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Basic problems of the strong interaction theory (the confinement, spon-
taneous breaking of chiral symmetry, hadron spectroscopy and the dual-re-
sonance amplitudes) are ncw attempted to be solved by considering QCD
in tne framework of a strictly defined mathematical method. Main elements
of the method are the Dirac quantization and the formula of asymptotical
freedom. At the same time, one ignores that at long distances this formula
becomes a phenomenological hypothesis, and the Dirac method cannot sol-
ve the problem of relativistic description of bound states even in QED’ !,

If a hadron is a bound state of quarks and gluons, then to solve the
above problems we have to consider the following questions:

I. What is the perturbation theory for bound states?
1I. How can the relativisticcovariant perturbation theory be constructed?
III. How must one modify this perturbation theory to reproduce the basic
features of hadronic physics? '

I. PERTURBATION THEORY FOR BOUND STATES

In QED, bound states are described by means of the expansion not
in the coupling constant but in the spatial components of gauge fields aro-
und an exact solution defined by their temporal component (i.e. by the Cou-
lomb field). This perturbation theory will be called the "physical” one (PPT).
PPT with an exact solution to the classical equation for the temporal compo-
nent of the fields corresponds not to the Dirac quantization method (where
all degrees of freedom are considered as quantum ones) but to the "minimal’’
method / 2/ (where only physical degrees of freedom are quantized).

On the classical level (after the exact solution of the Gauss equation)
the gauge-invariant quantities like the Hamiltonian of Belinfante
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depend on the classical variables (AT and qT), that are the functionals of
the initial fields (A; and q;), in the lowest order of the perturbation theory
these functionals have the form’ 2’

-~

AT[A) = v[A)(A, + 3 ) VIATY, v[A] - La Al
T - A} A2 (2)
q (A,ql =v[Alq, Ay -e —

The difference between the functionals (2) and the transversal variables
(d;A; =0) in the Dirac method consists in their transformation proper-
ties under Lorentz-iransformations of the initial fields 23/,

II. RELATIVIZATION

There exists the opinion that to restore the relativistic-covariance of
bound states, one should set all field components ( Aj. A, )in the same con-
ditions. There aie two ways: either to use the relativistic gauge or to calcu-
late all orders of the perturbation theory exactly. However, in practice, any
relativistic gauge mixes up the nonperturbative bound effects with the effects
induced by radiative corrections, and at a result, the theory becomes noncal-
culable ‘4/. The correct statement of the question is that how one gets the
relativisticcovariant wave functions of the bound states in every order of
the perturbahon theory. As yet there is no solutlon of this problem even in
QED

Calculmons show that the covariant description of bound states by
means of P2T is possible if one chooses the guantization time vector (ny»
11,, =1) so that the Coulomb field (A, =(n- A)) moves together with
particles, the bound states of which it forms.

For the lowest order of PPT gL; n,(A-q) #0 and A, ,=A, -
- A, . we have the following system o# the Dyson-Schwinger and Bethe-

Salpeter equations, respectively,
zl. 2(p.L ) = ml. 2+ f(“k)!(kl —p.l. ))’H“ Gz (k) )’Hl.l s (3)
and
-1 -1
Gy (k+n §) xp®GCy Geen, D)= f(d) Vk, -1 )yHux?(q) Y+ @
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is the 4-momentum of the bound state Xgn M, 5 are the parameters de-
pendmg on the particle masses m; and mg (1;1 + mg =1,see’5"). The po-
tential V is defined by the exact solution of the equation of motion for the
temporal component of the field, Aj| (A, =0) .

Relativistic-covariance (as a transformation property) of the Green func-
tions <y ...y ¥3,in particular, solutions to eqs.(3) and (4), is achieved by
including additional diagrams associated with the nonlocal Lorentz-transfor-
mations of the field into the ”minimal’ quantization scheme R

III. QCD AND PPT

The ncnlocal functionals (2) may provide a new physical information
which is absent when quantizing the theory by the Dirac method, for examp-
le, in QCD where stationary gauge transformations (as the mapping of a 3-di-
mensional space Ry into SU(3)-group) have nontrivial topological properti-
es, the functionals (2) are defined up to phase factors degenerated in the
topological mapping numbers’ 2 €/, As a result of that degeneration, the
physical fields (as factors of the field sources in the generating functional)
differ from the “bare” fields used in the diagrams of the perturbation theory.
Removal of the degeneration leads to vanishing of all the colour Green func-
tions and the colour particle creation amplitudes, due to destructive inter-
ference of the phase factors of the degeneration. Consequently, we shall
consider only the “bare” propagators of the perturbation theory and colour-
less bound states.

In the construction of such bound states a main problem of QCD is
the introduction of a dimensional parameter. Usually, one associates it with
the asymptotical freedom formula which is connected with *’small” pertur-
bative components (A;). The constructive idea is to connect the dimensio-
nal transmutation, in the lowest order of PPT (A, =0), with the boundary
conditions for the equation for a "big” field component (A), ie. to use
such unnormalized solutions (Ag) to the classical equation which do not
contradict the quantization principles for physical variables (2). For example,
the expression (—31— J T)(x)m (1) can be redefined in the following form
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where the second term vanishes when the Laplace operator acts on it,

J ("3"2 3o )(® = Jg (¥) . Using the about expression we get the following
interaction Hamiltonian

Hyp, (A40, 4= 0)--—rd x 3, T(x) (217 () =

~'2 Q
(5)
- ra®xady JOT(x) Jg(y) Vx-y]),
where
agy 82
V(lx- yl)—-——-—-———+V (£-9)° ag = —==-.
|£-¥1 .

and the last expression was obtained owing to the symmetry under X oy .
The Hamiltonian (5) cormresponds to redefinition of the Coulomb potential
in an infinitesimal vicinity of the zero transfer momentum,

4 ' . dna,
V(BN =l o -V (2?2 5], =i, (6)
) iy ] b0 g

The phenomenological parameters (a,, V) of this potentlal can be fixed
from the spectroscopy of quarkonia Al (whlch is an analogy of the Cou-
lomb experiment in QED), which gives

VIS 250MeV, az=0.2. 0
The potential (6) explains the mass spectrum of light (m;<<V}/3)
and heavy (m,>> V,!/3) quarkonia (where m,, yare "bare” quark masses).

Exactly calculated propagators of the quark and gluons describe the gene-
ration of their dynamical (or constituent) masses:

vA =
4 mq'A(p-.eo)=0,

(see Appendix A). The dynsmical mass of a gluon eliminates all infrared
divergences, modifies the asymptotical freedom formula at small transfer
momenta (Q®) and leads to the finite coupling "constant™ a (Q2) < 0,2,

b
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The dependence of the strong conpling constant on (). Given are experimental and theo-
retical values (thin lincs) obtained by using the standard asymptotic freedom formula,
The thick line corresponds to the madified formula values with a{Q2 =0) = 0.24 when
Ny =3 A =110 MeV and o = 700 MeV. (The authors would like to thank A.Rous-
sarie (Saclay} for supplving with the daia collected by him).

for all @2 (see the Figure). The small coupling constant, in turn, allowed
us to substantiate the nonrelativistic description of the hadron spectrum 7 .
Thus, we may consider PPT as a self-consistent approach which has allowed
us, in the framework of QCD, to describe any hadronic process with a given
accuracy.

Equations (3) and (4) in their relativisticcovariant form, where the
exchange-operator is

2

. NT -
K(?,Q) = ——_V(q,) Oy ., 8
- eN, ~ ' a i ©

describe not only the hadronic spectrum but their coherent interaction that
in terms of the bilocal-meson fields' 8 ' takes the following functional form
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where Tr means summation over discrete indices and integration over con-

tinuous variables, for example, Te[ M%) = ra*xaty w(M(x,y) JM(y.x)] ;
M(x,y)is téhe bilocal-meson field represented as the matrix

Nf -1
_ i i
maBlah - ifl maB Anb/z

with the Lorentz and flavour indices, (a,3) and (a,b) , respectively. Noti-
ce that the quark Green functions (Gy) and the bilocal field (M) satisfy the
Dyson-Schwinger (3) and Bethe-Salpeter (4) equations, respectively,

E=mo+iKG2.
and
m=iKGznGz.

The bilocal field can be decomposed over the solutions, y gf,l(q) , to eq. (4) as

4 .
a ¥ b3 8+(?2—u2H) AHK(z) x
(27)" H (10)

x te“?xyg(ﬂ) 8, ($) +e'?x)}‘$(zl) a5, (P) 1,

Nxy) =Nez.X) =[

where

iq, z
K v e,) =50, V@) v, F(d) et Xy
X=(%+y)/2 , z=x-~y are the absolute and relative coordinates, AHis
the normalization factor, a:‘I(a. ) is the creation (annihilation) operator for
the hadronic state (other definitions have been introduced earlier).

As has been shown in refs.’8.9/ | the perturbation_theory in the bilo-
cal fields, with the propagator D(x,.x5'%5,%4) =3‘!.(_x_;.x2) ﬁ( Xg,X,)
containing an infinite number of resonances describes self-dual amplitudes.
The low-energy limit of these amplitudes for light quarks can be easily ob-
tained from the expression (10).




In the limit of V_ 4+« (i.e. at low energies) the bound-state wave func-
tional (), due to the normalization condition, transforms to the 5-func-
tion, for example, by using the Gaussian successfully applied to the spect-
roscopy, we obtain

/3 3
lim Xp(z )~ lim Vy “exp(-2* V¢ ") =87 (2).
Vo-wo Vo-oan

As a result, in this limit the bilocal field (M) behaves as the §-function, i.e.
M(x.y) ~5@(x-y). .The same limit could be obtained by taking K(z) -
-58(z). It is well known that just this “potential” for four-quark inte-
ractions has been used in the original formulation of the spontaneous brea-
king of chiral symmetry /19, Today we know that the bilocal Lagran/gian
(9) with the potential of §* -type is reducible to the chiral Lagrangians 1n/

On the other hand, at high energies the Green functions of quarks and
gluons tum into the “bare” propagators of the usual perturbation theory
of QCD used to describe the quark-hadronic phenoimnenology of deep-inelas-
tic processes.

To summarize, the physical perturbation theory allows us, from a com-
mon point of view i) to consider the light and heavy quarks and gluons; ii)
to give the calculation method for radiative corrections, and to substantiate
the zero-norm of the colour states and the relativistic interactions of hadrons
in accordance with the conventional phenomenological models.
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Appendix A
The Green functions for a light quark and a gluon in the oscillator poten-
tial have calculated in refs.”®?’ . For the quark Green function we have /7’ .
the expression ‘
e . . Yy . O
Z(p) =E(p) sin ¢(p) + pl E(p) sin ¢(p) -P1, p= -———-. P=|Bl, }
ipl Te
where ¢(p) satisfies the equation of the sine-Gordon type, e

(l_’2¢')'=21_)ssin ¢(p) -sin24(p) - 2m gzcos¢(;_)) ,

E@) -psin¢(p) - p2cos 6@ - 1 (¢)%+ m sind(p) (A1) |
; |
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The gluon Green function is given by /3
D, (ag.d) = : (8, -9,-359,) (A2)
oo qﬁ-a)(ial)z—lf q

Here w(q)is the single-particle energy defined as a solution to the following
equation

Hig>=w(q)lq>, (A3)

which after substitution of (A2) and (5) takes the form . 2

m(p)2 +p° 3 d 12 (), 2

m—mot— e+ N [V, (===) 87 (@) B (P+alp)” = 0@ , (A4)
2w (p) aq

where

S(piay = L[ (2R )F2, (ala) 32

t(piaq) = 2[( m(q)) +(- o (2) -—)

or
2 _.2 .

2R (2, (A5)
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in the dimensionless variables ¢ = (N, V, 7% 4. To solve equation (AB), i

the boundary conditions «(p-= 0) =p(p=0) =py 40 are needed. i
In thelhmlt p-  the equation tums into the algebraic one w?® -p% =u(p)2-=
. The value of ,_ has been estimated from the massive loop

that defines the modified asymptgtmal freedom formula:

Inf (o2 1 1
a (Q ,uo)= . . !: 2 -_-0.2. (AG)
1 u°+x(1-x\Q [y
Bo [ dx1n —= ,Bo(ln > +2)
0 x(1-x) A A




The Qe-dependence of this parameter is shown in the Figure. In the limit
of Q%> ug (AB) gives the usual asymptotical freedom formula, a(Q? -

QE

=1/q)ln——-2-—. )
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Jna onucaHua cea3aHHBIX cocTosuuit B K3 u KX dopmy-
nupyercA ¢u3HuecKaA TEOpHA BO3MYIUEHWH 1O NPOCTPAHCTBEH-
HbIM KOMIIOHEHTaM BEKTOPHOIO MOAH BOKPYr TOYHOr'O pelleHud,
onpegeideMoro BpeMeHHOi# komnoHeHTOM. IlokxasaHo, uTo 3Ta
Teopua BoamyuieHnit B KX mMoxer OblTh ZooRpeneNneHa TaK, Yro
OHa BOCMPOM3BOAMT BCe OCHOBHBIE YEpPTLl aIPOHHON QHINKHA: KOH-
¢aiflHMeHT, CNeKTPOCKOMUI0 JEerKHx M THXeNbIX KBapKOHHEB,
OYalIbHO-PE3OHAHCHEIE AMILTMTYMLI, KUpalbHble NarpatbKMansl |
NAPTOHHYIO MOZellb.

PaGora Brimonuena B JlaGoparopum TeoperuvecKol (u3nKu
OUAN,
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A New Perturbative Approach to QCD

For the description of bound states in QED and QCD the
physical perturbation theory on the spatial components of the
gauge field over the exact solution, defined by the time onne, is
proposed. It is shown this perturbation theory in QCD can be re-
defined so that it reproduces the main elements of hadron physics:
confinement, spectroscopy of light and heavy quarkonia, dual-
resonance amplitudes, chiral Lagrangians and the parton mecdel.
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