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§1 Introduction

A (left) pre-Hilbert A~module over a certain C.-algebra A 18 an
A-module & equipped with an A~valued inner product, i.e., an A=va-
lued nondegenerate sesquilinear mapping <’.'> T RNA — Ay L D>
being A=linear at the first arqument. The pre~Hilbert A=module
is Hilbert if it is complete with respect to the norm l-// -”<.‘>Hi/":
We suppose always thet the linear structures on A and on X are com=
pstible. For further basic facts concerning Hilbert c®~moduli we
refer to {6]. A Hilbert A-module A over a C®-algebra A 1s called
self~-dual if every bounded module mep r: A —» A ie of the form
<-.§> for some 8€®” . In this psper we restrict our attention
mainly to Hilbert w"-soduli. For them some more fects are known. We
need the following ones:

Definition 1.1.: [3.,0ef.7]
Let A be a w--algebra, A’ be a pre=Hilbert A=-module and P be the set
of all normel states on A, The topology induced ond® by the semi-

norms
H<S.D)V2, fep,
ie denoted by Tl. The topology induced on & by the linesr functio~
nels
< 8>) o feP, aek,
is denoted by rz.

Throughout this paper we use the following notation. If X" is a sub~
set of the Hilbert W*-module 3, LXJ_ denotes the set I\-%: \eR_,
iel’o} whereko is the T, -~complstion of the set frxeXx : IIEII_SQ.}.
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Theorem 1.2,: [3.,Th.9]

Let A be a W*-slgebra and & be & Hilbert A-module. The following

conditions are equivalent:

(1) & 1s self-dual.

(11) The unit bell of A is complete with respect to tha topology
T, ie., A =[], .

(111) The unit ball of 7€ is complete with respect to the topology

?2'
Corollary 1.3.: [3.Cor.11]
If A ie a w"-elgebra and & is a self-dual Hilbert A-module the 1li=
neer span of the iange of the A=valued inner product on & becomes
both a w.-eubalgebra and an ideal in A.

Theorem 1.4,: [6.Prop.3.10._7
Let A be & w’-algebre and & be a self-dual Hilbert A-module. Then,
the set EndA(Z) of ell bounded A=linesr operators on A is e Wh-al-

gebra.

These facts meke clear that in the case of & being a self-dual Hilbert
w"-module the spectral :nsorem ([9,Th.1.11.3] ., [56,Th.7,8.9]) ts
valid for sach self-adjoint element of EndA(X) + Moreover, there
existe & poler decompoeition for each element of EndA(;\!’) in
EndA(r). Thie is of importance for the existence of certain opera~
tors arieing from some special real subspaces X of self-dual Hilbert
w.-modulix. as they were treated in [4].

We remark that for e given W.-algebra A eny considered self-dual Hil-
bert A-module & can be assumed to have A as the linear span of the
range of its A=-valued inner product, (cf. Corollary 1.3.). Otherwiee
we would change A to this lineer span of the range, B<C A, and we
would consider &€ as a Hilbert B-module.

Let A be a w.-elgebra and X be a self-dual Hilbert A-module. §2 of
this psper investigetes (generalized) von Neumann slgebras M on AC
poeseseing a cyclic-separeting element X inA” , The definition of a
cyclic element for M is modified in a nonobvious way. We show the
reletion batween von Neumann algabras on # possessing s cyclic-
separsting element and such epecial real eubspaces X of & as they
wera investigated in [ad. 1n addition,s generalization of Kaplaneky's
density theorem for m-algebras of bounded oparstors on & is stetad.
Under the supposition that A is commutative,we consider the partial
conjugete~linaar involution J and the wstrongly continuous unitary
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one-=parameter group [A“: télR} arising from that real subspace
ofx which corresponds to the pair (M,X) in §3. They would ful-
fil the conditions of Towmita-Takeeaki’s theorem for M and M" .,

§4 deals with the natural cone FSA connected with the pair (M,X).
We investigate the main propertiee of this cone.

§2 von Neumann elgebras on self-dual Hilbert w™-moduli

Let A be an arbitrary w'-algebra. We would like to ehow that wvon
Neumann algebras of bounded A-linear operatore on a self-dual Hil-
bert A-module & , which poesess a cyclic-separating element X €,
ere closely reletsd to certain epecial real subepeces X~ of &, as
they were treated in /_3]. The key point of thie peragraeph ie Defi-
nitio:. 2,5, modifying the notion of a cyclic element for a von Neu=
mann algebra over a self-dual Hilbert w®-module. Thus, new aspects
are produced in the discussions. At the end of this paragraph we
state & generalization of Kaplaneky’s density theorem for m-algebras
of bounded A-linear operetors on self=dual Hilbert w®=moduli over A.

Definition 2.1.: Let A be e w’-algebra and & be a self-dual Hil-
bert A-sodule. A C™esubalgebra M of EndA(Z").(the set of all boun-
ded A=linear operators on Z’}, coinciding with its bicommutant M"*
is called a “generalized” von Neumann algebra.

Corollary 2.2.: Let A be s w"~algebrs and & be a sslf-dusl Hilbert
A-module. Any “"generalized” von Neumann algebra on <& is a w'-alge-
bra, i.e., the word “generelized™ is superfluous in Definition 2.1..

Proof: Since End, (&) is a wh-algebra [6.Prop.3.10.] there exiets a
normal faithful repreeentation 7 of EndA(Z’). i.e., MEndA(a’))-
» (End,(H))" "+ Moreover, (M)’ E T(ENd,(A))" s rr(End, (X)) since
w(EndA(&’))'g'rr(M)' holde for the commutants. B8y supposition

M =M*‘, and hence, T (M)aTr{M)°* ., Consequently, the reprasentation
¥r is faithful and normal for M, too.

We state now an important topological property of these won Neumann
algebras.,

Definition 2.3.: (cf.[ 3, Def.15])

Let A be a w--algebra.x be a Hilbert A-module and P be the set

of all normel states on A, The bounded net {B,: B & End,(3¢).o e« 1}
converges to BcEndA(x) relative to the topologyﬂg if there exiete



welin B (®) B> = <B(3).5>
K€l
for any a,b € & . (For other topologies,cf. [3]).

Proposition 2.4.: Let A be a w.-algebra and & be a self=-dual Hilbsrt
A=module. Let M be s c'-aubalgebra of EndA(W). Then M is & von
Neumann algebra if and only if the unit ball of M is complete with
respect to the topology ‘7;.

Proof: We take a bounded net with the following properties:
(1) {B.: B€M, ¢ € I} converges to BEENd,(A) relative to the
topology 7 ..
(11) §,C = CB,, for any CeM ,xe€l.
Therefore,
0= w’-:.(:; B C-CR (K) 5>

. w'-::; (<BAC(EN) T = Bl B)oCF) D)

= Ltec=cB) (). 7>
for any X.7 €2C, Thus, BeM *aM,
On the other hand,suppose that the unit ball of M is complete with
respect to the topology 7. we consider a faithful normal represen=
tation 7r of EndA(JL'). (cfesTheorem 1.4,). It is aleo a faithful
representation for M, By [S.Renark 3.9._7 the topology 7; coincides
with the weak topology on EndA(x). Therefore, the unit ball of
(M) is complete with respect to the weak™ topology, and hence, by
[1.Th.2.4.11.] T7(M)= 77{M)*° . Consequently, MaM"’ since TT is a
normal representation of EndA(Z).

By @.Ralark 3.9._7. E.Th.g._-] we conclude that the topology 7;
coincides with the weak™ topology on the unit ball of M,

In further discussions we are especially interested in von Neumann
algebras M on self-~dual Hilbert w.-nodulizpossessing somewhat
like a cyclic-separating element Xe¥ similarly as &-finite von
Neumann algebras possess one in certain Hilbert spaces.

Definition 2,5.: Let A be a w.-al.gabra. A be a self-dual Hilbert
A=module and M be a von Neumann algebra on s, An element X€7¥ ie
called to be cyclic for M iff [i‘lil; =, It is called to be sepa~
rating for M iff B(X)=0 for some B& M implies B=O,



Proposition 2.6.: Let A be a w.-Algebra.x be a self-dual Hilbert
A-module and 11 be a von Neumann algebra on A, If an element X €& is
cyclic for M, it is seperating for M, If an element Xe€ A is separa-

ting for M end A[ME g [MX]_. it is cyclic for M,

Proof: First, we consider an element B°€ M° such that B’(X)=0. Thene
B”(B(X))=({B°B)(X)=(BB" )(X)=B(B"(X))=0 for any BeM. If X 18 cyclic
for M the element B € M° must be equal to zero.

Secondly, thars exists a projection P’ & EndA(Z), P’ 1 — [Mi]; .
(cf. Theorem 1.2.). The projection P* is contained in M’, Tharefore,
(1dx-F'}(§)=5.and hencae, P'-idz since X€Jt 1s supposed to be
separating for M,

We know that e von Neumann algebra M possesses a cyclic-separeting
element in a certain Hilbert space if and only if M 1s &-finite,

[1.Prop.2.5.6.]. In our setting this statesment is not in all cases
true. However, we can state the following

Lemma 2.,7.: Let A be & w.-algebra. & be a self-dual Hilbert A-mo-
dule and M be a von Neumann algebra on # possessing a cyclic-espa-
rating element in & . Then:

(1) If A is &=finite, M 13 &-finite.

(11) 1f M 1s B-finite, the centre 2(A) of A is &-finite.

(i11) The von Neumann algebra M is not necessarily &=finite.

Proof: If X €+ is a cyclic~separating element for M and if
{E,‘: Ex €M, xe-'I} is & set of mutually orthogonal nonzero projec=
tions swe obtain

<& D :;e Sl 5 (3D
- §I<E.(i).s.<(i) > 2z,

Since A is &=~-finite by assumption,there exists a faithful normal
state f on A. Therefore,

roo D> HCHED) = ; (B (R E(RD)> 0

€l

and +e0>f( <E.‘()T).E.‘(7)>)> 0 for any ¢ € I, Thue, the sst I must
be countable and M ia & =finite. This provee (1).
To show (ii) we remark that



{a-idz: o€ }(A)} = F(End\(2)) E (M)

(c¢fo [74Cor.7.10.,Prop.8.1.J). Consequently, 1f M is & -finite,

(A) has to be &-finite, too.
The third statement can be shown considering a non-é& -finite wh-el-
gebra A, first, as 8 self-dual Hilbert A-module & with A~-valued
inner product 6,b>A:- ab™ « 8.b€A, and secondly, es a von Neu=-
mann algebra M on itself (A=) with cyclic-separsting element 1,€A,
where the elementa of M are defined as multiplicationa of A with
elemsnts of A from the right, So , the Proposition is proved.

Now we describe the relation between von Neumann aslgebras M on self-
dual Hilbert WR-moduli & poeseesing a cyclic-separating element

X €& and those special resl subspaces &K of # as they were treated
in [4] under the supposition, that A is commutative.

Proposition 2.8.: Let A be a commutative W"-elgebra, #€ be s self~-
dual Hilbert A=module and M be a von Neumann algsbra on ¢ poesessing
a cyclic~separeting element X €& Lot Kia [Mhi'];. Thsn X" 18 a

real subspaece of & being invariant undar the action of A
satiafying the conditions:

(1) KnaiX=Hf,

(11) Z+iX is norm~denss in ~,

Moreover, [H;‘i]t s1xt.

Proof: For any BeM, 8’e M;"the following two equalities are valid:

<B(X).8"(XP> =« <B (X).B(X)D> .

o= <iB(X).B"(X)D + <B (%), 1B(X)> .
Therefore, B* (X)€ 12 for any B’ € M;‘. Now we obtain the relation
[M;ii];._‘:'iz‘l' by obwvious cosputations, {cf. E. Frop.Z.ZJ). From
M':?fik“fl"‘f(.l’n 1X)E we darive (Xm 1.1’)"-” since Xe1s
cyclic for M" by Proposition 2.6. and since [(-Xn zx)“]_,_: LIk 4 11)"
by E.Proof of Prop.Z.Z.J. Consequently, .Ynil’-{ﬁ}. Moraover,
MREX*1 X & A and we get that X+i& hae to be norm-dense indC
since X €A is cyclic for M. The proposition is proved.

If A is & commutative w'-algebra.we can apply the results of [4] to
x-[nhij;. We will make use of this in §3 of this psper.

At the end of the second paregraph we prove a generalization of
Kaplansky’s deneity theorem we need later.



Definition 2.9.: Let A ba’a wh=algebra and{?e <% >F be & Hilbert
A-module. We aay that a bounded net {B,(- xXel, Be End (x)} con=
verges to B e End® (.;V) relative to the topology 3-'7. iff there
exists

-urnZ (<BAF,) B (%D + <BE(E,) BAE,D ) =

o€l
- f(é(f,,).acinb + <BYx,)BME D)
nal
for any sequence {)Tn: a'(nf‘?e. nelN, z' /IinI2(+ oof .
n=1

Theorem 2.10.: Let A be a W’—algebra and {x, '.'>} be a gelf=-dual
Hilbert A=module. Let N be a self-adjoint algebra of bounded, A-li-
near operators on &, and let M be the von Neumann algebra arising
as the linear hull of the 7-conp1etion of the unit ball of N,
Then,the unit ball of N is Z-T’-dense in the unit ball of M,

Proof: First, suppose A to be B -finite. Lot f be a normal faith=
ful state on A. Considering the extensions of the operator algebras
N and M from End (x) to Endy (%), cf. [6.7h.2.8 ] (where A, denotes
the closure of:?(with respect to the norm f(<Z,2>) /2 ), we can
apply Kaplensky’s density theorem to NCEndc(xf). Therofore, the
unit ball of N“Endc(xf) is Z-Strong ~dense in the unit ball of

M *SEnd (Zf), the bicommutant of M in Endc( £ Consaequently, the
same is true if we change M°° to MEM°’, Since the state f is faith-
ful and normal we get the desired statement in the cese of A being
8 -finite.

Secondly, let A .be non-&-finite. Then,by (1,p.164] there exists a
directed increasing net {n,( a(el} of projections of A such that
ReAPx is &~finite for any of €1 and that there exists w"-lim Rac=l,
Aa it has been shown,the unit ball of pdN ia 8- f"-dense in the unit
ball of p M for any «e€I. Hence, the sought statement can be deri-
ved easily since oC€1 1is arbitrary and whelim P=lpe

§3 A Tomitra-Takesaki type theorem

Throughout this paragraph A is assumed to be a commutative w'-algebra.
We want to show that the Tomita-Takesaki theorem is valid for von
Neumann algebras M on self-dusl Hilbert A-modull € possessing a
cyclic=separating element X €A ’for its commutants and for the
derived from the pair (M,%) modular operators J and {4 T te€ IR} on



2, ( cf, Prop.2.9., [2.,Prop.2.10,,Def.3,1,J). We remark that this
theorem was steted in Ez,g:sj for the speciel case M-EndA(x).

Theorem 3,1.: Let A be a commutative w’-algebra. A be 8 self=dual
Hilbert A-module and M be & von Neumann algebra on ¢ possessing a
cyclic-separating element X € X, If K is defined in terms of ths
pair (M,X) as at Proposition 2.8., and if J and FA*: tem} are
defined by X°, ( [4.,Prop.2.10.,0ef.3.1.]), there hold:

(1) M = M,

(11) AMAE o M for any teRr.

First, we prove the theorem under the assumption that A is & -tinite.
There ara iwo weys to do that. The first one is to use the construc-
tions from [7,54_7 looking always for modifications needed in the
proofs since, in general, norm-completeness of &K is changed to
T‘i-completeness of the unit ball of A, This can ba done, but we
will not do so in this paper. From the proof in [7,54_7 we give only
the generalization of the key Lemma 4,3, at the end of this paragraph
because it seens to be of more general intersst. Tho second way of
proving Theorem 3.1, bases on the following leama:

Lemma 3.2.: Lat A be a comnutative & =finite w'-algebra and let g€
ba 3 self-dual Hilbert A-module. Let MSEndA(Z’) be a von Neumann
algebra possessing a cyclic-separating element X €, Let f be a
faithful normal state on A and denote by Z’f the norm-closure of FC
with respect to f(<,~>)1/2. Then,any bounded A-linear opsrator on
#€ can be continued to a (unique) bounded linear operator on Pff
with the same norm,and moreover,

(1) M‘gEndA(Z’) is identical with M'SEndC(Jc’f).

(11} MaM"" 1n Endy(H%).

Proof: Because of L_S,Th.z.aJ we heve only to prove (i) and (ii).
For a fixed faithful normal state f on A we congider a projection
ZeEndc(Jef) commuting with any 8 € MEEnd, () E Endg(F;). Then,we
get
(1) 2B(X) = BZ(X) for any BeM.
If X=%,+%, 1is the unique decomposition of X in Jff with reepect to
the subspaces Z2&%, ilez‘v?f. and (1d-Z)xf we draw from (1)

a(il) - z(B(ii) + B(iz)) for any 8€ M,

i.0., B(X,;)€ 23, end B(Iz)E(:I.d-Z)Z‘F for any BeM,



Since Z is the identical operator on (Za'fn A) and since Z commutes
by assumption with any fa.id,: acAfSM,the projection Z e Endg{ &%)
is the extension of a (unique) projection ZeM & EndA(x). Thus,

M E EndA(Jf) is identical with M* S Endm(xf). The second statement
above is now obvious,

Lemms 3.3.: If A is & =finite the statement of Theorem 3.1, is true.

Froof: If f is a faithful normal stete on A we consider MSEndc(JFf)
and ie?t:cl’f » {cf. Lemma 3.2.). The appropriate operators J; end
{d:‘t: telR} are the extensions of the operators J end %itz tsm}
from #€ to }ff. (cfa [4, Prop.2.11..3.8.] }« By [7.Th.4.2._? we get

IMIg = M, ATMATEY = M for any teR on H

for MM & Endm(zf). Applying Lemma 3.2, the desired lemma yields.

Now there remains to prove Theorem 3,1. in the case of A being
non=& ~finite.

Lomma 3.4.: If A is not S~finite the statement of Theorem 3.1. is

true, toc.

Proof: Let »7 be defined in terms of (M,X) as at Proposition 2.8..
it .

The operators 3 and JA'': te Rf are defined for A as in [3,552,3].
By [:l.,p.164j there exists an increasing directed net {p“: €I} of
prcjections of A such that g Ap, is a S=finite w.-algebra for any
o« eI and that wh-lim p.=1,. Investigating for a fixed o« €1 the
linear spaces 9€=ﬁv’(&t’i Ry <e>p, f and Igulrn,‘?(, p,~6.~)~p,&.we
obtain operators 3., Aut {teR) on & . The bounded operator Jec
satisfies the conditions of [4,Cor.2.9.] with respect to px.X . The
same conditions are valid for the bounded operator p,J. Consequently,
by [4,Prop. 2.114]

Pyd = I, on Y for any x€1.

Similarly, thc operators p,,Ait and A:t (teR) both satisfy the
generalized K.M.S. condition with respact to X = p, A and moreover,
p_,A“(pu]() EA:"t(pNX)E Poe X for any teR. Therefore, by
[+.Prop.3.8.]

p.(Ait - A:'(t on &, for any ec €1, any t€R.
Since Ai‘ed;“esndA(m for any BeM, any t€R, since the unit

ball of M is z-conplete bv Proposition 2.4. and since for any BeM,
any y €& there exists



Ty-lia A5 (V) = Mo M) 4 rek,

we obtain
(2) Tz-lim ALt - g% A, terr,
el

for any Be M. Therefore, At gz, teR, since telR can be
changed to (-t)eR in the relation (2).

Similarly,we prove the relation IMO=M" using the gg:coapleteneas of
the unit ball of M and M", respectively,

The Theorem 3.1. is proved.

Corollary 3.5.: [MX]_ = WX

Proof: From Theorem 3.1. we draw ML(E)-JMhJ(i)-JMh(i). By E‘..Cor.
2.9,] the relation 3(X)=1%*holds. since [ X]_ =X by definition
and since J is injective, [H;.x]r-i. b

In addition we like to state the lemma [7.Lemma 4.3.] in a generali-

zed form,

Lemma 3.6.: Suppose the situation given at Theorem 3.1,. Let B"€ M;\.

Then for any A e € with Re(A)>0 there exists a unique B €M, such
that

2. CE(X) B (X)> = A E(R).B(RD> + X - <B(X).c(x)>
for any C€ "h‘

Proof: First, let A be & ~finite, We assume Re(A)=1 and 0<8°< 1

since the sought gquelity is real linear. Let f be a fixed faithful
normal positive state on A existing by [.l,Prop.Z.ﬁ.S.]. l:‘befine two
normal functionals r and rg on M{ for any given Bth)by the formula

r(C) = f(2-<C(X).B"(X)>)

ra(C) = f( X+ <C(X),B(X)> + X+ <B(R).L(X)>). for Cem .
Because of [6,Remark 3.9._7. ES.CordJJ. Proposition 2.4, and Corolla-
ry 2.2., the functionels r and rg are in the self-adjointc part of
the predual of M, Let

. . <

vie frg :nem,N8li£1}.

Thig set is obviously convex. Since the map B —>rg ie continuous

with respect to both the w.-topology on M and the weak topology on
the predual of M, the set V is weakly compact.

LU



Assume ng V. Then by the Hahn-Banach separation theorem
there exists an element 0 €M, such that

(3)  rg(D) < r(D) for any Bet,, WBMAS1,
Lat 0=U40] be the polar decomposition of Oenh existing since X is

self~dual, (cf. Prop. 1.4.). U is self-adjoint and commutes with O/
since O is self-adjoint. Taking B=U we draw from (3):

1/2-6( A<D U(X)> + X+ <U(X)D(X)D ) <
< £( <D(R),B° (X))

£( <0e* )Y 2(3) 8 130D )
£ <Iok(” )V 23(x) . (8" )V 3(%)D)

= f(<lo1e’ (X)X D)

£ £(<10) (%) ,ZD>)

= #(D(X) (X)) _

a 1/2 0 N<D(R)U(F)D + XN-<U(X)O(F)D ).
This is a contradiction. Consequently, reV, i.e., there exisis an
element Bo €M, . Hegll =1, for which

(8) 26 <T(RX) B (R)D)=f( A« E(R)iBe(X)D> + N -<B(F)C(X)D>)
for any Ce My - we define

Dia (2-<CE(X)40% (R)> = Ne<T(R)1B(R)D> = X <BE(R)C(X> )eC.
If C&M,, the element D belongs to My Putting O to (4) we obtain
(5)  f(f2r <C(R)B" (XD = A-<B(R)BURD> = Re<B(X)C(ZD [2)e0
for any C &M . Since f is faithful and positive we get the desired
equality in the caee of A being &-finite. By the way we have shown
that Bfth does not depend on f.
We remark that the only place is (4) where the & -finiteness of A 1is
needed, because we did not know whether or not Bf depends on f.
Now the restriction on A to be & -finite can be dropped in an obvious
way using [1.p.164]. The lemma is proved.

§4 Natural positive cones in self-dual Hilbert w*-moduli

Throughout this paragraph A is assumed to be comautative. Let 2
be a self-dual Hilbert W"-module over A. We consider von Neumann
algebras M on A’ possessing a cyclic-separating element X €#C. The
modular involution, the modular operator and the appropriste modular
group of automorphisms assooiated with the pair (M,X) are denoted by
e it

3,4 and A : ter}, respectively. For details see [2] and
Propoeition 2.8,. The aim of this paragraph is to show the geometri-

UA ®
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cal properties of the natural positive cone Pesx arising from the
peir (M,X) in some sense similarly as in the case A=C, cf. [1].

Definition 4.1.: (cf. [1,Def.2.5.25.])

For a pair (M,X) we consider the set J’. the Z'i-conpletion of the
set {BIBIAX) : Be M, IBIBHR) N < 13. Then.the nstural positive cone
P associated with the pair {M,X) is defined as P= [? Jr.

Proposition 4.2.: The_closed set P SH hes the following properties:
() P = [AVmz] - 2 L
- [AMhE]L - (A CDD

where M, and M are the self-adjoint positive parts of M and M|
respecuvaly. Therefore. A 1s a convex cone.

(1i) AP = P for eny teR.

(11i) For any y € P the aquality I(y)=¥ holds.

(iv) If BEM we get BIBI(P)cF .

Proof: {(cf. [1,Prop.2.5.26.])
Let M_S M be the m=algebra of the entire analytic elements of the
group it teR}. For any BeM, there holds

(6) . AY%8%%) = A% TV UM " LV 4 5)
41/4 -1/4(4'1/4BA1/4).(—£)
- 41/434-1/4341/2 1/4BA‘/4)(x)
= (A% AV 3 (A AV 3 3y
Since A"/ 1/4-M and because of Theorem 2.10.’the relation (6)
yields - -
_Pc[A1/4" i] 5(41/4[,1 —]-:.—Jt .
On the other hand, (M x] [M x] by Theorem 2.10. For an erbi-
trary yf[ﬂ x]r we take such a bounded net {B,} et eI. B.e M, | that
T,~lim B %=y. Then,the equality (6) implies A q“x € P. But

= T,-lin 2.4Y% %
o

= ‘t’l-lin B, X 5
ol

= V = JA’./ZV. “

Therefore,

AT AT D> - <BT-BR) A PR > N
and A4 € P, i.e., [41/4[,.,';];]' E P . Finslly, b
12 i
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1/4, -1 1740, -1~
P' [A M+"1f '[A [M+"]th *
IfJP’ denotes the natural cone associasted with {M° ,X), there
holds

B J8°3(X) = J(I8°I)I(I\°I)(X) = (I8°I)I(I8* I)HK)
for any B°€M’eince JB°J €M, 1.8., P*aP . Since A™! 1s the modular
operator with respect to the pair (M’ ,X),wes obtain

Pept e laM ]l < [a i) T -

The first statement is proved.
To prove the second one we keep in mind that

A“Ai/“n,,i - A1/4A1tﬂ+i - AMA“",A“" -A1/4M+i.
If 8,C&M tha third statement follows from ths aquality
3(B3IBI(X)) = (IBI)BI(X) = B(IBI)I(X) = BIBI(X),
whereas (1iv) cen be derived from
(BJBI)(CICI)(X) = BC(3IBI)(ICI)(X) = BCIBC)I(X).
S0 , the proposition is proved.

Proposition 4,3.: The following relations are vsalid:

[Mx]_ - {yede: <7.2>20 for any Te[Mx]. ] .
[M,x]; = {yea: <F,E> 20 for any Z€ LM+;‘]-:} .

Proof: First, suppose A to be & -finite and let f be any norma_l
faithful state on A, We denote by [M+§]f the closure of [M+i]1_ with
respect to the norm i‘(é,-)):l'/2 onX . The set [M:i]f is defined
analogously. Then,by EL.Prop.Z.S.27J the following set identities
are velid on the Hilbert epace Jf’f. the closure of & with respect
to the norm f(d.->)1/2=

[M,5]¢ = {7 € H;: H(<T.E>)20 for any Te[M,2]; F

[M%] ¢ = {7 € £(<Fs2>)20 for any ze[Mz] }.
Since f is an arbitrary normal faithful state,we obtain
: f(LV,E>)20 for eny T €[M,X] ., eny feP ],
[H'x]; = [VeX : F(<FZ>)Z0 for any Ze[M X[ . any fe pF .
Thus, we get the sought relatione above.
Secondly, let A be non- &-finite now. There exiete & directed increa-
sing net {p,‘: xXE I} of projections of A with the propertiee that

i3



ReAR 18 S-finite for any oc & 1 and thet whelim Rc®=1,. From the
first part of the pressnt proof one derives

p“-[M“i];- {7 €pKFED 20 for any z:k-[nli];}.
g,'[M;i‘]; - {76p«l’<§.!>30 for sny EGp.'[H’i'J;} .
for any « €1, 1f g M on p R is considered. Since = eI 18 arbitra-
rily chosen we get the desired relations.

Proposition 4.4.:
(1) The cone P is aself-adjoint, i.e.,

P=P" {’i €dl: <9,2>=0 for any T FF.

(i1) P A(-P) = {8},

(ii1) If J{¥)=y¥ for a certain Y€ there sxiste a unique decompo=
sition ¥a§,=y, with 71-72€~P-°nd VL Voo

(iv) The linear hull of P is #,

Proof: (1) First, suppose A to be & -finite and let f “e an arbitra-
ry faithful normal state on A, If we consider the Hilbert space 25?
and the cone P, gx. (the closures of # and 7, respectively,

with respect to the nors f({.-))l/z). there turns out (by [1,2.3.,28,])

that .,Pf = va- {762:= fH(<F.E>)20 for any EE_E}.

Since f is arbitrarily chosen,we obtein

]3- [751’; F(CF.Z>)Z0 for any 2P, any fePf

= {Je X <¥.2D> 20 for any £ € P}

- yV
as desired, Secondly, if A is non=-S=finite there exists a directed
increasing net {p,‘: xel} such that RAR. is S-finiie for any
oc I snd that w"~1lim R.*1,. Considering puPEp. Hwe get g,,.?-p,,fv
for any « €1, That implies P _PV.
(1i) If 7ePr («P) we draw from (i) that <7.7>=Oland hence,
7'6'
(1ii) Assume J(y)=¥. Tha cone P 18 a closed convex subset in the
salf-dual Hilbert A-module & having the property that the subset
,?‘)-{VG.P: "7/’51} is Z;-conplete. Therefore, there exists a
unique element 71€‘P such that

(7)) <§F,077,> = int{<FG-2.5-2> : 2 P].
Let us denote 72 = ‘7-?1. For any Z €. A>0 the inequality
Ty F-5,> £ <F-(T+ A Z)iT(F,+ X2) D>



holds since (¥;+)2)eP. Therefare,

0f M<Y,E> +« <EFD) + Nim>
Since A>0 is arbitrarily chosen the inequality (72.'2‘>+ G,V2> 20
has to be vslid. But, since Z€. there holds 3(72)-72. I(Z)=Z, and
hence., <?2.E>- (.'.!(?2).3(i)> -<72.z">'. Thus, we get VZE.P since
ZeP was arbitrerily chosen and (i) ie valid. Consequently,
7'?1-72 where 71-725P-
Let us ehow thet 7’1.[.72. Since (1-A)'y"1€1> for any 05 A £1 we get

<y2l72> g <V2-X§'1.‘Y_2'X'71>
because of (7). This is equivalent to

A2 FD> =A< T, > ¢ <Tpe¥p> ) %o.
Finally, <71.72>é 0. and since ¥, .VZEP- P % we obtain
Gl'vz>'°‘
To show the uniqueness of such a decomposition we assume the existen-
ce of two decompositions

V'Yi'yz . 71072 E‘P' -Y-iJ‘ 72 *

V=2,-%, » Z,,5,€P, zl_Li2 R
Then Vi-ii-yz-iz,and furthermore,

<y E oy 2> = <YyEp0E>

- =G> <V 5> £ 0,

Therefore, 71-51. 72-22 and such a decomposition is unique.
(iv) If an element y €#€ 1s orthogonal to the linear hull of JF,
there must be <'7.7>-0 »end hence, ’7:6. There only remains to re-=
mark that the unit ball of the linear hull of JF is Tl-complete by

construction.,

Corollary 4.5.:
(1) If &P, ¥ is cyclic for M if and only if ¥ is separating

for M.

(ii) If ?E.P is cyclic (and hence, separating) for M,for the
modular involution J- and for the natural positive cone el
aseociated with tha peir (M.,Y) J.JV' -7:-]37 hold.

The proof of thie corollary is analogous to that of ﬁ,Prop.Z.B.SOJ
and thus, will be omitted.
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dpaHk M. E5~-87-94
llpencrasnenusa ¢oH HeliMaHa B aBTOAyAalbHHX
rutbbeproBux W¥-Mogymsax

PaccmarpuBawrcs anrebpu ¢oH HeiiMaHa M—-orpaHHUYeHHBIX ofe-—|
paToOpPOB B aBTOAyanbHHX Trunb6epToBux W*-mogynax H, uMeomme
HHKJIMYHO OTOensiMi 3jeMeHT X B H. OGHapyxeHbl TecHmle CBA-
34 MeXJy HHMH H HEKOTOpPLIMH CleHHAJIbHBIMH BeleC TBEHHbIMH
nognpocrpaicTBamMu B H. Ilpy npepmnojioxeHHH, 4TO Jjiexamas B
ocHOBe W¥- anre6pa KOMMyTaTHBHa, Teopema Ttuna TomuTpi-TaHe-—
cakM pokaseiBaeTrcsi. HcclegyeTcsa ecTecTBeHHbET KOHyc B H,
CBA3aHHB1 ¢ napoi /M, x/. Omucasml ero cpoiicTBa.

PaGora sbinonnena B JlaGopaTopuu TeopeTHuyeckKod GU3HKH
0702178

MMpenpruT O6BEAHHEHHOrO MHCTHTYTA ANEPHBIX HccnenoBaHus. Jy6Gua 1987

Frank M. E5-87-94
Von Neumann Representations on Self-Dual
Hilbert W*-Moduli

Von Neumann algebras M of bounded operators on self-
dual Hilbert W*-moduli H possessing a cyclic-separating
element X in H are considered. The close relation of them
to certain real subspaces of H is established. Under the
supposition that the underlying W¥-algebra is commutative,
a Tomita—-Takesaki type theorem is stated. The natural con
in H arising from the pair (M,X) is investigated and its
properties are obtained.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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