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COHERENT BEAM-BEAM EFFECT
by
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Abstract

The stability of the coherent beam-beam effect between rigid
bunches is studied analytically and numerically for a linear
force by evaluating eigenvalues. For a realistic force, the
stability if invescigated by [ollowing the bunches for many

revolutions.
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). Intreduction

The coherent beam-beam interactior retween the rigid bunches of tw. . --.r-
rotating beams in an e+e_ storage ring has been studied by Rees and Rithvh: PO
by PiwinsktZ). Rees and Ritson set up a system of coupled linear equoti.i: : r
the ceptre-cf-mass motion. They use it to £ind the coherent tune shaft for -

particulay mcde of the coherent oscillations, and conclude that tne tune shif' .
inversely proportional to the tune split between the twc beans. Piwersi: trga’.
the stability of k identical bunches in each beam, coiliding in ¥ identiza:
erossing points around the machine. The case of equal tune:s Gl =S 8 Il
expression for the threshold of the instabilicy AQ., as a function &f e turs

Tt behaves like a sawtpoth function, with zerpos at all tunes whisl 2te fu.iliils
of &,

We have carried out a study under the same consitions as Piwinsky® yomsalalon
ilnear approximatjon to the beam-beam force. Our conclusions ccnceriiing the
threshold of the instability are somewhat different: it is sz1ll a sawic.o-: f.n--
tion, but its zeros occur only at integral tunes. We have alsc invesiigatea
how this behaviour is changed by splitting the tunes of the e’ and e” bears an:

by different phase advances between the crossing points.

The linear approximation applies only to oscillation amplitudes whick are
small compared to the beam sizes. Therefore the behaviour at large amplitude.
was studied by following bunches around the machine for many revolut:icns, using

realistic non-linear forces,

2. Mathematical model - linear forces

2.1 KXicks and transformations

There are k eguidistant bunches in each of two counte:-rotating beams 1noa
storage ring. They c¢ollide ir 2k crossing points; between the crossing points
there are 2k machine segtors, The positions Xon and the slopes xén refer to "o
nth bunch in the nth beam, where m = 1 ... k and n = 1, 2.

h revolution in thr storage ring is described by an alternating sequece of
2k kicks which describe tue interaction between the counter-rotating beams, anci
2k transformations through the sectors of the machine. This sequence is schema-
tically indicated in Fig. 1 for the case of three bunches in each beaa. This 1§
the smallest number of bunches with all the general features. For complete
generalicy, we allow for different bunch populations, different phase advance:= il
the secters, and different crossing points. Ir the sth crossing point, the

interaction occurs between the mth bunch of beam 1 and the nth bunch of beam 2.
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In linear approximation the change in the slope is proportional to the difference
in the position of the two bunches. This law can be expressed In the form of a

4 x 4 matrix:

xml 1l [+] Q 0 xm1 xm:
A B
' - ' mls mls .
xml mls 1 6mls 0 xml *m
= a 1l
o}
xnl 0 0 1 xn? ans A n.s *n
xrll;‘ -dnzs 0 6:'A?.s 1 \xn2 *n
f i 1

In (1}, A and B are 2 x 2 matrices. In normalized phase space in which free
betatron oscillations are described by circles and which we shail use, the
parameter Gmns is simply related to the linear beam-beam tune shift:

= 2
émns 4n ﬁans )
The m®P bunch in the first beam collides with the ntD bunch in the second beam in

two diametrically opposite crossing points, as can be seen from Fig. l. Hence,

2
there are only 2k* coefficlents 6mns‘

The transformation through the s*P sector is a simple yotation in phase

space by an angle nsns

x cosusn -slnusn x X

mn mn on
= = R - (B3]
sn
x! sin; s x* *
mn 1"El‘. co usn mn xﬂ'l.l'l

Again, the pairing between bunches and sectors follows from Fig. 1.

The indices m, n, 5 are cyclic indices, m and n are in the range 1 < m < k,
lS$Sns$2, and 8 is in the range 1 § 3 § 2k.
2.2 patrices

All the positions L and slopes x;n can be grouped into a column vector V
of 4k elements. Its transpose G is given by

Vo= (% “il' Rope Ripr ove s X xil, LY. xiz' cie X X (4
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The k simultaneous kicks can all be described by matrices of the fcrm ‘1),
All these matrices can be arranged in a single 4k x 4k matrix operating ¢ -:-
vector V. Similarly, all the 2k simultaneous rotations of the form (3  a:

arranged in a single 4k % 4k matrix operating on the vector V.

The kick and rotation matrices for half a revclution are shown in Tal.
for the case of three bunches in each beam. Inspection of Table 1 shows Mo
matrices for the second half of a revelution and/or for more inan *'ree bun

can be obtained. The rules are:

i) Successive kick matrices are obtained by increasing tae thir. ind oy ono ot
A and B matrices by one in the upper half of the matrix, and v rec..ci: =~ -°
in the lower half. In addition, the columns of the B matrices are oy li.ly
shifted, to the right in the upper half matraiy, and to the left in the | w2
half matrix.

il) Successive rotation matrices are obtained by increasing the first ipicx o3
the R matrices by one in the upper half, and reducing 1t by vne in the Lowe:

half of the rotation marcrix.

*

It cap be demonstrated directly that all the matrices :n Takle I

lectic.

3. Results of the linear theory

3.1 Eigenvalues for a perfect machine

The stability behaviour of the bunch motion 1s determined by the eigenva. ..
of the matrix for a £full revolution. Instability occurs if at least ong eige: -
value A is larger than one in absoluyte value, Since all the matrices involiw i
in the revolution matrix are symplectic, the same holds for the revolurion matrix.
The eigenvalues of a symplectic matrix occur in reciprocal pairs. As i3 the cas.

3)

for linear coupling reseonances™ , there are three possibilities:

1) Two eigenvalues form a complex conjugate pair and are on the unit circle;

ii) Four elgenvalues, so that two eigenvalues are the complex conjugare cof tne
other twe, and alse that two eigenvalues are the reciprocal of the other
two; none of them is on the unit circle;

iii}) Two real eigenvalues form a reciprocal pair.

Only possibilities ii} and iii) give rise to an instability,

For the special case that al) 6mns are the same, and that all usn are the
same, the revolution matrix i1s the product of two identical half-revolutior
matrices. Hence, it is suificient to investigate the eigenvalue behaviour of a
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TABLE I. Explicit form of kick and rotation matrices for three bunches

kick matrix rotation matrix
A By Ry)
Az13 Byiy Ry
Ay Bas Re,
Bi2s Ay2y Re >
Byzg Rzzy R:z
B3zs Ajzs R,
LITY! By1z Ray
LYI Bz R.,
Az16 Bale Rey
By2g Rize Rep
B222 Pazz Rz
Baz, A3z Ry:
A3 B3 Ry,
Ra:s Ba1s Rsy
A3n Ban Ry,
Bizs Arzs R.2
8221 R221 Re2
Bazs LEPE R22

half-revolution matrix. Piwinskin has derived a closed expression for the
threshold of the instability, in terms of the linea:r beam-beanm tune shift AQ.
His results, shown in Fig., 2 for k = 1 and Fig. 3 for k = 3, behave like a saw-
tooth finetion; the branches have AQ = 0 at all tunes Q which are 2 multiple of
h. The sawtooth pattern ia pericdic in the tune § with pericd k,

¥We have studied the eigenvalue behaviour numerically and found that the
threshold of the instability is given by the branches drawn as full lines in
Figs. 2 and 3. The additional branches found by Piwinskl and drawn as dashed
lines correspond to elgenvalues A = +i for half a revolution matrix. Even for



AQ slightly abaove these branches all eigeavalues axe on the unit c:r. 1. .

instability occurs,

3.2 Eigenvalues for split tunes

To study the effect of split tunes, we have evaluated the eigenval:x .- .
the condition that all bunches have equal pepulations and taat all cros-i--
points are identical, but the tunes of the two beams, Q = §, are ziffurant.
stability threshold found for the case k = L and € = 0,1 s slawn @ & . ..
Another example with k = 3 and § = 0.2 is shown in Fig, 5. Coenp-:.n: :.o- .
and 5 to Figs, 2 and 3 indicates that splitting the tunes of ¢! R T
duces a more coamplicated fine structure into the instability thre=:_ic. 1. @

not necessarily improve it.

3.3 Eigenvalues for unegual half revolutions

So far, the discussion has been limited te the case where the transiornat:-.
for a full revolution is the product of two identical half-revoiirion t:zas.:.:r -
tions. If this restriction is removed, the stability is determ.red b; t:<

eigenvalues ¢f the full revolution matrix.

The simplest case is that of a machine with twe egual bunches, onc in <2
beam, which meet in two identical crossing points, and with phase advapnce:
27 (hQ * &Q) for the two arcs joining the crossing points. The stakbiiatw ir 'rax
case was investigated numerically and analytically.

The result of the calculation is shown in Figs. 6 and 7 for twe values £ ¢,.

There is a difference in the behaviour cf the branch starting at @ = 1, ¢ =

which is a threshold for instability, and the branch starting at @ = (.3, 3
wvhich is a stopband of finite width. For values o! 4 above the threshcld t-.-
motion is always unstable, while for values of AQ above the stopband the moti_.
is again stable up to the integral threshold. The width of the stopband ir-

creases with increasing AQ and 4Q.

The stopbands arise when the four eigenvalues of the revolallol mairix a!-

all complex but not on the unit circle. The edges of the stopkand are giw-- ty

dp = etn T ¢ v afl - cos 4TEQ
M1l + cos 4u6Q) - 2

For 8Q = 0, the stopband width vanishes, but the values of 4Q are exactly Tw.®

the values of the dashed lime shown in Fig. 2.

The threshold of instabllity, starting at Q = 1 and 4Q = C, is given by tin

relation


http://trar.sfori.af
http://cti.nl

ain 270 + Y(1 - cos 2MQ) (1 + cos 4TaQ) )

4 = 41 {cas 47dQ - cos 21Q)

The limiting value of this expression for 8Q = 0 is

bg - =R My

4n sin M
which agrees with Piwinski's expression for the full line in Fig. 2.

4. Tracking with non=linear forces

The linear model described so far is a reascnable approximation only in the
case where the oscillation amplitwdes are a small fraction of the beam size.
On the other hand, such amplitudes have a negligible effect on the overlap of
the counter-yotating bunches aad hence on the luminosity. In arder to study
this question further, we have introduced non=linear kicks at the crossing points
and followed the coherent hunch oscillations for a large number of turns.

In the linear model, the kicks are simply proportional to the difference Az
in the positions of the colliding bunches, as can be seen from (1). This is
now generalized by making the kicks proportional to a function of this difference.
Two specific kicks have been included in the analysis, for elliptic and round
beams with a Gaussian density distribution.

For an elliptic beam, the kick is obtained by following the caiculation of
Montague“. If the vertical rms beam radius ls normalized to unity, i.e. if
all amplitudes are meaASured in unitc of the rms beam radius, and if the horizon-
tal rms beam radius i{s cs’t ®» 1, the kick is given by the fellowing expression:

¢b = gm L’*.leux + 1) dlo,, he) . 8

The function ¢(g, A) is defined as follows:

42 igh
$o, &) = J “_ {w — -exp |-=5] w [——— 19)
210%-1) /2102=1) ? VI2-1)

where w is the complex error function. For computations it is useful to remem-
ber that
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wiix} = (L - erf x} exp(x?} . .

For a round beam, the kick may either be obtained from (9) by letting

c:x + 1, or more directly from the fields. The result is:

2 - V" el ‘-
¢b - 41IAQy Iz 1 exp ( 2 ) Il

4.2 Results of tracking

The coherent oscillations of the bunches were launched by displaciag the
first bunch in each beam by equal amounts but with opposite sign, while the
remaining bunches were not displaced. In the results presented later, tne dis-
placement was 0.1 beam radii, but this value is not critical. The resultirg
coherent oscillations were followed for 500 turns. After this number of turns
the coherent oscillations are in full swing as is demonstrated by recording the
number of the turn where the maximun amplitude occurred. Hence, 300 turns 1s

considered to be sufficiently high to obtain significant results.

The jmportant parameter for the luminosity is the average separation between
the centres of the colliding bunches. It is drawn In Figs. 8 to 13 as a function
of the tune @, for several beam-~beam tune shifts AQ and number of bunches k.

It is instructive to compare the ranges of Q where the linear theory yieids
stability and where tracking shows no growth. The stable regions from lijnear

theory are shown in Table II.

TABLE I}. Stable ranges of § from linear theory

k aQ Q ] q Q
1 0.02 0 - 0.8432
0.04 0 - 0.7035
0.06 0 - 0.58R7
2 0.02 0 - 0.8432 1 - 1,6865
0.04 0 - 0.7035 1 - 1,4070
0.06 0 - 0.5887 1-1.174
3 0.02 0 - 0,7814 1-1.7483 | 2 - 2.5297
0.04 0 - 0.6130 1-1.807%5 | 2-2.1104
0.06 0 - 0.4905 1-1.2152 -
4 .02 0 - 0.7243 1 -1.6865 | 2 - 2.5486 3 - 3.3730
0.04 0 - 0.5353 1 -1.4070 | 2-2.2777 -
0.06 0 - 0.4135 1-1.1774 - -
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Comparing these rangas to those found by tracking shows very good agreement.
Hence, the linear theory gives a very good indication over what ranges of Q the
cohexent oscillations are stable, even when realistic non-linear forces are used
in the tracking. Conversely, the realistic forces are not non-linear enough to
stabjiize the coherent motion at separations small compared to a vertical rms
bean radius, over much Jarger ranges of the tune ¢ than those given by the
linear thecry. Hence, the chcice of the working point must avoid regions of
coherent ipstabilities in order not to lose luminesity significantly.
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Fig. 1. The numbers in civcles (squares) label machine sec-
tors {crossing points); the bunches are labelled
n(m) is the bunch (beam) number,



tig, 2. Threshold AQ of
30 - ' coherent instability for one
AQ ) bunch in each beam. The dashed
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i half a revolution.
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Fig. 3. Thresheld AQ of
coherent instability for three
B bunches in each beam. The
dashed curves have eigenvalues
+i for half a revolution.
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Fig. 4. Threshold AQ of
instability for ame bunch in
gachob?am and split tunes,
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Threshold and stopband for one bunch in each beam, and
different phase advances in the two arcs, 2n{(}Q + 0.02).
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Fig. 7. Threshold and stopband for one bunch in each beam, and
different phase advances in the two arcs, 2w(}0 + 0.08).
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. 8. Average separation S between colliding bunches fecr one bunch in

each beam and AQ = 0.02.
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Fig. 9. Average separation S between colliding bunches for one bunch in
each beam and AQ = 0.04,
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Fig. 10. Average separation 5 between colliding bunches for one bunch in
each beam and AQ = 0.06.
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Fig. 11. Average separation S between colliding bunches for three bunches
in each beam and AQ = 0.02.
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Fig. 12.

Average separation S between colliding bunches for three bunches
in each beam and AQ = 0.04.
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Fig. 13. Average separation S between colliding bunches for three bunches
in each beam and Q = 0.06.
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