distinct and well separated in the complex plane, it 
is easy to obtain numerical approximations to them. All that is necessary is that they 
multiply up to the correct coefficients within a tolerable error. Thi slight error introduced 
by using truncated numerical approximations to them is not an essential limitation or the 
method. 

The coefficients of PM(~) are known in closed form[4,6,9,10". 

R M - V - " ! ( 2 - " - " ) ! .m n m 
P ^ ] - ^ [ 2 A l ) ^ T ^ n ) \ - ' ( U , ) 

The numerical values of Table 1 when combined yield the known analytic values of the 
coefficients of the numerator polynomial to better than one part in 10' 3 . 
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The polynomials satisfy a number of useful recursion relations and the error in the 
approximation is [11 , 

-* - P h ' { s ) RM(s) where, 

T ( - 1 ) " - ' " 

2- | A ' - ' ( .U!) *M(=) = \ J _ , ~ , , , 2 ( 1 - 0 ( A / - J ) ) , (11) 

so that tolerable errors are possible even when z\ > 1, i.e.. the time step is larger than the 
characteristic time Tc of H(t). The latter may be defined as the im-erse of the magnitude 
of the largest eigenvalue of interest in the spectrum of H(l). Tc ~ l / | A m a z . 

Our numerical studies indicate that the sometimes surprising convergence of Pade 
approximations carries over into the initial value problem. Faithful simulations are ob
tained in some problems even for inordinately large time steps (Ai =s MTC). In fact, the 
permissible time steps are so large that explicit variation of If(t) over a single time step 
becomes important, Until now we have tacitly assumed that this variation was neglegible. 
In our desired application of MHD simulation this may not be true. 

Inclusion of a time-varying inhomogeneous term or boundary conditions in Eq.(l) leads 
to a similar problem for large time steps. These are also present in the MHD equations. 
Possible resolutions for these problems exist via the method of variation of parameters 
and transformation of H(t) to an almost time invariant form. We plan to treat these in a 
future work and will not discuss them any further here. 

Although fundamentally linear, the factorized diagonal Pade method can be applied 
to autonomous nonlinear ordinary differential equations by embedding these in a linear 
system via the technique of Carlemanl 12-16j. This application will also be treated in a 
future work. 

The factorization technique given here can also be used to approximate the exponential 
of a badly conditioned matrix, as. for example, the two by two dimensional test case of 
Moler and Van Loan[j7:. Since for a large enough order method the condition number of 
each of the substeps remains tolerable, one thereby avoids the problem of a large condition 
of the total numerator or denominator expansions. 

Finally, we should point out that there exist a number of implicit Runge-Kutta for
mulae equivalent to diagonal ind subdiagonal Pade approximations which use entirely real 
math. These have been studied by Ehle -8,9] and others. The low-order methods of this 
type are slightly harder to implement than the method of this paper and may be preferable 
in some circumstances. However, the numerical solution of a system of /Y equations bv 
these methods requires the inversion of a JV - M by N • HI system, where M is the order 
of the implicit Runge-Kutta method. A high-order method applied to a large system is 
cleat ly unwieldy. 

A Numer ica l Example 
We have selected the homogeneous one-dimensional heat equation as a simple example 

for the numerical testing of our method. 
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where 0 < x < H", ^(O. t) - ^ ( I I . / ) = 0 and a can be complex. We use a centered 
difference formula for the right-hand side diffusion operator so that the exact eigenvalues 
of the discrete system are. 

X*= | ^ ( r o s A - - - l ) . (13) 

Here 1 < k < K and Ax = XVIK. 
The discrete version of the right-hand side diffusion operator is a tridiagonal matrix, 

as is the substep matrix of Eq.(9). The inversion is accomplished by the well-known 
recursive algorithm equivalent to an LU factorization 18 so that the work involved is only 
proportional to K. 

We compare diagonal Pade methods implemented in the factorized form with complex 
arithmetic to a real math version of the Crank-Nicolson method and several real arithmetic 
explicit methods. To compare the methods we select a single eigenmode of Eq.(12) as our 
initial condition and follow it for a time period rqual t " a given number of characteristic 
times Tc — 1/ At . 

We repeatedly solve the problem for this period while varying the total number of 
time steps from one to the number at which the maximum error saturates. For the explicit 
methods we start at the minimum number of lime steps for which the method is stable. 
At the final time the result of each different time discretization is compared to the exactly 
known solution. Maximum and average errors are extracted and the processing time is 
recorded. The maximum error results are similar to those for the average error and are 
not presented. 

Figure 2 shows the results of runs made on a Cray-1 computer using diagonal Pade 
approximations to order 11, labeled Cl - C l ] , Eulers method (E). and Runge-Kutta meth
ods of order two (RK2), four (RK4), and six (RK6). All these runs were made for a period 
of ten characteristic times of the lowest k = 1 eigenmode and are typical in that similar 
results are found for real, imaginary, or complex <r and for shorter or longer time periods. 
In this set of runs the loop vectorization of the Cray-1 was turned off. The log of the 
average error is plotted against the log of the CPU time used. The average error is defined 
a,s the average of the absolute values of the difference between the computed and exact 
solutions divided by eXT where T is the total time period. 

For all the implicit methods and for those explicit methods which are not already at 
the precision limit the logarithm of error decreases linearly with the logarithm of CPU 
time until saturation due to rounding sets in at a machine, method, and period dependent 
precision level. This is in agreement with expected behavior since the error is proportional 
to ( A < A ) 2 J U i l for the implicit Pade methods and (A tA) M ~ ' for the explicit methods, while 
the work involved varies as the inverse of the time step and the slope is proportional to 
the order -Ji the method. 

The M — I Pade case which was implemented with real arithmetic labeled Rl , is 
seen to use only about half the time of the fully complex Cl method. A factor of four 
might have been expected and the difference is due to the fact that the Cray-1 unavoidably 
vectorizes some of the complex calculations even with vectorization off. 

RK2 is seen to give about the same accuracy and use about the same time as Rl 
since the operation count and error of both methods is roughly the same. The M > 1 
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Fade approximations saturate at an error lower than the :1/ = 1 approximation. Efficiency 
of solution of the Pade methods improves as order increases, although the incremental 
improvement from order to order becomes smaller with order. 

Gains of 100 or more in CPU time over the M = 1 Pade method and all the explicit 
methods are obtained with the higher-order Pade methods depending on the required 
acruracy. These gains are had in spite of the extra work implied by complex arithmetic. 
For the M ~ 11 method an accuracy of 1 0 - 3 was obtained with just one time step. The 
-1/ = 15 Pade method ( not shown ) was at the precision limit in one time step. 

We note that our selection of the lowest eigenmode of the system has accentuated 
the achievable improvement in efficiency over the explicit methods and that for the higher 
modes this improvement would not be as dramatic or even exist. Fig.3 presents the results 
of runs made for ten characteristic times of the eleventh eigenmode of the heat equation. 
Here the RK4 method is more efficient than the C2 method while the RKfi and C3 methods 
are of comparable efficiency. 

Figure 3 also illustrates the fact that the minimum attainable errors of the high order 
real math explicit methods are smaller than those of the complex math implicit methods, 
in this example they are an order of magnitude smaller. This is due to the increase of 
rounding error of the complex calculations over that of the real calculations. On the other 
hand, the implicit complex methods seem quite stable in the presence of rounding error in 
that an excessively short time step does not tend to increase the attainable error. 

When the Cray loop vectorization is turned on, the appropriately coded explicit meth
ods increase in speed by approximately a factor of 5 while the nonvectorized recursive 
inversion of the implicit Pade methods is only slightly faster. Even then, the high-order 
Fade methods are still more efficient in the stiff system of Fig.2. We note that, although 
not implemented for this paper, techniques exist for partially vectorizing the recursive in
version of tridiagonal matrices [19.201. It is likely that even further improvement might be 
obtained with the incorporation of one of these techniques and that, in principle, certain 
elements of the complex calculations might be further vectorized as well. 

Conclusions 
We have presented a convenient method for the implementation of high-order implicit 

diagonal Pade approximations for the solution of homogeneous, exactly time-invariant 
or autonomous, linear operator, initial value problems and demonstrated the remarkable 
efficiency of these methods in comparison with both explicit methods and the Crank-
Xicolson method. The central idea is a factorization technique which yields an algorithm 
of simplicity comparable to the Crank-Nicolson method. The same algorithm can be used 
for an arbitrary order diagonal Pade method and might be applied with advantage to 
nondiagonal Pade approximations and other methods. 

The main limitations of the method to date are the requirements of exact or approx
imate time invariance, linearityT and ease of inversion of the operator. Since the same-
algorithm can be used for an arbitrary order method, an adaptive scheme can be con
structed where a low-order method with a small time step is used when the operator varies 
appreciably in time and a high-order lai^e time step method is otherwise used. 

Further work is needed to establish whether this method can be applied to more 
practical problems which lie outside these limitations. However, the accuracy of the higher-
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order diagonal Pade methods is such that careful consideration should he given concerning 
modification of codes, which presently use the Crank-Nicolson method or its variants, to 
use the scheme of this paper. 
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Table - 1 

Roots of the first eleven diagonal Pade approximations to ez 

Only the roots of non-negative imaginary part are given. 
Order Real Part Imaginary Part 

I -2.0 0.0 
2 -3.0 1.732050807568877 

! 3 
i 

-4.644370709252172 
-3.677814645373914 

0.0 
3.508761919567444 

! 4 -5.792421205640744 
-4.2075787943."<)256 

1.734468257869007 
5.314836083713505 

5 

i 

-7.293477190659323 
-6.703912798307045 
-4.649348606363293 

0.0 
3.485322832366408 
7.142045840675948 

i 6 

i 
-8.496718791726729 
-7.471416712651628 
-5.031864495621643 

1.735019346462726 
5.252544622894256 
8.985345907307884 

7 -9.943573717055878 
-9.516581056309254 
-8.140278327276275 
-5.371353757886532 

0.0 
3.4785*2122261069 
7.034348095419513 
10.84138826143350 

8 -11.17577208652617 
! -10.40968158127378 

-8.736578434404781 
i -5.677967897795266 

1.7352288907055QO 
5.232350305285130 
8.828885000943038 
12.70782259720976 j 

9 i -12.59403836343024 
; -12.25873580854839 
' -11.20884363901552 
: -9.276879774360831 
j -5.958521596360136 

0.0 
3.475696766962232 ! 

6.996313835771842 
10.^454335087136 
14.58292737668437 

10 -13.84408981085430 
-13.23058193095358 
-11.93505665717623 
-9.772439133717648 
-6.217832467298239 

1.735330390904289 
5.223135841597920 
8.769894377885137 
12.44997096494290 
16.46539891814719 

11 -15.24467969165087 
-14.96845972142817 
-14.11578477534349 
-12.60267490974686 
-10.23129656781539 
-6.459444179840646 | 

0.0 
3.474205641536712 
6.978029007087853 ! 

10.55238348739988 
14.27404151778648 
18.35422313741710 i 
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Figure Captions 

Figure 1 - Poles and zeros of the first twenty diagonal Pade approximations to e" are 
illustrated. These critical points of the approximation for fixed order generate a roughly 
elliptical figure whose radius increases with order. The zeros are well separated in the 
complex plane. Odd order approximations have one negal ivc real zero while even order 
approximations have no real zeros. 

Figure 2 - The efficiency of factorized. complex arithmetic, diagonal Pade methods 
of orders 1 through 11, labeled CI - C l l , are compared to Euler's method, labeled E, 
the Crank-Nicolson method, labeled Rl , and Runge-Kutta methods of orders 2 through 
4. labeled RK2 - RK4, implemented with real mathematics, for ten characteristic times of 
the first eigenmode of the one-dimensional heat diffusion equation. 

Figure 3 - The efficiency of diagonal Pade methods through order eleven, labeled C2-
C U . are compared to Runge-Kutta methods of order four (RK4). and six (RK6) for ten 
characteristic times of the eleventh eigenmode of the one-dimensional heat equation. The 
achievable gain in efficiency of the Pade methods over the Runge-Kutta methods is reduced 
for this case which is not as stiff as the system of Figure 1. C3 and RK6 are of comparable 
efficiency and the curves for these methods actually overlap at several points. Complex 
arithmetic is seen tc increase the rounding error by an order of magnitude over that of the 
real methods in this figure. 
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