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ABSTRACT

Li and Yorke originally introduced the notion of chaos for continuous self-map
of the interval / = [0,1]. In the present paper we show that an interval self-map with
positive topological entropy has a chaoticity more complicated than the chaoticity in the
sense of Li and Yorke. The main result is that if / : / - » / is continuous and has a periodic
point with odd period > 1 then there exists a closed subset K of / invariant with respect
to / such that the periodic points are dense in K, the periods of periodic points in K form
an infinite set and f\K is topologically mixing.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Li and Yorke [4] originally introduced the notion of chaos for continuous self-
maps of the interval I = [0,1], and show that if a continuous map f : I -* I has a periodic
point with period 3 then the following condition (*) is satisfied.

(*) There exists an uncountable subset C of / such that for any two different
points yi and y3 of C

liminf l/'foO - r(j/2)| = 0 and limsup |/*(yi) - f(y2)\ > 0

i.e., there exist two increasing sequences {m,} and {ki} of positive integers such that

lim fm'{yi) = Urn
i—+oo t—roa

lim fki(y2

Definition 1 A continuous map f : I -* I is said to be chaotic tn the sense of Li and
Yorke if the above condition (*) is satisfied.

A theorem of Sarkovski [7] (see also [1]) guarantees that fm has a periodic point
with period 3 for some m > 0 if the continuous map f : I —* I has positive topological
entropy (equivalently, if / has a periodic point with period which is not a power of 2 (see
[6])). Therefore, the following theorem A works.

Theorem A (4] Every continuous self-map of the interval I with positive topological
entropy is chaotic in the sense of Li and Yorke.

Some other conditions characterizing chaos of interval self-maps are given in [2]
and [8].

The main aim of the present paper is to show that a continuous self-map of the
interval I with positive entropy has a chaoticity more complicated than the chaoticity in
the sense of Li and Yorke.

Definition 2 Suppose / : X —» X is continuous, where X is a topological space / is
said to be topologically mixing if for any two non-empty open sets U and V of X there
exists N > 0 such that f~n(U) n V ^ 0 for every n > N.

Definition 3 A continuous map / : / - + / is said to be strongly chaotic if there exists
a closed subset K of I invariant with respect to / such that

(1) the set of periodic points is dense in K.

(2) the periods of periodic points in K form an infinite set, and

(3} f\K is topologically mixing.
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To explain the highly complicated chaoticity of a topologically mixing self-map
we quote a theorem (see Theorem B below) from [9],

Definition 4 A subset Y of a topological space X is said to be everywhere uncountable
if for every non-empty open set U of X we have U n Y is uncountable.

Theorem B [9] Suppose / : X -+ X is continuous, where X is a compact metric
space having infinitely many points. Then / is topotogically mixing if and only if for any
increasing sequence {^} of positive integers and any countable dense subset S of X there
exists everywhere an uncountable subset C of X satisfying the following conditions.

(1) For any i £ S there exists a subsequence {m*} of the sequence {?;} such that
lim fmi (y) = s for every y e C.

i—-oo

(2) For any n > 0, any n distinct points yi,»/2, • • • JM of C and any n points
zi ,x 3 , . . . i n o f X thereexists asubsequence {&<} of thesequence {q;} such that lim fki[yj)

i—H3O

xj for every j = 1,2,... ,n.

In this paper we show the following.

Theorem Suppose / : / —* I is continuous. Then / has a periodic point with odd
period > 1 if and only if / is strongly chaotic.

Therefore, / has a periodic point with period 2" -d, where d > 1 is odd, if f2 is
strongly chaotic.

Corollary 1 Suppose f : I -* I h continuous. Then the following conditions are
equivalent.

(1) / has positive topological entropy.

(2) / 2 is strongly chaotic for some n > 0.

(3) There is an uncountable subset C of J densen in itself such that for every
y £ C the set of limit points of the sequence {/a'(y)} is exactly the closure C of C.

(4) There is a point x £ I such that the set of limit points of the sequence {/* (x)}
contains at least 3 distinct points.

Corollary 2 Suppose / : / — > / is a continuous map with positive topological entropy.
Then for any increasing sequence {?;} of positive integers there exists an uncountable
subset C of / such that for any two different points yt and y2 of C and any periodic point

lim inf

and

where 6 > 0 is a constant.

Especially, there exists an uncountable set C of I such that for any two different
points yi and y2 of C and any periodic point p of / ,

liminf \f*(Vl) - /
2 ' M | = 0, limsup|/2V) - /

\\m*uP\f*i(y1)-f
2'(p)\>6

and

where 6 > 0 ia a constant.

We put the proofs of the results above in Sec. 3.

2. PRELIMINARIES

Let Y - { l ,2 , . . . ,n} with the discrete topology and let Yln = f ^ Y i w'*h t l l e

product topology, where Yf = Y for every i > 0. The topological space Y^n
 ia compact

and metrizable and a metric d on Yin
 ls given by

where i = and y =
.., where

• • • a r e i n shift a n
 1B defined by

For a given n x n matrix A = (a-ij) consisting of 0's and l's let 2n(j4) be the
subsets of all Xix$ ...€ Yln &uth that axlXHl = 1 for every » > 0. It is clear that X)n(^)
is a closed subset of Y2n invariant with respect to a. The map aA = a\arl{A) : Ylnl-A) -»
52n(J^) ' s called a subshift of finite type determined by the matrix A.

Lemma 1 Suppose A is an n x n matrix consisting of 0's and l's. Then the subshift
<T,4 of finite type determined by the matrix A is topologically mixing if and only if there
exists N > 0 such that each coefficient of the matrix Am = A x A x . . . x A is positive for

m times

every m> N.

For proof see [5, pp. 71-72].

Suppose / : / — » / is continuous. Let Ji, J?,.. .Jn be n non—trivial closed
subintervals of I whose interiors are disjoint. We will call an n x n matrix A = (o;3)
consisting of 0's and l's a covering matrix with respect to the intervals Ji,Ji,. • -Jn if
Oij = 1 implies /(J,-) ^ Jj. A matrix A is said to be a covering matrix of / if it is a
covering matrix with respect to some subintervals of / .



Lemma 2 If a continuous map f : 1 -* I has a periodic point with odd period > 1
then there exists an even number n > 0 and a covering n x n matrix A such that

(1) the set of periodic points of oA is dense in ^n[A),

(2) the periods of periodic points of oA form an infinite set, and

(3) OA is topologically mixing.

Proof From Lemma 2.1 in [1, pp. 22-24] it follows that for some even number n, > 0
there exists n non-trivial subintervals I\, I2, • •., In °f / whose interiors are disjoint such
that f[h) D 7iU/2 , /(/,•) D Ii+l for t = 2 ,3 , , . . , n - 1 , and f(In) D It. Therefore, / has a
covering n x n matrix A — (a,,,-), where a,-,- = 1 if and only if (t,j) = (1,1), (t,j) = (t,t-f-l)
for t = 2,3, . . . , n — 1, or (t,j) = (n, 1), We now prove that the matrix A is required.

Suppose Xix2 .. .xm is a finite sequence, where i ; £ {1,2, . . . , n} such that
a«(ij+i = 1 for 1 = l ,2 , . . . ,m— 1 and aXmt:i = 1. We denote ( i I i 2 . . . x m ) ° ° the se-
quence constructed by repeating infinitely the sequence £1:1:2 . . . xmi i.e.,

. x m ) ° ° = xix2-..x

It is easy to see that (x^x2 . . . xm)°° is a periodic point of <?A • We now verify the condition
(l)-(3) of this lemma.

(1) Suppose x = i i i 2 • • • e £n(-A). For any JV > 0

x' = [Xlx2 ...XN[XN + l)(xN + 2) . . . n l 2 . . . (xt - 1))°°

is a periodic point of oA such that d(x, x'} < ^V. Hence, the set of periodic point of <jA is
dense.

(2) For each m > n the periodic point {234 . . . n 1 1 . . . 1 )°" of a A has period
(m-n+i.)timr.a

m. Hence the set of periods of periodic points is infinite.

(3) Let Am = [a\]l)). Then for m > 2n

> < * . • ( • + ! ) - « ( . + i ) ( i + 2 ) • • • • - 1 ( , L - I ) « - o n i - o u • • • • - i n - Q 1 2 • • • • - « ( j - i ) y > 0

By Lemma 1, cA is topologically mixing.

Lemma 3 Suppose f : I —> I is continuous. If /((a, 6]) z> [c,d] for two non-trivial
subintervals [o,4] and [e, d] of 7, then there exists a non-trivial closed interval [a1, b') C [a, b\
such that f{\a',b'}) = \e,d\ and /{(a',b')) = (c,rf). Consequently, /({a',6'}) = {c,rf}.

Proof Since /(|o,6j) D [c,tf] there are two points x,y G [0,6] such that /(re) = a and
f(y) = 6. Without loss of generalities suppose x < y. Let 6' = min{j/' e [a;,I/]|/(if') = <i}
and a' = max{a:' e lx,fr']!/(i') = o}. Then, \a',b'\ is required.

Lemma 4 Suppose / : / - * / is continuous and A = (a -̂) is a covering n x n matrix
with respect to n non-trivial subintervals Ji,J2,.-.,Jn of / whose interiors are disjoint.
Then there exists a correspondence D which, for each point x of 52n(A), determines a
closed Bubinterval D{x) of I satisfying the following conditions

(1) f(D(x)) = D(cA{x)) for every x £ £ J

(2) D is at most two~to-one, and if x, x' £
of D(x) and D(x') are disjoint,

with x j - x' then the interiors

> °) i s countable, where ||jD(as)|[ denotes the(3) the set {x € S n
length of the interval D{x).

(4) If {x*} is a sequence of points of En(j4) such that lim x' — x, then

lim p{D{x*), D{x)) = 0, where p(D(x'}, D(x)) denotes the distance between two intervals

£>(?) and D(x)

(5) f(d(D(x)) = d(f(D{x)) for every x € £„(A) , where d(D(x)) and a(/(Z)(x))
denotes the sets of end points of the intervals D{x) and f(D(x)) respectively.

(6) if x 6 5JB(-A) is a periodic point of a A with period m then each point of
3(D{x)) is a periodic point of / with period > m/2.

Proof For the matrix A, a finite sequence Xix? ...xm, where n G { l ,2 , . . . n} , is
called A-sequence with length m if m = 1 or if m > 1 and «i jX,+1 = 1 for every
« = 1,2 m-l.

For each X-sequence xy with length 1, let J(xL} — JX1. For m > 1 if 2T1I2 • - • xm

is an A-sequence by Lemma 3 we choose, inductively, a non-trivial closed subinterval
J(xi.x-Z...xm) of/ such that ; ( I U J . . . I B ) C J ( i l x a .. .xm~i) , / ( J ( i i i 2 .. .xm)) =

0 0 o

J( i 2X3. . ,xm) and / (J ( i ix 2 . . . xm}) — J (xtx3 ... xm) where J denotes the interior of

an interval J. Consequently, we have f(d(J(xi,X2 ... xm))) = d[J(x2Zs .. .xm)).

We show the following claim first.

Claim If xtx2 . . . xm and z',Xj... x'm are two different A-sequences then the interiors of
. xm) and J ( i i x 2 . . . x'm) are disjoint.

We prove this claim by induction. For m = 1 the claim comes from the assumption
on the intervals J^,J^,...Jn. Suppose for some m > 0 the claim is true. If for two
different ^-sequences i i^a . . . *m+i and x'^x'^ ... x"m+l the intervals J(xix^ ... xm+i) and
J(x[z'2... x'm+i) have a common interior point, then J(zix2 •.. xm) and J{x\x'2 ... x'm)



would have a common interior point, so that Xj = x'- for every j = 1,2,... m by
O 0

inductive assumption. On the other hand, J [xtx3.. . xm+i) = /(J (11X2 • --itn+i) and
O 0

J (x'^x^ . . . x'm+l) = / (J ( I ' IS^ • • • 4 + i ) would also have a common point, so that xm+i =
z'm+1. Hence x ^ a . . . xm+i = x^x, . . . zJn+i. a contradiction. Therefore, the claim works
for m + 1. By induction the claim is proved.

We now define the correspondence D as follows. For each x = Xiia . . . £ £)„(•£),
ii^U . . . Xi is an A-sequence for every i > 0 and we have J ( i i ) 3 J(iia;2) 3 J(ijX2i3) IS
. . . Let !?(*) = n^=1J(xLX2...xi). D{x) is a closed subinterval of I. It is clear that

lemma.

We now show that the correspondence D satisfies the conditions (l)-(6) of this

(1) Suppose i = xix2 . . . is a point of ). T n e n

2 • • • * < ) =

On the other hand if y £ £>((TA(*)) then for each i > 1 there exists y; G J ( x i i 2 • • -X;}
such that /(SK) = y. Let y' be a limit point of the sequence {y<}. It is easy to see that
y' € D{x) and f(y') = y. Hence /(£»(*)) 3 C(cr^(i)).

(2) If x = iL i2 . . . , x' - x\x'2 .. . and x" = x'[x'{ . . . are three distinct points of
S j A ) , then i n , . . . xm,x\x^ ...x'm and x?z3 . . . x"m are distinct for some m large enough,
so that J (x t , x2 . . . *m) n J(z;x2 . . . x'm) n J W E J . . . a^,) is empty by the claim above.
Hence, D(x) - D(x') = D(x") is not true. This proves the first statement of condition

(2)-

If x = i i i 3 •.. and i ' = x\x't... are two points of Y,ni
A) s u c l 1 t n a t ^ ( x ) a n d

D(a^) have a common interior point then J{xix2 ... Xi) and J ( i i , i | , . . . zj) have a common
interior point for every » > 0, so that xLx-i...Xi = x\x^.. .x^. Hence, we have x = i ' .
This proves the second statement of the condition (2).

(3) Since every family of disjoint open subintervals of J is countable, the family

{D(i)|||D(z)|l > 0, x € Y,niA)} a n d t h e s c t (x e E^WIll^WII > °> a r e a l s o c o u n t a b S e

by (2).

(4) Suppose {i*} is a sequence of points of £ n ( A ) such that l̂irâ  i l = x, where

xi = I'jxJj... and x = xxxz.... Recall that lhn \\J{xi.xi. ,.Xi)\\ => ||U(a)H- Given

e > 0, choose N > 0 such that | |J(xix2 ...xjvjf - | |C(i)| | < e. Then, choose M > 0

such that for every » > M we have d(i ' , x) < ^ r , so 4 HV- Hence,

D(xi) and D(x) are contained in J{xix-i ... XN) for every i > W. Then we have p[D{xi),
D[x))< | | J ( I 1 I S . . . I J V ) | | - | | U ( I ) 1 | < E for every i > N and lira p(D(z'),I>(z)) = 0.

(5) Suppose i = 11I2., . is a point of 53n(-^)- ^ t n e f-image of an end point
of D(x) is an interior point of f{D(x))) = D{aA(x))}t then for i large enough there is an
end point of J(xiXz... ij) whose /-image is an interior point of J(x2X3 ... i , ) . This is a
contradiction, so f(d{D(x)) C d(f{D{x}). On the other hand, an end point of D(dA(x})
is a limit point of a sequence of end points of J(i2K3 • - • Xi), so that it is an /-image of a
limit point, which is an end point of D(x], of a sequence of end points of J ( i L * 2 • • •£;)•
Hence d(D{dA(x))) = d(f(D(x))) C f[dD(x))).

(6) Suppose x £ 1CJA) ls a periodic point of aA with period m. By (l) we
have fm(D(x)) = D(crA

t(x)) = Z5(a:). Hence, if D(x) is a singleton, then it is a periodic
point with period, say d. If d < m/2, then £>(x) = /d(I>(x)) = /2<i(£>(x)), so that
D(x) = U(a^(i)) = D{<T^{X)), where x,a^(i) and <7^d(i) are distinct, a contradiction
with (2). Hence, d > m/2. Suppose D{x) = [y,j/'], where y < y'. It follows from
(5) and fm(D{x)) = D[x) that either /m(y) = y and /m(y ') = y' or / m = y' and
fm(y') = y, so that in both cases we have f2m{y) = y and /2rn(y') = y'. Hence y
and y' are periodic points of / with periods, say d and d' respectively. We now prove
d,d' > m/2. If not, suppose without loss of generality that d < m/2. In this case, the
intervals D(x)Jd(D[x)) = D{ad

A{x)) and f2d{D{x)} = D{aA
d(x)), which are non-trivial

by (5), have a common end point y. Hence, there are two among the three D(x), D{aA
d{x))

and D{aA
d(x)) which have a common interior point, a contradiction with (2).

Lemma 4 is proved.

3. PROOF OF RESULTS

We need one more Lemma. (For proof see [3j]

Lemma 5 Suppose / : J -+ I is continuous. Then / has a periodic point with odd
period > 1 if and only if there is a point x €. I and an odd number n > 1 such that either
fn(x) < x < f{x) or f[x) < x < fn(x).

Proof of Theorem

Necessity If / has a periodic point with odd period > 1, then by Lemma 2 for some
n > 0 / has a covering nx n matrix A = (a^) such that the subshift aA : 52n(-^) -+ E r J ^ )
of finite type satisfying the conditions (l), {2) and (3) in Lemma 2, and by Lemma 4 there
exists a correspondence D which, for each x of J n ( A ) , determines a closed subinterval
D(x) of / , satisfying the conditions (l)-(6) in Lemma 4.

Let F = {x e > 0} and Q = '

8
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4 (3) the set P is countable, so that the set U*JZ X°A (P) is also countable, because a A is
at most an n-to-one map. Hence, Q is the complement of a countable subset of 52n(-A).
It is easy to see that Q is invariant with Tespect to a A. We have

Claim 1 OA\Q is topologically mixing.

To show this claim let V and V be two non-empty sets open in Q, and let U
and V be two sets open in £ n ( A ) such that U n Q = U and V n Q - V. Since a A is
topologically mixing by Lemma 1 (3), there is N > 0 such that /*(I7) n V •£ $ for every
t > JV. It follows from Theorem B that every non-empty open set of ffB(A) ' s uncountable,
so is the non-empty open set /'*{&) r\V. Hence, /~*(U) n V = f-{(U) n V" n Q ^ 0,
because Q is the complement of a countable subset.

Let L = UX£QD{X). Recall that for each z £ Q the interval D{x) is a singleton,
so that D can be regarded as a map from Q to L. Then, it follows from Lemma 4 the
following

Claim 2 (1) the map D : Q —» L is continuous and at most two-to-one.

(2) The subset L of J is invariant with respect to / , and

(3) Do{oA\Q)

If U and V are two non-empty sets open in i , then by Claim 2(3) for each i > 0

(<M|Q)-'(ir ^i /)) n D~l(V) = ZJ""1((/|L)"<(^) n V)

I)- !(V) / ^ implies (/|L)~*(f7) n y ^ . trj|Q is topological

we have

Hence ( ^ | Q ) - i ( B
mixing, so is f\L.

To complete the proof of necessity part it is sufficient to verify that the closed
subset K = L of / satisfies the conditions (1), (2) and (3) of Definition 3.

Obviously, K is invariant with respect to / . Since every non-empty set open in
K contains a non-empty set open in L and f\L is topologically mixing it follows that f\K
is topologically mixing.

We now claim that dD{x) n K ± 0 for each x G £„( / ! )• The reason is that if
xeQ then D(x) e L C K and if z£<?, then by Lemma 4(4) for a sequence {i*} of points
of Q such that lim xi = x the sequence {D{x)} has at least one limit point in d(D(z))nK.

By Lemma 4 (6) if a; is a periodic point of aA with period m then there exists a
periodic point of / in d{D(x)) n K with period > =*. Consequently, by Lemma 2 (2) the
periods of periodic points in K form a.n infinite set.

Suppose y is a point of K. Given e > 0, there is y1 € L such that \y - y'\ < e/2.
Let I ' E Q such that JD(S') = y'. By Lemma 2(1) and Lemma 4 (l and 3} we can choose a
periodic point p of oA such that \t - y\ < E/2 for each t 6 D(p). There is a periodic point,
say q, of / in £>(p) n if. Then, we have \q — y\ < e. This shows that the set of periodic
points of f\K is dense in K.

Sufficiency Suppose / : / ~+ I is strongly chaotic and if C J is a closed subset of /,
invariant with respect to / , satisfying the conditions (l), (2) and (3) in Definition 3. By
Definition 3 (2) if has infinitely many points, and by Definition 3(3) / | i f is topologically
mixing. Let S be a countable subset dense in K containing the maximum 6 and the
minimum b' of K and let {g;} be the sequence such that ft = 2t — 1 for every t > 0.
By Theorem B there is a point y of K with b' < y < h such that lim fk'(y) = b and

lim fki(y) = b' for some two subsequences {fcj} and {fc,'} of the sequence {^}. Since fc;
and k[ are odd numbers it follows from Lemma 5 that / has a periodic point with odd
period > 1 in any case either y < f(y) or f[y) < y.

Proof of Corollary 1 (1) =S> (2). By the above theorem and a theorem of Misiurewicz
mentioned in Sec. 1 (see [6])

(2) =>• (3) By Theorem B

(3) =» (4) Obviously

(4) =*• (1) Suppose s/i < i/2 < i/3 are three limit points of the sequence {/2"(i)}
for some x e I. Then there are iQ < ii < t2 such that z2 < zQ < zu where 2y = /2 ' J (x),
3 = 0,1,2. Let g = /2 '° and u = z0. Then, we have z2 = fif*1^) < *o < Zi = 2*'(20),
where ti — 2'1~1" — 1 and <2 = 2' s~'0 — 1 are odd. By Lemma 5 g has a periodic point
with odd period > 1, so that / has a periodic point with period which is not a power of 2.
Hence the topological entropy of / is positive (see [6]).

Proof of Corollary 1 Suppose / has a periodic point with period 2" • d, where d is
odd > 1, Suppose {qi} is an increasing sequence of positive integers. For each » let
q< = pj2" + rj, where 0 < i\ < 2™. Since rja take finitely many values, the sequence {qi}
has a subsequence for which each element takes a constant r; = r. Hence, without loss
of generality, we suppose that ?i = p;2" + r for each i > 0. (If not, substitute a suitable
subsequence for the original sequence.)

In the case r = 0 this Corollary is an immediate consequence of the Theorem.
Hence for the sequence {(pt + 1)2"} there is an uncountable subset C satisfying this
Corollary. If r ^ 0, then it is easy to see that the subset /2"~ r(C) is required.
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