Convoy Electrons in Coincidence with Outgoing Charge States

of Ni (920 MeV)

J. Kemmler, O. Hell, C. Biedermann, P. Koschar, H. Rothard,
K. Kroneberger, K.O. Groeneveld, I.A. Sellin

Institut für Kernphysik der J.W. Goethe Universität
Frankfurt/M, Germany

Oak Ridge Natl. Lab. and University of Tennessee, TN, USA

Abstract: We have studied the target thickness (px) dependence of the convoy electron yield Ye(qf) for the incident projectiles Ni^{q1}
(15.6 MeV/u) with q1-28 and 27 in coincidence with outgoing projectiles with charge qf-28 and 27. Simultaneously the charge state evolution F(qf, px) dependence on the incident charge q1 has been measured. For this collision system the charge state distribution equilibrates for target thicknesses > 650 µg/cm². In the framework of a model for convoy electron production the px dependence of the yield Ye(q1,qf) can be explained if one introduces an electron transport length λe which is much larger than the attenuation length λe of free electrons.

In the last years experimental evidence has accumulated that much of the convoy electron (CE) production takes place in the bulk of the solid [1]. If the convoy electrons are formed by charge exchange processes of the projectile ion inside the solid it is interesting to inquire how these electrons keep their correlation to the projectile core in spite of the elastic and inelastic electron scattering processes inside the solid. The mean free path for free electrons extends from several Angstrom for low energy electrons to 100 Å for electrons of 10 keV [2]. This is always less than the mean free path λcc for a charge exchange cycle of heavy ions at such projectile energies.

In a recent measurement of the CE yield Ye for Ni^{2+} and Ni^{3+} ions (E_p=920 MeV)
on carbon and aluminum foils the slowly increasing yield Y_c has been interpreted as reflecting an enhanced transport length for convoy electrons. A value of λ_c was obtained which is about an order of magnitude greater than the mean free path for isotachic free electrons [3]. For the interpretation of this result the charge exchange processes inside the solid had not been fully considered. Does the $Y_c(\rho x)$ increase alternatively track the evolution of charge and excitation states which produce mainly convoy electrons or is this dependence related to a truly enhanced transport length [4]?

To elucidate this question we have measured the ρx dependence of the CE yield $Y_e(q_f)$ for Ni$^{1+}$ at 920 MeV with incident charge states $q_i=27$ and 28 in coincidence with projectiles of the outgoing charge states $q_f=27$ and 28. Also the evolution of the charge states $F(\rho x)$ was recorded (Fig. 1). The experimental set-up is the same as that described in ref. [5]. The yield $Y_e(q_f)$ has been determined by integrating the electron velocity distribution over an interval of $\pm v_B$ centered at the peak maximum after point by point subtraction of a linear background arising from target ionization electrons. The number of CE was normalized to the total number of projectiles $N=IN(q_f)$ associated with all final charge states [5].

The evolution of the yield $Y_e(q_{i-27}, q_f=28)$ and $Y_e(q_i=27, q_f=27)$ proceeds much more steeply than the evolution of the corresponding charge states $F(q_{i-27}, q_f=28)$ and $F(q_i=27, q_f=27)$ respectively (see Fig. 1 and 2). But the yields of $Y_e(q_i=27, q_f=28)$ and $Y_e(q_i=28, q_f=27)$ increase at a similar pace as the corresponding outgoing charge states $F(q_f=28)$ and $F(q_f=27)$. With the procedure of Allison for charge exchange analysis [6] we find from the data of Fig. 1 for a charge changing cycle (28 --> 27 --> 28) a value of $\lambda_{cc}\approx650\ \mu g/cm^2$.

Allowing only for single step processes and one-electron exchange from ground states in an extended Allison [6] procedure introduced by Kemmler et al. [5] for the CE production in solids the data of Fig. 2 (i.e. 28 --> 28 and 27 --> 27) yield about equal contributions of electron loss (ELC) and electron capture to continuum (ECC) processes with an convoy electron transport length $\lambda_c=(24\pm5)\mu g/cm^2 > \lambda_e=2\mu g/cm^2$ (Powell).

However, there is strong evidence from other (lower Z_p and v_p) collision systems that 1. the primary production mechanism for CE is projectile electron loss to low lying continuum states and 2. moderately excited states contribute significantly to the ELC process [7]. The above fit results for the ECC contribution (28 --> 28 or 27 --> 27) may be interpreted in terms of a two step process: Electron capture to the ground state or to low lying excited states followed by high cross section ELC events (e.g. 28 --> 27 --> 28, or 27 --> 26-->27), a view which is supported also by the charge state analysis data from Sofield et al. [8]. Within this approach the resulting transport lengths $\lambda_{cc} > \lambda_c > \lambda_e$ support the concept of electron trapping in excited states introduced by Burgdörfer [4].
Stimulating discussions with Wolfgang Meckbach, C. A. Bariloche/Argentina and Peter Sigmund, Univ. Odense/Denmark are gratefully acknowledged. We appreciate the support of Paul Mokler and his group at GSI/Darmstadt during the experiment. *This work has been funded in part by the Bundesministerium für Forschung und Technologie/Bonn under contract nr. 060F173/2T1476. Support by NSF/Washington, NATO/Brussels and GSI/Darmstadt is gratefully acknowledged.

References

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.