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RESUMO 

lia novo modelo de elementos finitos, cuja formulação incorpora 

automaticamente a busca da direção de upwind mais apropriada 

para a construção das funções peso do método de Petrov-

-Galerkin, é apresentado. Mostra-se também que modificando-se 

essas funções, apenas para os elementos adjacentes as frontei­

ras onde ocorrem fenômenos típicos de camada limite, consegue-

-se eliminar eficazmente as oscilações numéricas que normal me ri 

te aparecem na vizinhança dessas camadas. 

ABSTRACT 

A new Petrov-Galerkin Finite Element Model which automatically 

incorporates the search for the appropriate upwind direction 

is presented. It is also shown that altering the Petrov-

-Galerkin weighting functions associated with elements adjacent 

to downwind boundaries effectively eliminates numerical 

oscillations normally obtained near boundary layers. 
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A new Petrov-Galerkin Finite Element Model which automatically 
incorporates the search for the appropriate upwind direction is 
presented. It is also shown that altering the Petrov-Galerkin 
weighting functions associated with elements adjacent to downwind 
boundaries effectively eliminates numerical oscillations normally 
obtained near boundary layers. 

1. INTRODUCTION 

When applied to convection-dominated flow problems standard Galerkin methods 
generate unstable finite element approximations. To overcome this deficiency 
many others numerical methods has been proposed. Among them a very successful 
one is tne SUPG derived by Hugnes et all [13- For regular problems this method 
works well but it presents spurious localized oscillations in regions of high 
gradients. To circumvent this difficult Hughes et all [2] proposed the DC2 
method adding to SUPG a discontinuity-capturing term. In the absence of source 
terms this method is able to predict boundary layers &nd presents better 
results than SUPG. A different situation occurs when non-homogeneous or 
transient problems are considered. For these problems the method derived by Do 
Carmo et all [3] presents higher stability properties. Internal and boundary 
layers are accurately approximated with this new model which reproduces the 
DC2 when steady-state problems with no source terms are considered. As shown by 
Galeão et all [4] this method called CAU presents a sistematic procedure to 
obtain the appropriate upwind direction and associated Petrov-Galerkin 
weighting function. 

In this paper we first review the fundamental aspects of this method. Then we 
present a procedure to isolate the boundary layer singularity from the regular 
part of the domain solution. Finally, steady as well as tratisient test problems 
are numerically solved in order to demonstrate the performance of these methods. 

2. CONVECTION-DIFFUSION PROBLEMS 

Let fi be a bounded region in K n (n>2) with a piecewise boundary r and unit 
outward normal n. Given a velocity vector field u(x,t); (x c Q; t 6 [0,T)), the 
mathematical mo3el for the transport problem we are going~to consider is 
described by the XAansiaU advzciÃ.on-Aifâut>4.t'n ccucHon: 

j> • u'V? + div (-Kv\j>) » f in ft , (la) . 

where: K(x) is the diffusivity tensor; the source term f(x,t) is a specified 
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function of position x and time t, and v"£ is the gradient of the unknown scalar 
field $(x,t). The notations: div ( i stands for the divergence operator; (•) 
denotes vector scalar product, and (*) is the time derivative. 

Dirichlet and Newman boundary conditions are simultaneously considered, and 
given respectively by: 

$U.t) = g(x.t) ; x 6 r (lb) 

-K7<t>'n = q(x,t) ; x c r (1c) 

where: r fl r„ = 9 and r U r_ = r (Id) 
g p g q 

Finally at the initial time the condition 

•(x.O) = tjx) , x t D (le) 

completes the inJÜUot boundanu value pxobtcm. The function $(x,t) which 
satisfies eqs. (la-e) is then"the classical solution of the convection-
diffusion problem under consideration. 

3. WEAK FORMULATION 

Let us consider now the set S of all kinematically admissible functions, and 
the space V of admissible variations, which we designate respectively by: 

S = {«(x.t); for each t e [0,T): i|; 6 Ha(n); f L =g) , (2a) 

9 

v = ie; e c H,(n); ei =0) , 
1 9 

(2b) 

where: HjfàjEÍn; n « ! , ( ! ) ) ; (Vn) i G L2(fi); 1=1,2,3} , (2c) 

and La(fi) is the well known space of squared-integrable functions with inner 
product 

<*.B>o s Í *e dn • * 2 d ) 

Defining: 

a(*,9) = «£+U'£$,e>fl + <KV*»£6>n i3 a) 

£(e) = <f»8>fl • <q»e>r ; «?>e>r • f qe dr , 
rq 

the function <f> 6 S such that at the initial :ime 

(3b) 

<*-V e >n - o , (3c) 
and for each time t c [0,T) and for all 6 6'/ satisfies 

»U,8) - *(e) . 0 • • (3d) 

is the weak &vtaiion of problem (la-*/. 
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4. APPROXIMATE SOLUTION: PETROV-GALERKIN F.E.M. 

Suppose a finite element partition x , consisting of N elements such that 

Ne Ne 

B .' U B and n 8 A « 9 . (4) 
e»1 e e«1 e 

nas chosen. Then, a class of Uputind VtiAov-GalváUn approximations of problem 
(3a-d) can be constructed requiring the approximate solution $" c S" to satisfy 

Ne 
a(*h,eh) - £(eh) = - I 4 h

+ u V+div(-Kv*
h)-f ,ü»h>0 ; ve

h « v* (5) 
e«t ~ ~ """ "e 

where: S h = {*h c C°(n); * \ c P*; V«e 6 T
h; ^ j . =g> (6a) 

e g 

^ r i e " c c°(n); eh| * p*; vo c th; e h L =0} . (6b) 
e g 

and v' is the space of polynomials of degree sk. 

Consequently using this formulation the space of weighting functions consists 
of elements 

nh - eh
 + w

h ; eh « i^ . (7) 

Of course for different choices of the weighting function u , different Petrov-
Galerkin's approximations are generated. For u"=0 the solution of (5) 
degenerates in the classical Galerkin approximation. Discontinuous weighting 
functions proposed by Hughes et all [1,2] give rise to SUPG and DC2 methods. 

4.1. CAU Method 

In our approach, the weighting function w is defined as 

w
n . yh-VBh (8) 

where u is a Con&i&t&nt Approximate Upwind direction, which depends 
continuously on the approximate solution $", in the sense that: 

as • * • (exact iolutúm) — > u •*• u (òtA&amLòit dOitction). (9) 

h*0 " h*0 " 

As shown in reference [4] , if u is constructed as 

uh - ovh • 6(u-vh) , (10) 
whir» for each $ the vector field v is such that: 

1 ) it satisfies in each element the discretized version of the advectIon-
diffusion equation (1a), that is, 

•h • vh.7*h • d1v(-KV*h) - f - 0 1n n. (e.1»2,...Nj; (11) 

, i in i .-. ** *, »t.a «»i»»Tf|| yen™ f<eid to the real transport 
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velocity field u, that is, 

« - ^ 
<v -u,v-u>Q lò a mòÚMim (e*1,2...N ) ; (12) 

then condition (9) is attained. 

I t is not d i f f icul t to show that conditions (11) and (12) imply that in each 
element 

[$h
+u»vV+div(-KvV ,)-f] . 

v - u " ~. h a "~ V*n (13a) 

when |v«f>n| = (V*n-?4 ) > 0 , (13b) 

and vh * u i f |v*h | = 0. (13c) 

Using equations (8 ) , (10) and (13) i t follows that, in our model, the weighting 
function un is given by 

h h [$h
+u.V<|>h

+div(-KV<J>h)-f] h _ 
w = au'Ve" + (6-a) — h 2 ~~ V*n»V6n , (14) 

|v*n| 

where a and 6 are the uputind (Junctions. For their determination the same 
approach suggested in reference [2] will be adopted here. 

5. ISOLATION OF NUMERICAL BOUNDARY LAYERS DISTURBANCES 

The numerical examples presented in references [3] and [4] show that for 
convection-dominated problems governed by non-homogeneous or transient 
advection-diffusion equation the CAU model outlined in the preceding section 
exhibits better accuracy and stability properties when compared with SUPG or 
DC2 methods. Globally, the approximate solutions given by these three methods 
compare well with the corresponding exact solutions. But near boundary layers 
the localized oscillations tipically produced by SUPG are not removed by DC2 
method which sometimes gave larger oscillations. This did not occur with CAU, 
but some oscillations were still present, and the purpose of this section is 
to derive a methodology in order to isolate the numerical perturbation caused 
by boundary layers on the regular part of the domain solution. 

To this end the following definitions are introduced; 

the sets: r" = (x s T; u-n<0); r* • r - r" 

u = (flei ften r* * 0; e«1,2,...Ne) 

X 5 {x 6 u; x i r*} (15a-c) 

and the function: Q : Si U r •*• F , (16) 

which is assumed to be continuous and positive. The function g will be 
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V-x) 

S(5i) = 

0 . if ft * i 

NP£ ? fe-1.2 MeJ 

0 , if 7e(x.) < 1 or x. 6 x 

r ^ í x ^ - U , if "Pe(x.) > 1 and x. f x 

(17; 

(18) 

where Qe(x) is the restriction of Q to element e, ^ ( X J ) is the mean value at 
node i of~the element Peclet numbers and i{f(x) is the "local interpolation 
function associated to node i of element e. 

Now, if Tb denotes the restriction to element e of the global Petrov-Galerkir. 
weighting function corresponding to node i, isolation of boundary layers 
numerical perturbation over the regular part of domain solution can be 
achieved using the modified weighting function rfi T given by: 

'i,I 

e if x. i >. 

^ expi-C^) if *i c > 
(19) 

6. NUMERICAL RESULTS 

Two test examoles concerning convection-dominated problems will be presented. 
For both the medium is assumed homogeneous and isotropic with a physical 
diffusivity coefficient k=10~k. The results shown in figures 1 and 2 refer to a 
bi-dimensional (1x1) domain discretized by a (20x20) square mesh. Bi-linear 
elements were employed with (2x2) quadrature. 

6.1. Transient Advection Skew to the Mesh 

For this example the velocity field u has components u^l and uy=-1. The 
assumed essential boundary conditions are: o(0,y,t)=<f>(1,y,t)=4>(x,0,t)=0, and 
$(x,1,t) is a time-dependent boundary condition propagating from position 
x=0.2, in the positive x-direction, with a fixed profile and constant velocity 
v*0.05. Definitions of the function <j(x,1,t); the source term f(x,y,t), and the 
exact solution <>(x»yit) are given in reference [4], The initial condition 
adopted was the steady solution (v=0). 

In figure 1 the exact solutions (E) at times t=0.3 and t=0.9 are compared with 
(CAU) and (SUPG) solutions calculated using the backward difference time-
integration scheme, with a time step At=0.1. For the CAU method a maximum of 
four iterations at each time step was needed for convergence. Results for the 
DC2 method was not presented as no convergence was achieved. The numerical 
results obtained with CAU agree well with the exact solution, and no additional 
difficulties occur due to the transient nature of this solution. 

6.2. Steady Advection Skew to the Mesh 

For this example the velocity field u has components ux=1 and Uy--2,and the 
source term f(x,y) 0. The assumed Dirichlet boundary conditions are: i(x,0)=0; 
•(x,1)-1; *(1,y)*0 (0y<1); <f(0,y)=0 (O'y-0.6); <(0,y)=1 (0.8'y.'O and for 
(06^0.8); a pieciewise linear function <(0,y) was adopted. Numerical results 
" ' ' III ffiTii (f" n M T"4 /nr9^ Tip«Knrft *r* enmnarpd in fioure 2 with the 
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Time = 0.2 Time = 0.9 

(SUPG) (SUPG) 

FIGURE 1 
Transient ftdvection skew to the mesh 
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exact solution (E). Because f(x,y)=0 and èU.yteO CAU and DC2 approximate 
solutions are exactly the same. This solution still exhibits small oscillations 
near the boundary layer. But using the procedure presented in section 5 these 
oscillations are completely removed as shown in the numerical solution labelled 

(CAUI) 

(SUPG) 
(CAU) umm 

FIGURE 2 
Steady advection skew to the mesh 

7. CONCLUSIONS 

The CAU method presented in this paper shows high stability propc-rlic* and good 
accuracy in predicting internal as well as boundary layers. The inherent 
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stability of this method is a conseouence of the weighting Petrov-Galcrkin 
function used, which changes continuously witn an approximate iterative upwind 
direction defined in sucn way as to guarantee that it tends to the streamline 
oirectión as the iterative approximate solution approaches the exact one. 

The proposed CAU1 version of the CAU method effectively eliminates the 
remaining oscillations near bounaary layers, altering the weighting functions 
associated only with elements adjacent to downwind boundaries where Dirichlet 
type conditions are prescribed. The additional computational effort is minimum 
compared with the additional accuracy produced by this procedure. 

REFERENCES 

[1] Hughes, T.J. and Brooks, A., A Theoretical Framework for Petrov-Galerkin 
Methods with Discontinuous Weighting Functions: Application to the Strean-
line Upwind Procedure, in: R.H. Gallagher et all, (eds.) Finite Elements in 
Fluids, vol. IV (Wiley, London, 1982)"pp. 46-65. 

[2] Hughes, T.J.; Mallet, K. and Mizukami, A., Computer Methods in Applied 
Mechanics and Engineering, 54 (1986), pp. 341-355. 

[3] Do Carmo, E.G.D. and Galeão, A.C., Revista Brasileira de Ciências Mecânicas, 
4 (1986), pp. 309-340. 

[4] Galeão, A.C. and Do Carmo, E.G.D., A Consistent Approximate Upwind Petrov-
Galerkin Method for Convection-Dominated Problems, submitted for 
publication in Computer Methods in Applied Mechanics and Engineering. 



MCT Ministério da Ciência e Tecnologia 

^Ç\| Conselho Nacional de Desenvolvimento Científico e Tecnológico 

Laboratório Nacional de Computação Científica 


