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RESUMO ' n

Um novo modelo de elementos finitos, cuja formulacioc incorpo}a
automaticamente a busca da direcdo de upwind mais apropriada

para a construcdo das funcdes peso do metodo de Petrov-
-Galerkin, & apresentado. Mostra-se tambem que modificando-se
essas funcdes, apenas para o5 elementos adjacertes as frontei-
ras onde ocorres fendmenos tipicos de camada limite, consegue-
-s¢ eliminar eficazmente as oscilacoes numericas que nﬁrnalaeg

te aparecem na vizinhanca dessas camadas.

ABSTRACT

A new Petrov-Galerkin Finite Element Model which automatically
incorporates the search for the appropriate upwind direction
is presented. It is also shown that altering the Petrov-
-Galerkin weighting functions associated with elements adjacent
to downwind boundaries effectively eliminates numerical

oscillations normally obtained near boundary layers.
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A new Petrov-Galerkin Finite Element Mode)l which automatically
incorporates the search for the appropriate upwind direction is
presented. Jt 15 also shown that altering the Petrov-Galerkin
weighting functions associated with elements adjacent to downwind -
boundaries effectively eliminates numerical oscillations normally
obtained near boundary layers.

i. .lﬂTRODUCTION

Wnen applied to convection-dominated flow problems standard Galerkin methods
generate unstable finite element approximations. To overcome this deficiency
many others numerica)l methods has been proposed. Among them a very successfui
one is tne SUPG derived by Huanes et al) [1]. For regular problems this method
works well.but it -presents spuriocus localized oscillations in regions of high
gradients. To circumvent this difficult Hughes et a1l [2]} proposed the DC?
method adding to SUPG a discontinuity-capturing term. In the absence of source
terms this method is able to predict boundary layers and presents better
results than SUPG. A different situation occurs when non-homogeneous or -
transient problems are considered. For these problems the method derived by Do
Carmo et all [3) presents higher stability properties. Internal and boundary
layers are accyrately approximated with this new model which reproduces the
DLZ when steady-state problems with no source terms are considered. As shown by
Galeao et all [4) this method called CAU presents a sistematic procedure tn
obtain the appropriate upwind direction and associatid Petrov-Gaierkin
weighting function. '

In this paper we first review the fundamental aspects of this method. Then we
present a procedure to isolate the bouncary layer singularity from the regular
part of the domain solution. Finally, steady as wel) a¢ transient test problems
are numerically solved in order to demonstrate the performance of these methods

2, CONVECTIOR-DIFFUSION PROBLEMS

Let § be a bounded region in R" (n>2) with a piecewise boundary T and unit
outward normal n. Given a velocity vector field u{x,t); (x ¢ @; t ¢ [0,T)), the
mathematical mode) for the transport problem we 3re going to consider is
described by the tiansdent adveclion-difdusion ccuation:

b+ UeT¢ + div (-K99) « f ing, (1a) .

where: K(x) is the diffusivity tensor; the source term f(x,t) is a specified
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fpnction of position x and twme t, and V¢ is the aradrent of the unknown scalar
fiele ¢{x,t). The notations: diwv ( ) stands for the diveraence operator; {+)
denotes vector scalar product, and {°) 15 the time derivative,

Lirichlet and Newman boundary conditions are simultaneously considered, and
awven respectively by:

¢(x.t) = glx.t) ;. xe¢ Ty (1b)
-Kvern = qlx,t) ; x €T (ic)
where: rgn Fq=famd T Uro =T {1d)

Finally at the initial time the condition
o(x,0) = ¢{x) , xc0 (1e)
completes the initial boundary value probfem. The function ¢(x,t) which

satisfies egs. (1a-e) is then the ciassical solution of the convection-
diffusion problem under consideration.

3. WEAK FORMULATION

Let us consider now the set S of all kinematically admissible functions, and
the space V of admissible variations, which we designate respecttvely by

S = {p{x,t); for each t ¢ [0,T): p & H,(Q); V[, =9l , (2a)
9
V= (e: @ ¢ Ky(n); ef. 20} , - (2b)
' 9
where: H,(2)z{n; n € L,(0); (Wn); ¢ L,(Q); i=1,2,3} , - {2c)

and L,{Q) is the well known space of squared-integrable functions with inner
product _

w8 = f 0 . ' (24)
R
Defining:
a($,0) = <¢+u-7¢,8>o + <KV4,98>9 - (32)
2(8) = <f,8>5 + <q,8>. ; <q,8> = Ir q9 dr , (3b)
q

the function ¢ ¢ S such that at the initial “ime
<4-0,,8% = 0, (3c)
and for each time t ¢ [0,T) and for‘311 6 ¢ ¥/ satisfies

2(¢,8) - r{8) = D o ' (3d)

is the weak svlution of problem (12-e},




4. APPROXIMATE SOLUTION: PETROV-GALERKIN F.E.M.

Suppose a finite element partition Th, consisting of "e elements such that

L N,
n.urﬁ and nn =§, 4
et © i et © @

ws thosen. Then, a class of Upwind Petrov-Galerkin approx1mations ﬁf problem
{3a-d) can be constructed requiring the approximate solution ¢M ¢ S" to satisfy

N
a(o ) - 1(6 Y= { <6h u-v +d1v( Kvé )-f,u >3 v ¢ P (5)
e=1 e
where: P = (" ¢ O(0); ¢h|‘2 s P w, ¢ N ¢hlr =g} "~ (6a)
e g
W= s c%n); ehlﬂe ¢ P; FQC ¢ Th; ehlr;ﬁl R (6b)

an& Pk js the space of polynomials of degree =zk.

Consequently using this formulation the space of ue1qht1ng functions consists
of elements

n".eh+u";e GVh. (7)

Of course for different choices of the weighting function wh, different Petrov-
Galerkin’s approximations are generated, For w"=0 the solution of (5}
degenerates in the classical Galerkin approximation. Discontinuous weighting
functions proposed by Hughes et all [1,2] give rise to SUPG and DC2 methods.

4.1, CAU Method |
In our approach, the weighting function " is defined as

ll!h = Uh 'veh (8}

where u" s a Consistent Approximate U direction, which depends
continGously on the approximate solut1on , in the sense that:

as o7 + ¢ (exact solution) —o uh » u (streantine direction). (9)
et " o

h

As shown in reference [4], if u” is constructed as

P oo e Bl - (0)

h

where for each 0 the vector field v is such that:

§ ) 9t satisfies in each element the discretized version of the advection-
diffusion equation (1a), that is,

"o e ¢ aivlxm® - £ 0 Inn, (ee1,2,..0) (11)

to the real transport




velocity field u, that is,

Ml g = <MunPw, s @ mindmm (es1,2...8,); (12)
e

. e e
then condition (9) is attained.

It is not difficult to show that conditions (11) and (12) imply that in each
element

(8" edivi-kwe™)-f1 |

!h * E - B2 E’ (13‘)

(90"

1/2
when %" = (zo"we™ > 0, (13b)
and Veu it Mz - (13¢)

Using equations (8), (10) and (13) it follows that, in our model, the weighting
function wh is given by

[ su-vo edivi-kee™)-F1 '
" 9% -ve (14)
|ve” i

where a and £ are the upuind functions. For their determination the same
approach suggested in reference [2] will be adopted here.

wh = ug*geh + (B-a)

5. ISOLATION OF NUMERICAL BOUNDARY LAYERS DISTURBANCES

The numerical examples presented in references [3] and [4] show that for
convection-dominated problems governed by non-homogeneous or transient
advection-diffusion equation the CAU model outlined in the preceding section
exhibits better accuracy and stability properties when compared with SUPG .or
DC2 methods. Globally, the approximate solutions given by these three methods
compare well with the corresponding exact solutions. But near boundary layers
the localized oscillations tipically produced by SUPG are not removed by DC2
method which sometimes gave larger oscillations. This did not occur with CAU,
but some oscillations were still present, and the purpose of this section is
to derive a methodology in order to jsolate the numerical perturbation caused
by boundary layers on the regular part of the domain solution.

To this end the following definitions are introduced;

the sets: " = {x ¢ I'; unc0}; r*ear.r”

- . + .
M= {Qe' Qen 1' ’ " 8-1,2,...Ne}
xE{xeu; x 81" (15a-c)
and the function: Q : aUr-+ R, _ (16)

which is assumed to be continuous and positive. The function ¢ will be



o, if a‘ o
0 (x) = | NPE A (e=1,2,...K,: 07
e - IO(x)»(x) i e
olx,) - 0 , if Fé(fi),s 1 or x;6%  (18)
[Fe(gil-ij , if pe(fi) >1 and x; ¢

where Qa(x) is the restriction of O to element e, Pe(x;) is the mean value at
node i of the element Peclet numbers and qe(x) is the 1oca1 interpotatian
function associated to node 3 of element e,

Now, if n. denotes the restriction to element e of the alobal Petrov-Galerkin
weighting function corresponding to node i, isolation of boundary lavers
numerical perturbation over tne reaular part of domain solution can be
achieved using the modified weighting function ng 1 9iven by:

*

o

. (19)

exp( 0 ) , if 51' € X

s

i,!

-Pl'b

6. NUMERICAL RESULTS

Two test exampies concerning convection-dominated problems will be presented.
For both the medium is assumed homogeneous and isotropic with a physical
diffusivity coefficient k=10"°, The results snown in figures 1 and 2 refer to 2
bi-dimensional (1x1) domain discretized by a (20x20) square mesh. Bi-Tinear
elements were employed with (2x2) quadrature.

6.1. Transient Advection Skew to the Mesh

For this example the velocity field u has components ux=1 and uy=-1. The
assumed essential boundary conditionS are: o(Q,y,t)=¢(1,y,t}=0(x,0,t)=0, and
¢{x,1,t) is a time-dependent boundary condition propagating from position
x=0.2, in the positive x-direction, with a fixed profile and constant velocity
vs0.05. Definitions of the function ¢{x,1,t); the source term f{x,y,t), and the
exact solution ¢(x,y,t) are given in reference [4]. The initial condition
adopted was the steady solution (v=0).

In figure 1 the exact solutions (E) at times t=0.3 and t=0.9 are compared with
(CAU) and {SUPG) solutions calculated using the backward difference time-
integration scheme, with a time step At=0.1. For the CAU method a maximum of
four iterations at each time step was needed for convergence. Results for the
DC2 method was not presented as no convergence was achieved. The numerical
results obtained with CAU agree well with the exact solution, and no additionai
difficulties occur due to the transient nature of this solution.

6.2, Steady Advection Skew to the Mesh

For this example the velocity field u has components ux=1 and uy=-2,and the =
source term f(x,y) 0. The assumed Difichlet boundary conditions are: ¢{x,0}:0;
¢(x,1)=1; &(1,y):0 (O-yr1); ¢(0,y)<0 (0-y<0.6); ¢{0,y)=} (0.87y’1) and for
mwcycog), a pieciewise 11near function ¢(0,y) was adopted. Numerical results
in fiqure 2 with the
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FIGURE 1
Transient sdvection skew to the mesh
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exact solution {E). Because f({x,y)30 and ¢{x,y}:0 CAU and DCZ approximate
solutions are exactly the same. This solution still exhibits small oscillations
near the boundary laver. But using the procedure oresented in section 5 these
?s;i}}ations are completely removed as sShown in the numerical solution labelled
CAul ).

T
R At
=

77

i

¥

FIGURE 2
Sicady advection skew to the mesh

7. CONCLUSIONS

The LAV method presented in this paper shows high stability propertics and qood
accuracy in predicting internal as well as boundary layers, The intcrent



stability of this method is a consccuence of the weighting Petrov-Galerkin
function used, which chanaes cantinuously with an approximate iterative upwind
tirection defined in sucn way 2s to ouarantee that 1t tends to the stircom)ine
cirection as the iterative approximate solution approacnes the exact one.

Tne prooosed CAU] version of the CAU method efiectively eliminates the
remaining oscillations near bounozry layers, aitering the weighting functions
associated only with elements adjacent to downwind boundaries where Dirichlet
type conditions are prescribed, Tne additionai comoutational effort is minimun
compared with the additional accuracy produced by this proceaure,
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