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Abstract 

The stability of the coherent beam-beam effect between rigid 
bunches Is studied analytically and numerically for a linear 
force by evaluating eigenvalues. For a realistic force, the 
stability if investigated by following the bunches for many 
revolutions. 
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1. Introduction 

The coherent beam-beam interaction between the rigid bunches of tv>. . ••• --
rotating beams in an e e storage ring has been studied by Rees and Kit-.-.. ' •-• 

2) by Piwinski . Rees and Ritson set up a system of coupled linear equa".i.:.: : • 
the centre-of-mass motion. They use it to find the coherent tur-.o si-.ift f-.- :•.• 
particular mode of the coherent oscillations, and conclude that tr.s tune shjf-. :. 
inversely proportional to the tune split between the twc bear:s. Pivir.s:-:; •.:~.r< 

the stability of k identical bunches in each bean, colliding in ZY. i-=c-:;ti~.i: 
crossing points around the machine. The case of equal tunei ji *-s a -:..-i-: 
expression for the threshold of the instability AQ, as a functior. of •-..• I-JM 
It behaves like a sawtooth function, with zeros at all tunes wV.ici. ait i.,„: t.; :• 
of "s. 

We have carried out a study under the saiae conditior.s as Piw:.-.ski" . ...-.,:.: -. 
linear approximation to the beam-bean force. Our co.-.clusior.s ccri=er::ino -r.t-
threshold of the instability are sociewhat different: it is s-.ill a savrc. •.:. : .:. • 
tion, but its zeros occur only at integral tunes. h'e have aisc inves'.igati-j 
how this behaviour is changed by splitting the tunes of the e and e" bea::.-. a:. : 
by different phase advances between the crossing points. 

The linear approximation applies only to oscillation amplitudes which, art-
small compared to the beam sizes. Therefore the behaviour at large amplitude.-
was studied by following bunches around the machine for many revolutions, usir:; 
realistic non-linear forces, 

2. Mathematical model - linear forces 

There are k equidistant bunches in each of two countei-rotating bean? i.-. A 

storage ring. They collide in 3k crossing points; between the crossing pcir.t? 
there are 2k machine sectors, The positions x and the slopes x' rele: ti *..i 
mth bunch in the n t n beam, where m - 1 ... k and n = 1, 2. 

A revolution in thr storage ring is described by an alternating setjut-.c-e of 
2k kicks which describe i»,e interaction between the counter-rotating beans, aw.: 

2k transformations through the sectors of the machine. This sequence is schea.a-
tically indicated in Fig. 1 for the case of three bunches in each beaa. This is 
the smallest number of bunches with all the general features. For complete 
generality, we allow for different bunch populations, different phase advatiei•= i:. 
the sectors, and different crossing points. Ir the sth crossing point, the 
interaction occurs between the m t h bunch of beam 1 and the nth bunch of bean-. 2. 
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In linear approximation the change in the slope is proportional to the difference 
in the position of the two bunches. This law can be expressed in the form of A 
4 x 4 matrix: 

* \ / 1 0 0 

\ / 

nl 

mis 

0 0 

•J y*. 

m 

In (1), A and B are 2 x 2 matrices. In normalized phase space in which fret 
betatron oscillations are described by circles and which vie shall use. the 
parameter 6 is simply related to the linear beam-bean tune shift: 

4n &g <2) 

The m t n bunch in the first beam collides with the n t f l bunch in the second beam in 
two diametrically opposite crossing points, as can be seen from Fig. 1. Hence 
there are only 2k 2 coefficients 6_ . 

rans 
The transformation through the s™ 1 sector is a simple rotation in phase 

space by an angle u 1 

Again, the pairing between bunches and sectors follows from Fig. 1. 

The indices m, n, s are cyclic indices, o and n are in the range 1 £ m 5 k, 
1 i n S 2, and s is in the range 1 S s s 2k. 

2.2 Matrices 

All the positions x and slopes x' can be grouped into a column vector V 
an ^ nan r 

of 4k elements. Its transpose V is given by 

(X)], xjj, x 2 1, x£j, ... , x^, x^ ] f x ] 2, x j j f ... x)il, x^l I4< 
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The k simultaneous kicks can all be described by matrices of the fcr:. :•;, 
All these matrices can be arranged in a single 4k * 4fc matrix operating c; • 
vector V. Similarly, all the 2k simultaneous rotations of the form .'.' n: ; • 
arranged in a Single 4k * 4k matrix operating on the vector V. 

The kick and rotation matrices for half a revolution are shown in Tal. 
far the case of three bunches in each beam. Inspection of Table I shows *.<:v •• 
matrices for the second half of a revolution and/or for store -..-.sir: • r«- bur.-' 
can be obtained. The rules are: 

i) Successive kick matrices are obtained by increasing L:nr- t.'.ir.. ±:.i >: ;>; ;;. 
A and B matrices by one in the upper half of the matrix, an£ cy rtj..j: •• •• 
in the lower half. In addition, the column? of the B matrices are cy- :;.;•_. 
shifted, to the right in the upper half matrix, and to the left in trio :.•-••: 
half matrix. 

ii) Successive rotation matrices are obtained fay increasing ti-.t- first ir.jcx :: 
the R matrices by one in the upper half, and reducing it by une ir. t'.v 1 r--. : 
half of the rotation matrix. 

It can be demonstrated directly that all the matrices in Tafcle J an- sv«;-
lectic. 

3. Results of the linear theory 

3.1 Eigenvaluesfor a perfect machine 

The stability behaviour of the bunch motion is determined by the eige.wa. .. . 
of the matrix for a full revolution. Instability occurs if at least or.c- d e 
value \ is larger than one in absolute value. Since all the matrices involve ; 
in the revolution matrix are symplectic, the same holds for the revolution matrix. 
The eigenvalues of a symplectic matrix occur in reciprocal pairs. As is thv cas-

3) for linear coupling resonances , there are three possibilities: 

1) Two eigenvalues form a complex conjugate pair and are on the unit circle; 
ii) Four eigenvalues, so that two eigenvalues are the complex conjugate cf tru 

other two, and also that two eigenvalues are the reciprocal of the other 
two; none of then is an the unit circlet 

ill) Two real eigenvalues form a reciprocal pair. 

only possibilities ii) and iii) give rise to an instability. 

For the special case that all 6 are the same, and that all u are the 
mns sn 

same, the revolution matrix is the produce of two identical half-revolutior. 
matrices. Hence, it is sufficient to investigate the eigenvalue behaviour of a 
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TABLE I. Explicit form of kick and rotation matrices for three bunches 

kick matrix 

A 2 1 3 B 2 1 3 

* 3 1 5 B 3 1 5 

B 2 2 3 A 2 2 3 

B325 * 3 2 5 

fl112 Bj12 

A 3 1 6 ^316 

Bj26 *126 

8222 ^222 

Bj2i, A3J1. 

rotation matrix 

*n 

Rci 
Rf^ 

R« 

n2j 

*6l 

*5? 

M2 

M13 B 113 
A215 B21S 

Asn Ban 

Bl25 *125 

6221 A22i 

»3?3 

"31 

Re 6 2 

2) 
half-revolution matrix. Piwinski has derived a closed expression for the 
tJureshold of the instability, in terms of the linear beao-beaa tune shift AQ. 
His results, shown in Pig. 2 for k = 1 and Fig. 3 for k - 3, behave like a saw
tooth function; the branches have AQ » 0 at all tunes Q which are e multiple of 
•i. The tavtooth eatteeti ia periodic in the tune Q with period 1c, 

He have studied the eigenvalue behaviour numerically and found that the 
threshold of the instability is given by the branches drawn as full lines in 
Figs. 2 and 3. The additional branches found by Piwinski and drawn as dashed 
lines correspond to eigenvalues \ « ±i for half a revolution matrix. Even for 
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AQ slightly above these branches all eigenvalues are or. the c.;-. -:r . •: 
instability occurs. 
3.2 Eigenvalues_for_sglit_tunes 

To study the effect of split tunes, we have evaluated the eigem-al .;<. 
the condition that all bunches have equal papulations and t.iac all cro-. . -. -
points are identical, but the tunes of the two beams, Q z 6, are ai:~:\:..:,: 
stability threshold found for the case k = 1 and £ = 0,1 :s> si.cwr. ; .-;... 
Another exaraple with k • 3 and & = 0.2 is shown in Fig, 5. Co-::-;-r:.: ; 
and 5 to Figs. 2 and 3 indicates that splitting the tunes of t! •-'. :•• ...- .:-r 
duces a more complicated fine structure into the instability tr.rc---:. 1-.. - ..' 
not necessarily improve it. 

3.3 Ei9e25jalues_for_unegual half Revolutions 

So far, the discussion has been limited to the case where the trar.sfori.af. -
for a full revolution is the product of two identical half-revolitioii *:=•.-.. :. •: 
tions. If this restriction is removed, the stability is doter-.r.t-.-i fc. t: -; 
eigenvalues of the full revolution matrix. 

The simplest case is that of a machine with two equal bunches, or.t- in •: a • 
beaic, which meet in two identical crossing points, and witf- phase advance 
2n CsQ ± 5g) for the two arcs Joining the crossing points. The stabiijtv ir. ',M 
case was investigated numerically and analytically. 

The result of the calculation is shown in Figs. 6 and 7 for twc valuer ;£ c 
There is a difference in the behaviour cf the branch starting at Q = 1. Itf = • 
which is a threshold for instability, and the branch starting at Q = C.;. .\i -
which is a stopband of finite width. For values of iQ above the threshold 
motion is always unstable, while for values of AQ above the stopband the 3:0-i_. 
is again stable up to the integral threshold. The width of the stopbar.d J.\-
creases with increasing AQ and &Q. 

The stopbands arise when the four eigenvalues of the revolution ni-j: rjs. -.:•• 
all complex but not on the unit circle. The edges of the stopband are giv.• ly 

i e = cti.nl / , fl - cos «3&\ 
* nil + cos 4it6g) I yf 2 I 

For &Q - 0, the stopband width vanishes, but the values of LQ are exactly rw. -• 
the values of the dashed line shown in Fig. 2. 

The threshold of instability, starting at Q = 1 and AQ • C, is giver, by tin 
relation 

http://trar.sfori.af
http://cti.nl
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. . »ln 2iro + / ( l - cos 2KQ) 11 + cos 4t!&Q) 
8 " 4TT(COS 4*5Q - cos 2nQ) ' ' 

\ 
The l imiting value of th i s expression for fiQ • 0 i s \ 

^ . cos Ttfi -̂  1 \ 

^ « s in i g ' " > 

which agrees with Piwinski's expression for the full line in Fig. 2. 

4. Tracking with non-linear forces 

The linear model described so far is a reasonable approximation only in the 
case where the oscillation amplitudes are a saall fraction of the beam size. 
On the other hand, such amplitudes have a negligible effect on the overlap of 
the counter-rotating bunches and hence on the luminosity. In order to study 
this question further, we have introduced non-linear kicks at the crossing points 
and followed the coherent bunch oscillations for a large number of turns. 
4.1 Non;linear_forces 

In the linear model, the kicks are simply proportional to the difference &z 
In the positions of the colliding bunches, as can be seen from (1). This is 
now generalized by making the kicks proportional to a function of this difference. 
Two specific kicks have been Included in the analysis, for elliptic and round 
beams with a Gaussian density distribution. 

For an elliptic baas, the kick is obtained by following the calculation of 
4) Montague . If the vertical rms beam radius is normalized to unity, i.e. if 

all amplitudes are measured in units of the ras beam radius, and if the horizon
tal rms beam radius is 0 > 1, the kick is given by the following expressions 

^ - 4 T C®ylax * 1) 0)10^, tz) (8) 

The function $(0°, A) il defined as follows: 

-"•V3?{-(^-(-*)-te)} » 
where w is the complex error function. For computations it is useful to remem
ber that 



- 7 -

w(ix) (1 - erf x) exp(x') 

For a round bean, the kick may either be obtained from (9) by letting 
c •* 1, or more directly from the fields, x The result is: 

4"*VE exp (-*¥-) 
4.2 Resijlts_o£_traclting 

The coherent oscillations of the bunches were launched by displacing the 
first bunch in each beam by equal amounts but with opposite sign, while the 
remaining bunches were not displaced. In the results presented later, tr.- dis
placement was 0.1 bean radii, but this value is not critical. The resulting 
coherent oscillations were followed for 500 turns. After this number of tjrr.s 

the coherent oscillations are in full swing as is demonstrated by recording the 
number of the turn where the maxima amplitude occurred. Hence, 500 turns is 
considered to be sufficiently high to obtain significant results. 

The important parameter for the luminosity is the average separation between 
the centres of the colliding bunches. It is drawn in Figs. 8 to 13 as a funrtioi 
of the tune 0. for several beam-beam tune shifts &Q and number of bunches k. 

It is instructive to compare the ranges of Q where the linear theory yieMs 
stability and where tracking shows no growth. The stable regions from linear 
theory are shown in Table II. 

TABLE I!. Stable ranges of Q from linear theory 

k AQ Q Q Q 0 
1 0.02 

0.04 
0.06 

0 - 0.6432 
0 - 0.7035 
0 - 0.5887 

2 0.02 0 - 0.8432 1 - 1.6865 
0.04 0 - 0.7035 1 - 1.4070 
0.06 0 - 0.5887 1 - 1.1774 

3 0.02 0 - 0.7814 1 - 1.7483 2 - 2.5297 
0.04 0 - 0.6130 1 - 1.4975 2 - 2.1104 
0.06 0 - 0.4909 1 - 1.2752 -

4 0.02 0 - 0.7243 1 - 1.6865 2 - 2.64B6 3 - 3.3730 
0.04 0 • 0.5363 1 - 1.4070 2 - 2.2777 -
0.06 0 - 0.4135 1 - 1.1774 - -
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Comparing these range* to those found by tracking shows very good agreement. 
Hence, the linear theory gives a very good indication over what ranges of C the 
coherent oscillations are stable, even when realistic non-linear forces are -jsed 
in the tracking. Conversely, the realistic forces are not non-linear enough to 
stabilise the coherent motion at separations small compared to a vertical rms 
beam radius. over much larger ranges of the tune <J than those given by the 
linear theory. Hence, the chclce of the working point must avoid regions of 
coherent instabilities in order not to lose luminosity significantly. 
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Fig. 1. The numbers In circles (squares) label machine sec
tors (crossing points); the bunches are labelled 
n(m) is the bunch (beam) number. 
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Hg. 2. Threshold AQ of 
coherent instability for one 
bunch 'n each beam. The dashed 
curves have eigenvalues +i for 
half a revolution. 
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Fig. 3. Threshold AQ of 
coherent instability for three 
bunches in each beam. The 
dashed curves have eigenvalues 
+i for half a revolution. 
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Fig. 4. Threshold AQ of 
instability for one bunch in 
each beam and split tunes, 
Q + 0.1. 
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Fig. 5. Threshold AQ of 
instability for three bunches 
in each beam and split tunes, 
Q + 0.1. 
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Fig. 6. Threshold and stopband for one bunch in each beam, and 
different phase advances In the two arcs. 2ir(JsQ + 0.02). 



- 1 5 -

-.0 .1 .4 .5 .6 •9 1.0 

Fig. 7. Threshold and stopband for one bunch in each beam, and 
different phase advances in the two arcs, 2ir(y} + 0.08). 



Fig. 8. Average separation S between colliding bunches fcr one bunch in 
each beam and AQ = 0.02. 

BUNCH 1 BEnn I D> 
Z t i  .10 12= - . ID 
z l l . 0.00 12* 0-00 

.020 SIOXs IB.000 KICK OPTION 2 500 TURNS 2 CROS9INQS I BUNCHES 
2I> 0.00 22= 0.00 91s 0-00 92= 0-00 41= 0.00 42= 0.00 PLOT 
2U O.OD 22? 0.00 31= 0.00 92a 0-00 -lit 0.00 42= 0.00 S 

Q 



Fig. 9. Average separation S between colliding bunches for one bunch in 
each beam and AQ = 0.04. 
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Kig. 10. Average separation 5 Detween col l id ing bunches for one bunch in 
each beam and AQ = 0.06. 
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Fig. 11. Average separation S between colliding bunches for three bunches 
in each beam and AQ = 0.02. 
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Fig. 1Z. Average separation S between colliding bunches for three bunches 
in each beam and &Q - 0.04. 
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Fig. 13. Average separation S between colliding bunches for three bunchas 
in each beam and Q = 0.06. 
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