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Abstract

Siberian Snakes provide a practical means of obtaining polarized

proton beams in large accelerators. The effect of snakes can be

understood by studying the dynamics of spin precession in an

accelerator with snakes and a single spin resonance. This leads to a

new class of energy independent spin depolarizing resonances, called

snake resonances. In designing a large accelerator with snakes to

preserve the spin polarization, there is an added constraint on the

choice of the vertical betatron tune due to the snake resonances.

Introduction

Preserving the spin polarization of a beam of protons in large

accelerators is a monumental task because of the large number of spin

resonances that can be crossed during acceleration. The usual

methods of resonance Jumping and orbit correction " are too

impractical. The Siberian Snake was invented to eliminate all these

spin resonances simultaneously. We study this by looking at an

accelerator with a single spin resonance and a periodic distribution

of snakes. Although the snakes make the spin resonances transparent,

there is a new class of energy independent spin depolarizing

resonances created called snake resonances ' .

In the section 2 we study the spin dynamics of an accelerator

containing a periodic distribution of snakes and a single spin

resonance. The results are summarized in section 3 and some

consequences are discussed.

*Thiswork was performed under the auspices under U.S. DOE on Contract #
DE-ACO2-76CHOOO16
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Snake Resonances

A Siberian Snake is a collection of dipole (and/or solenoidal as

8 9

well as other configurations '' ) magnets that are orbit transparent

and rotate the spin 180° about a horizontal axis. The spin

precession of the snake can be described by the following matrix:

0 ie

where <p is the angle of the precession axis of the k'th snake (Fig.

1).

In an ideal accelerator with N (assumed even) snakes that are

equally spaced and no spin resonances the spin precesses through one

revolution as follows:

U = (-1)
N /2

where the spin tune v is

independent of energy. When

v - integer

then the matrix M is a unity and would set up a resonance condition

leading toward depolarization. This is true when there are no spin

resonances present.

To generalize this by including spin resonances we consider the

following configuration of snakes in an accelerator
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Furthermore, we need the matrix that describes the precession of the

spin in the arcs between snakes assuming only a single spin resonance

is present. This can be found from the spin equation
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where ijt is the spinor representing the spin direction, e is the

azimuth of the particle, r is the lorentz factor, G = (g-2)/2 is the

anomolous magnetic moment, e is the strength of the spin resonance

and K is the resonance position.

The spin equation can be solved exactly when there is no

acceleration (i.e. r is a constant) and for a single resonance giving
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where 2n/N is the spacing between snakes, 8 is the azimuth at the

center of the arc and
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The dynamics of the spin precession in an accelerator with a

single spin resonance and sna ?s can be deduced from the following

matrix

M
k

2k*l 2k+l
S U ) V(8 )
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which is the matrix representing the spin precession between two

snakes and two arcs. Expanding the matrix M leaves

where
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and 8* = (9 + 8 )/2 is the azimuth of the central snake. In the
k 2k+l 2k

limit when the spin resonance e goes to zero the anti-diagonal
element b in matrix M goes to zero as well as its trace (with half

k k

integral spin tune).

Due to the periodicity in <j> , the only variation in matrix M

from one group of two snakes and arcs to the next comes from 9s.

Hence, the depolarization may be enhanced by the phase variation of
0s. To see this, we introduce a new matrix N such that
k t

N = M N
t+i t t

and N is the unit matrix. If the particle doss not depolarize due



to the spin resonance then the anti-diagonal component of N should

remain small. Denoting:

N
W Z
t t

then

Z = a Z - b W
t+i t t t t

W = a W + b Z .
t*i t t t t

To determine the effect of the phase due to 9s, we must solve

the above difference equation for W . This can be solved to an odd

order in the spin resonance strength as shown by the following

expansion:

H
c»)

t-l k -1

V1 V1
a

V1

J
where

t-l t-l k-l

""' • I a .

k=l B=fc+1 •=!

This solution by itself is not very transparent. We simplify

this by writing

» b

where b is a real constant, ij and i) are complex constants and 0 =

47tk/N . When sin (i is much smaller than cos fi then (i.e. a weak

spin resonance)

a = -e
k

/N
s S



the anti-diagonal element U becomes
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Note, if

integer = — (K ± v )
H "

then W cannot remain small far from the resonance where the n

vector is vertical. Thus, the polarization is destroyed. This is

the lowest order snake resonance.

There are many other snake resonance due to the higher order

terms in W . The most important of these higher order snake

resonances come from the higher order terras in a that were dropped

when expanding W 1J. We can see the effect of these terms by

regrouping the summation as follows
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where the second sum includes terms up to order 2p-l in spin

resonance strength. In trying several values of p in W we find
pt

higher order snake resonances of the form

integer = p — (u ± nuc)
N s

where m is an odd integer from 1 to 2p-l. Tracking studies have

shown that p must be an odd integer for depolarizing the beam.



Conclusion

There are three classes of spin resonances in large proton

accelerators, imperfection resonances where <=k, and two intrinsic

resonances where K=k±t>. When Siberian snakes are added to such an

accelerator, the spin tune can be chosen such that one particular

class of these resonances do not excite snake resonances. Then, the

remaining two classes will excite a set of energy independant snake

resonances. In practice, we choose v = 1/2, which will avoid any

snake resonances that could be excited by the imperfection

resonances. In this case we must carefully choose the vertical

betatron tune v in order that the two classes of intrinsic resonances

are not operating on a snake resonance.

The snake resonances can be observed using a spin tracking

program10. An accelerator containing two Siberian snakes with a spin

tune of 1/2 and a single intrinsic spin resonance with e=1.93 has

been tracked for various values of the fractional part of the

vertical tune v. The results are shown in Fig. 2. The dips agree

with the places given by the snake resonance formula. Some plots

from the tracking program are shown in Fig. 3-4. Yokoya has shown

that these results are dependent on the strength of the spin

resonance as well.

There is still plenty of work that needs to be addressed in an

accelerator with Siberian snakes. For instance, there is no theory

for the case involving more than one spin resonance. The spin

equation for the arcs can no longer be solved analytically.

Furthermore, all three classes of spin resonances are present and

they may interact in ways we presently cannot forsee.

References

1. T. Khoe, R. L. Kustom, R. L. Martin, E. F. Parker, C. W. Potts,

L. G. Ratner, R. E. Timm, A. D. Krisch, J. B. Roberts and J. R.

O'Fallon, Part. Accel., 6, 213-236 (1975)



2. E. D. Courant and R. D. Ruth, B.N.L. Report BNL-51270 (1980)

(unpublished)

3. S. Tepikian, S. Y. Lee and E. D. Courant, Part. Accel., 20, 1-22

(1986)

4. F. Z. Khiari, et al, Phys. Rev. D, (to be published) and Ph.D.

Thesis, Univ. of Mich., 1987

5. Y. S. Derbenev and A. M. Kondratenko, Sov. Phys. JETP, 35., 230

(1972)

6. S. Y. Lee and S. Tepikian, Phys. Rev. Lett., 58, 1635-1638

(1986)

7. S. Tepikian, Ph.D. Thesis, SUNY at Stony Brook, (1986)

8. E. D. Courant, these proceedings

9. U. Wiegnands, these proceedings

10. J. Buon, Workshop on Polarized Beams at. SSC. AIP Conf. Proc.

145. 164-169 (1985)

11. K. Yokoya, these proceedings

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



HORIZONTAL PLANE 8EAM

OlRECTlON

SNAKE PRECESSION AXIS

TRANSVERSE
OlRECTlON

Figure 1. The snake precession axis.
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Figure 2. Polarization versus the fractional part of vertical

betatron tune.
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Figure 3. Tracking of the vertical component of the spin versus yG I.



-I
450 470

-1
455 460 465

Figure 4. Tracking the vertical component of the spin versus ?G II.


