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Basic problems of the strong interaction theory (the confinement, spon
taneous breaking of chiral symmetry, hadron spectroscopy and the dual-re
sonance amplitudes) are new attempted to be solved by considering QCD 
in tne framework of a strictly defined mathematical method. Main elements 
of the method are the Dirac quantization and the formula of asymptotical 
freedom. At the same time, one ignores that at long distances this formula 
becomes a phenomenological hypothesis, and the Dirac method cannot sol
ve the problem of relativistic description of bound states even in QED ! v . 

If a hadron is a bound state of quarks and gluons, then to solve the 
above problems we have to consider the following questions: 

I. What is the perturbation theory for bound states? 
II. How can the relativistic-covariant perturbation theory be constructed? 
III. How must one modify this perturbation theory to reproduce the basic 

features of hadronic physics? ' 

I. PERTURBATION THEORY FOR BOUND STATES 
In QED, bound states are described by means of the expansion not 

in the coupling constant but in the spatial components of gauge fields aro
und an exact solution defined by their temporal component (i.e. by the Cou
lomb field). This perturbation theory will be called the "physical" one (PPT). 
PPT with an exact solution to the classical equation for the temporal compo
nent of the fields corresponds not to the Dirac quantization method (where 
all degrees of freedom are considered as quantum ones) but to the "minimal" 
method 2 (where only physical degrees of freedom are quantized). 

On the classical level (after the exact solution of the Gauss equation) 
the gauge-invariant quantities like the Hamiltonian of Belinfante 
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т т 
depend on the classical variables (A t and q ), that are the functionals of 
the initial fields ( hx and q t ) , in the lowest order of the perturbation Шеогу 
these functionals have the form / 2'' 
A^IA] = v[A](Ai +di ) v [ A ] - 1 . v[Al-expl4p<?i A. I, 

д 
T ; AfA a (2) 

q [A.ql = v[Al q , Ai » e — - — . 

The difference between the functionals (2) and the transversal variables 
(д 4 A t = 0) in the Dirac method consists in their transformation proper
ties under Lorentz-iransfonrations of the initial fields 2 • 3 ' . 

И. RELATIVIZATION 

There exists the opinion that to restore the relativistic-covariance of 
bound states, one should set all field components ( AQ, A. )in the same con
ditions. There are two ways: either to use the relativistic gauge or to calcu
late all orders of the perturbation theory exactly. However, in practice, any 
relativistic gauge mixes up the nonperturbative bound effects with the effects 
induced by radiative corrections, and as a result, the theory becomes noncal-
culable / 4 / . The correct statement of the question is that how one gets the 
relativistic-covariant wave functions of the bound states in every order of 
the perturbation theory. As yet there is no solution of this problem even in 
QED * . 

Calculations show that the covenant description of bound states by 
means of K*T is possible if one chooees the quantization time vector O^. 
'/,2 =1) so that the Coulomb field (A Q =(»?. A)) moves together with 
particles, the bound states of which it forms. 

For the lowest order of PPT An - ?>„(А. vj) ^0 and A i W = Ap -
- Ацр , we have the following system of the Dyson-Schwinger and Bethe-
Salpeter equations, respectively, 

\ 2 V = m i . 2

+ / < * > Y < ^ ) y ( [ M V ^ ' (3) 
and 

G ^ ( k + 4 i 9) x y (k)Q2 !

e (k + , 8 y)«./(dq) V(kA - a x )y ХуОЙУ . (4) 

where 
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G v (p) = , (die) = i 
d 4 k 

'1 t-Z(Vx) (2rr) 4 

,2 к П м , ? м ( ? к ) / Г , к ± м 3 ^ - k | l l t , 

v н ? ( ! Р к ) / ? 2 , у - у - у и . 

У„ is the 4-momentum of the bound state Xmi V j 2

 a r e * n e pararoeters de
pending on the particle masses nij and m8 (ij'j + JJ 2 = 1, see ' 5 ' ) . The po
tential V is defined by the exact solution of the equation of motion for the 
temporal component of the field, Ац (AA = 0 ) . 

Relativistic^ovariance (as a transformation property) of the Green func
tions <фф...1рф>,,т particular, solutions to eqs.(3) and (4), is achieved by 
including additional diagrams associated with the nonlocal Lorentz-transfor-
mations of the field into the "minimal" quantization scheme ' 2 '. 

Ш. QCD AND PPT 

The nonlocal functionate (2) may provide a new physical information 
which is absent when quantizing the theory by the Dirac method, for examp
le, in QCD where stationary gauge transformations (as the mapping of a 3-di-
mensional space R 3 into SU(3)-group) have nontrivial topological properti
es, the functionate (2) are defined up to phase factors degenerated in the 
topological mapping n u m b e r s ' 2 , 6 ' . As a result of that degeneration, the 
physical fields (as factors of the field sources in the generating functional) 
differ from the "bare" fields used in the diagrams of the perturbation theory. 
Removal of the degeneration leads to vanishing of all the colour Green func
tions and the colour particle creation amplitudes, due to destructive inter
ference of the phase factors of the degeneration. Consequently, we shall 
consider only the "bare" propagators of the perturbation theory and colour
less bound states. 

In the construction of such bound states a main problem of QCD is 
the introduction of a dimensional parameter. Usually, one associates it with 
the asymptotical freedom formula which is connected with "small" pertur-
bative components ( A t ) . The constructive idea is to connect the dimensio
nal transmutation, in the lowest order of PPT (A t = 0 ) , with the boundary 
conditions for the equation for a "big" field component (A 0 ) , i.e. to use 
such unnormalized solutions (A 0 ) to the classical equation which do not 
contradict the quantization principles for physical variables (2). For example, 
the expression (-^- J 2 )(x)in (1) can be redefined in the following form 
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е 2 ( 4 ^ о ) ( * ) = / а 3 у [ - - ^ - - 2 У 0 У ( х - у ) Н 0

Т ( у ) , 
д ! х - у| 

where the second term vanishes when the Laplace operator acts on it, 
д2 (~¥г 3о )(*) ~ J o (x) • Using the about expression we get the following 
interaction Hamiltonian 

Н 1 п 1 (А 0 ^О.А, = 0 ) = ^ - Г < 1 3 х ^ ( х ) ( 4 . 2 1 0

Т ) ( Х ) . 
д (5) 

= fd 3 xd 3 yJ o

T (x) J*(y) V ( | i - y | ) , 

where 

V ( | x - y | ) --•-— + V ( £ - y ) 8 , « B ™ - . 
| x - y | ° 4 f f 

and the last expression was obtained owing to the symmetry under x**y . 
The Hamiltonian (5) corresponds to redefinition of the Coulomb potential 
in an infinitesimal vicinity of the zero transfer momentum, 

v ( r P i )=[-i^—у8о § (-Д-> 8 8<г>и =~-гг- ' <6> 
I Pi 2 ° dp P^O |p*|2 

The phenomenological parameters (a a , V Q ) of this potential can be fixed 
from the spectroscopy of quarkonia 7'' (which is an analogy of the Cou
lomb experiment in QED), which gives 

V^ / 5=250MeV, a = 0.2. (7) 

The potential (6) explains the mass spectrum of light ( m L « V , j / 3 ) 
and heavy (mH>> V 0

1 / 3 ) quarkonia (where mL Hare "bare" quark masses). 
Exactly calculated propagators of the quark and gluons describe the gene
ration of their dynamical (or constituent) masses: 

°4A<P> 
m 4 , A < P = ° > / 0 ' 

£ (see Appendix A). The dynamical mass of a gluon eliminates all infrared 
|; divergences, modifies the asymptotical freedom formula at small transfer 
| momenta (Q 2 ) and leads to the finite coupling "constant" o ( Q 2 ) <0,2, 
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Г/иг dependents of the strong coupling constant on Q. Given are experimental and theo
retical rabies (thin lines) obtained by using the standard asymptotic freedom formula. 
The thick line corresponds to the modified formula values with a(Q2 = 0) = 0.24 when 
Nt = 3. Л =l]0 MeV and nQ = 700 MeV. (Tlie authors would like to thank A.Rotis-
sarie (Saclay) for supplying with the data collected oy him). 

for all Q 2 (see the Figure). The small coupling constant, in turn, allowed 
us to substantiate the nonrelativistic description of the hadron spectrum 7 . 
Thus, we may consider PPT as a self-consistent approach which has allowed 
us, in the framework of QCD, to describe any hadronic process with a given 
accuracy. 

Equations (3) and (4) in their relativistic-covariant form, where the 
exchange-operator is 

N 2 - 1 
K ( 9 \ q ) = _ J ? V ( q . ) у Oy . ( 8 ) 

2N C - X Ha \\n W 

describe not only the hadronic spectrum but their coherent interaction that 
in terms of the bilocal-meson fields 8 takes the following functional form 
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S = S f r e e + S i „ t ' 
8 « г . . а 1 * [ - ^ ( J n . K ' ^ + i C G ^ J R ) 2 ! . (9) 

S, n t , i T r [ 2 J=L11(CL Я ) в ] , 
n = 3 n * 

where Tr means summation over discrete indices and integration over con
tinuous variables, for example, Tr[JH2U fd 4xd 4y tr [ ЭП(х.у) ,5H(y,x) | ; 
ЗП( х, у) is the bilocal-meson field represented as the matrix 

5 Пв|8|аь = *х *ЛэА1ь/8 

with the Lorentz and flavour indices, {a, ft) and (a,b) , respectively. Noti
ce that the quark Green functions (Gy) and the bilocal field (JH) satisfy the 
Dyson-Schwinger (3) and Bethe-Salpeter (4) equations, respectively, 

2 = m 0 +iKG 2 . 

and 

5П = i KĜ  ЯС^ . 

The bilocal field can be decomposed over the solutions, у "(q), to eq. (4) as 

*<x.y)=*(E.X) = f - ^ 7 S 8 + ( ? 2 V H ) XHK(z) x 
(8»)* H (10) 

le _ l , X YJte A > ан(У> + e i y x v » ( Z l ) а^(У) I. 

where 

iK(z) v J(z x )=S(z , , )V(z 1 ) V | | f(dq) e^^ vJ(q) у , 

X= (Х4.У) /2 , z = x - у are the absolute and relative coordinates, A „is 
the normalization factor, a£(a„) is the creation (annihilation) operator for 
the hadronic state (other definitions have been introduced earlier). 

As has been shown in refs.' 8 . 9 / , the perturbation theory in the bilo
cal fields, with the propagator D(x l i x 2

l x 3 ,x 4 ) =f(x7,x2) ft(x3,x4) 
containing an infinite number of resonances describes self-dual amplitudes. 
The low-energy limit of these amplitudes for light quarks can be easily ob
tained from the expression (10). 
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In the limit of V -.« (i.e. at low energies) the bound-state wave func
tional (y ) , due to the normalization condition, transforms to the S-func
tion, for example, by using the Gaussian successfully applied to the spect
roscopy, we obtain 

lira Xy(z ) _ lim V0

1 / 2exp (- z 2 V 2'' 3) - 8 ( 3 ) (z ) . 
V -»oo V -»oo 

о о 
As a result, in this limit the bilocal field (№) behaves as the S-function, i.e. 
JR(x.y) - S ( 4 '(x - y) . • The same limit could be obtained by taking K(z)., 
~8* 4\z). It is well known that just .this "potential" for four-quark inte
ractions has been used in the original formulation of the spontaneous brea
king of chiral symmetry / 1 0 / . Today we know that the bilocal Lagrangian 
(9) with the potential of s ( 4 ) -type is reducible to the chiral Lagrangians u / . 

On the other hand, at high energies the Green functions of quarks and 
gluons turn into the "bare" propagators of the usual perturbation theory 
of QCD used to describe the quark-hadronic phenomenology of deep-inelas
tic processes. 

To summarize, the physical perturbation theory allows us, from a com
mon point of view i) to consider the light and heavy quarks and gJuons; ii) 
to give the calculation method for radiative corrections, and to substantiate 
the zero-norm of the colour states and the relativistic interactions of hadrons 
in accordance with the conventional phenomenological models. 
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Appendix A 
The Green functions for a light quark and a gluon in the oscillator poten

tial have calculated in re f s / 3 , 7 ' . For the quark Green function we have / 7 / 

the expression 
p i y i 2(p) = E(p)uin<£(p) +p[ E(p)sin<£(p) - p ] , p= , p = | p | , 

I Pi 
where <£(p) satisfies the equation of the sine-Gordon type, 

(p2<£')'=2p3Bintf(p) -sin2<£(p) -2m p2cos<£(p) , 

E(p) = psin ф(р) - p3cos 0(p_) - -t ( ф ' ) 2 + mLsin^(p) , (Al) 



4 ' = - ± . * < p ) , p = ( l v 0 ) n p , E - ( ^ V 0 ) 1 / 8 E . 

The gluon Green function is given by / a ' 

D ( % ,^) = i ( 8 l j - 4 i - A - V - (A2) 
q * - u j ( ; q | ) - i ' 4 

Here ( i)(q) is the single-particle energy defined as a solution to the following 
equation 

H iq> = u)(q) lq> , (A3) 

which after substitution of (A2) and (5) takes the form 

co(p) +p + N c / d 3 q V 0 ( - i ; - ) 2 S ( 3 ) ( q ) l 8 ( p + qjp)2=<i>(l>) , (A4) 
2<a(p) u

 dq 

where 

^piqj.Au^lp^^.c.-iiLn 
2 <u(q) (u(p) 

or 

2 „2 ' 
ш - P , <» 2 

- - — - - = ( - - ) . (A5) 

—1 ''3 
in the dimensionless variables <» = (N C V 0 ) ы. То solve equation (АБ), 
the boundary conditions со(р=0)=д(р=0) = д 0 4Q are needed. 
In the .limit p •* « the equation turns into the algebraic one о ) 2 - р 2 = д ( р ) а = 

-~ -» 0. The value of д has been estimated from the massive loop 
that defines the modified asymptotical freedom formula: 

a I n f (Q 8, Д„) x ! •- 0,2. ( A 6 ) 

1 ( 1 ; + »<1- J r t t f „J ^ 
0 x ( l - x ) Л* ST 

9 



The Q -dependence of this parameter is shown in the Figure. In the limit 
of Q 2 » M Q (A6) gives the usual asymptotical freedom formula, a (Q 2 ) = 

Q2 
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Первушин В.Н. и др. Е2-88-68 
Новый пертурбативный подход в КХД 

Для описания связанных состояний в КЭД и КХД форму
лируется физическая теория возмущений по пространствен
ным компонентам векторного поля вокруг точного решения, 
определяемого временной компонентой. Показано, что эта 
теория возмущений в КХД может быть доопределена так, что 
она воспроизводит все основные черты адронной физики: кон-
файнмент, спектроскопию легких и тяжелых кваркониев, 
дуально-резонансные амплитуды, киральные лагранжианы и 
партонную модель. 

Работа выполнена в Лаборатории теоретической физики 
ОИЯИ. 
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Pervushin V .N. et aJ. Е2-88-68 
A New Perturbative Approach to QCD 

For the description of bound states in QED and QCD the 
physical perturbation theory on the spatial components of the 
gauge field over the exact solution, defined by the time one, is 
proposed. It is shown this perturbation theory in QCD can be re
defined so that it reproduces the main elements of hadron physics: 
confinement, spectroscopy of light and heavy quarkonia, dual-
resonance amplitudes, chiral Lagrangians and the parton model. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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