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ABSTRACT

Li and Yorke originally introduced the notion of chaos for continuous self-map
of the interval I = [0,1]. In the present paper we show that an interval self-map with
positive topological entropy has a chaoticity more complicated than the chaoticity in the
sense of Li and Yorke. The main result is that if f : I — T is continuous and has a periodic
point with odd period > 1 then there exists a closed subset K of I invariant with respect
to f such that the periodic points are dense in K, the periods of periodic points in K form
an infinite set and f|K is topologically mixing.
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1. INTRODUCTION AND STATEMENT OF RESULTS

. Li and Yorke [4] originally introduced the notion of chaos for continuous self-
maps of the interval I = [0, 1], and show that if a continucus map f : I — I has a periodic
point with period 3 then the following condition (#) is satisfied.

(#) There exists an uncountable subset C of I such that for any two different
points y; and yq of C

limiaf |#*(v1) ~ f*(va)| = 0 and limsup |F(y1) ~ f(yz)| > 0
- i—roa
i.e., there exist two increasing sequences {my} and {k;} of positive integers such that

Jim f7(y2) = lim f™(y2) and lim f5(y) # lim £%(y2)

Definition 1 A continuous map f: I — I is said to be chaotic in the sense of Li and
Yorke if the above condition () is satisfied.

A theorem of Sarkovski [7] (see also 1|} guarantees that f™ has a periodic point
with period 3 for some m > 0 if the continucus map f : I — I has positive topological
entropy (equivalently, if f has a periodic point with period which is rot a power of 2 (see
16])). Therefore, the following theorem A works,

Theorem A [4] Every continuous self-map of the interval I with positive topological
entropy is chaotic in the sense of Li and Yorke.

Some other conditions characterizing chaos of interval self-maps are given in [2]
and (8].

The main aim of the present paper is to show that a continuous self-map of the
interval I with positive entropy has a chaoticity more complicated than the chaoticity in
the sense of Li and Yorke.

Definition 2 Suppose f : X — X is continuous, where X is a topological space f is
said to be topologically mixing if for any two non-empty open sets U and V' of X there
exists N > 0 such that f™"(U)nV # @ for every n > N.

Definition 3 A continuous map f : [ — I is said to be strongly chaotic if there exists
a closed subset K of I invariant with respect to f such that

{1) the set of periodic points is dense in K.
(2) the periods of periodic points in K form an infinite set, and

(3} fIK is topologically mixing.



To explain the highly complicated chaoticity of a topologically mixing self-map
we quote a thecrem (see Theorem B below) from [9].

Definition 4 A subset Y of a topological space X is said to be everywhere uncountahble
if for every non—empty open set I/ of X we have U NY is uncountable.

Theorem B [9] Suppose f : X — X is continuous, where X is a compact metric
space having infinitely many points. Then f is topologically mixing if and only if for any
increasing sequence {g:} of positive integers and any countable dense subset S of X there
exists everywhere an uncountable subset C of X satisfying the following conditions.

(1) For any s € 5 there exists a subsequence {m;} of the sequence {¢;} such that
lim f™i(y) =sforeveryye C.
L ad ")

(2) For any n >> 0, any n distinct points y1,y2,...yn of C and any n points

Ti,%3,...T, of X there exists a subsequence {k;} of the sequence {g;} such that lim f*(y;) -
1= o0

z; for every j = 1,2,...,n.
In this paper we show the following.

Theorem Suppose f : I —+ I is continuous. Then f has a periodic point with odd
period > 1 if and only if f is strongly chaotic.

Therefore, f has a periodic point with period 27 - d, where d > 1 is odd, if f2" is
strongly chaotic,

Corollary 1 Suppose f : I — I is continuows. Then the following conditions are
equivalent.

(1) f has positive topologica! entropy.
{2) F2" ia strongly chaotic for some n > 0.

(3) There is an uncountable subset C' of I' densen in itself such that for every
y € C the set of limit points of the sequence {f* (y)} is exactly the closure C of C.

(4) There is a point z € I such that the set of limit points of the sequence {F% (=)
contains at least 3 distinct points.

Corollary 2 Suppose f : I ~ I is a continuous map with positive topological entropy.
Then for any increasing sequence {g;} of positive integers there exists an uncountable
subset C of J such that for any two different points y; and y; of C and any periodic point
pof f

Jim inf |£%(y;) - £*{ga)] = O, liminf |£*(0n) = [%(ua)| > 6,

and
limsup | /%(y1) - f*(p)] > 6

3+

where § > 0 is a constant.

Especially, there exists an uncountable set C of I such that for any two different
points y; and yz of € and any periodic point p of f,

liminf |f* (w1) - £ (vs) = 0, limsup|7* (g1} ~ £* (va)| > 6

and . ;
limsup /% (y1) - /¥ (p)| > 6

-~+00

where 6 > 0 i3 a constant.

We put the proofs of the results above in Sec. 3.

2. PRELIMINARIES

Let Y = {1,2,...,n} with the discrete topology and let 3, = ITI2,Y; with the

product topology, where ¥; = Y for every i > 0. The topological space }_, ia compact
and metrizable and a metric d on }__ is given by

dz,y) =l - wil/2

where £ = z;23... and ¥y = yyya... are in 3, . The shift ¢ : 3° — 3, is defined by

n
a(z1zz...) = za73..., where #122... €3, .

For a given n x n matrix A = (a;;) consisting of 0's and 1's let }_ (4] be the
subsets of all z,23... € }_ such that a,,,,,, = 1 for every i > 0. It is clear that 3_ (A}
is a closed subset of ) invariant with respect to o. The map 04 = ofo,(A4) : }, (4] —
Y o{A) is called a subshift of finite type determined by the matrix A.

Lemma 1 Suppose A is an r X n matrix consisting of 0’s and 1's. Then the subshift
o4 of finite type determined by the matrix A is topologically mixing if and only if there
exists N > 0 such that each coefficient of the matrix A™ = A x A x ... X A is positive for
every m > N.

For proof see {5, pp. 71-72].

Suppose [ : I — I is continuous. Let Jy,J2,...J,, be n non-trivial closed
subintervals of I whose interiors are disjoint. We will call an n x n matrix A = (a;;)
consisting of 0's and 1's a covering matrix with respect to the intervals J,,Ja,...J, if
a;; = 1 implies f(J;}) D J;. A matrix A is said to be a covering matrix of f if it is a
covering matrix with respect to some subintervals of I.
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Lemnma 2 If a continuous map f : I — I has a periodic point with odd period > 1
then there exists an even number n > 0 and a covering n x n matrix A such that

(1) the set of periodic points of ¢4 is dense in 3~ [A),
{2) the periods of periodic points of 94 form an infinite set, and
(3) 0. is topologically mixing.

Proof From Lemma 2.1 in [I, pp. 22-24] it follows that for some even number n > 0
there exists n non-trivial subintervals I, I3,..., I, of T whose interiors are disjoint such
that f(I,) D L, f(I) D Ly fori =2,3,...,n~1, and f(1,) O I1. Therefore, f has a
covering n X n matrix A = (a;;), where a;; = 1ifand only if (¢,7) = (1,1}, {t,5) = (5,7 +1}
for i =2,3,...,n~1, or (.7) = (n,1). We now prove that the matrix 4 is required.

Suppose z;T,...%,, is a Bnite sequence, where z; € {1,2,...,n} such that
Grzipy = 1for i = 1,2,...,m—1and a,_,, = 1. We denote (z,22...2,)> the se-
quence constructed by repeating infinitely the sequence z,%2...3,4, Le.,

(zlxg - .Im,)m = IL1Tg. Ty T1T0 . Ty T1T2- .- Tq - - -
e r— —————— ettt
It is easy to see that (z,72...%,,}* is a periodic point of ¢4. We now verify the condition
(1)-(3) of this lemma.
{1) Suppose x =z,25...€ 3" _{A). Forany N >0

2= (g zn(an + Dz +2) .o onl2. (2 - 1))®
is & periodic point of o4 such that d{z,2'} < . Hence, the set of periodic point of o4 is
dense.

(2) For each m > n the periodic point {234...n  11...1 )™ of o4 has period

{m-n+l)timea
m. Hence the set of periods of periodic points is infinite.

(3) Let A™ = [a‘!;-")). Then for m > 2n

olm) g o
if sky P @kikg T T Bk
kikykmoa

2 (i4+1) G 0(E42) - T O (= t)re " Onl QL1 e B11 B2 et G 0
By Letnma 1, 04 is topologically mixing.

Lemma 3 Suppose f : I — I is continuous. If f(fa,b]) D ¢, d] for two non-trivial
subintervals ja,b] and |¢, d] of I, then there exists a non-trivial closed interval [a’,'] C [a, b]
such that f(ja,b']) = [¢,d] and f{{a',b')) = (c,d}. Consequently, f({a’,4'}) = {¢,d}.
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Proof  Since f{|a,b)) D |¢,d] there are two points z,y € [a,b] such that f(z) = a and
F(y) = b. Without loas of generalities suppose z < y. Let ¥ = min{y’ € [z,y]|f(y') = d}
and o' = max{z’ € |z, ¥){f(=') = a}. Then, [o',}'] in required.

Lemma 4 Suppose f: I — I is continuous and A = (a;;} is 2 covering n x n matrix
with respect to » non-trivial subintervals Jy, J3,...,J, of I whose interiors are disjoint.
Then there exists a correspondence D which, for each point z of 3 (A), determines a
closed subinterval D(z) of I satisfying the following conditions

(1) f(D(z)) = D(o4(z)) for every z € 3, (4)

(2) D is at most two-to—one, and if z,z' € 3~_(A) with z # z’ then the interiors
of D{z) and D(z’) are disjoint,

(3) the set {z € 3. _(A}|{|D{=){| > 0} is countable, where [D{z}| denotes the
length of the interval D({z).

{4) If {z'} is a sequence of points of T,(A) such that lim z* = =, then
1= 00

lirgo p(D(z*), D(z}} = 0, where p{D(z'}, D{z)) denotes the distance between two intervals
D(2*) and D(z)

(5) f(8(D(x)) = 2(f(D{=z)) for every z € }__(A), where d(D(z)) and 8(f{D(x))
denotes the sets of end points of the intervals D(z) and f(D(z)) respectively.

(6) if z € ¥, (4) is a periodic point of ¢4 with period m then each point of
d(D(x)) ia a periodic point of f with period > m/2.

Proof For the matrix A, a finite sequence x,Ta... T, where z; € {1,2,...n}, is
called A-sequence with length m if m =1 or if m > 1 and a5, = 1 for every
i=12,...,m-1.

For each A-sequence £, with length I, let J{z,) = J,,. Form > 1if z125 ... 2,
is an A-sequence by Lemma 3 we choose, inductively, a non-trivial closed subinterval
J(z1zz...%m) of I such that J(z173...2m} C J(z1Z3.. . Tmo1), f(J{z122...20)) =
J(z2Z3...%,,) and f(g (zT1Z2... 25 )) = 3 (z2Z3...2%m) where 3 denotes the interior of
an interval J. Consequently, we have f(3(J(z1,Z2...2,,))) = 8{J(z2z3 ... Tm)).

We show the following claim first.

Claim If zyz2...Tm and 225 ...z}, are two different A-sequences then the interiors of
J(z1z3...Tp) and J(z|zh ... 2z},) are disjoint.

We prove this claim by induction. For m = 1 the claim comes from the assumption
on the intervals Jy,Ja,...J,. Suppose for some m > 0 the claim is true. If for two
different A-sequences z,Z3...Zm+1 and zizh ...zl | the intervals J(zizs... 2pm4q) and
J{z{z5.. .2}, ,) have a common interior point, then J(zizz...2m) and J{zjz} .. =z},)
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would have a common interior point, so that z; = z; for every i=12...mby

Q Q
inductive assumption. On the other hand, J (z223...Zm41} = f(J {z132.. . Trmy1) and
Q (s)
T(zhzh ... 2 ) = J(J (g)xh ... zh, 1) would also have & common point, so that 24,4 =
Zh4q- Hence z1Ta... Tiny1 = zizh. ..zl .1, a contradiction. Therefore, the claim works
for m + 1. By induction the claim is proved.

We now define the correspondence I as follows. For each = = #,22... € 3_,.(4),
Zi%g...%; is an A-sequence for every i > 0 and we have J(z1) D J{zi22) 2 J(z12273) O
... Let D{z) = n®,J(z1z2...3:). D{z) is a closed subinterval of 1. It is clear that
Jim | (2122 2)l = | D(a}-

We now show that the correspondence D satisfies the conditions (1)-(6} of this

lemma.
(1) Suppose z = z,z5... is a point of 3 _(A4}. Then

F(D(=)) = F(NZ I (2122 .. 24))
= f(ﬂ?;g.](l'lrg cozi))
< ﬂ?;,f(.](zl:ng ...I,'))
= ﬁ?_‘;zJ(IQIQ PR :L‘;) = D(O’A(I))
On the other hand if y &€ D{ca(x)) then for each { > 1 there exists i € J{z1zg... 23}
such that f(y) = y- Let 3 be a limit point of the sequence {y}. It is easy to see that
y' € D(z) and f(y') = y. Hence f(D(z)) > D(oalz)).

(2) Mz = z,25...,2' = zixh... and =" = z{zf... are three distinct points of
T,.(A4), then 2,25. .. T,z Th ... 2}, and £¥z; ... 27, are distinct for some m large enough,
80 that J(zy,%g...2.) N J{gizh...2},) N J(2{=f ... 2%} is empty by the claim above.
Hence, D{z} = D{z') = D(z") is not true. This proves the first statement of condition
(2).

¥z =1213,... and z' = z{a}... are two points of 3_,(A) such that D(zx) and
D(z') have a common interior point then J(z,2;...2;) and J{x}, 25 ... z;) have 2 common
interior point for every ¢ > 0, so that zjza.. .z = zixh...z}. Hence, we have z = z',
This proves the second statement of the condition (2).

(3) Since every family of disjoint open subintervals of I is countable, the family
(D(DIP) > 0, =€ 3, (A)} and the set {z € L (Al D(=}| > 0} are also countable
by (2).

(4) Suppose {z'} is a sequence of points of },,{4) such that ‘_lileu z* = z, where
2 = zizh...and z = 71zz.... Recall that lim ||[J(ziz2...z:)|| = [D(=)}|. Given

— a0

k]

¢ > 0, choose N > 0 such that [|J(z122...zx)]| - | D(2)]| < £. Then, choose M > 0
such that for every i > M we have d(z', 1) < 3k, s0 Tizh...Th = Ti22...2n. Hence,
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D(z') and D(z) are contained in J(z1z3...zn) for every i > N. Then we have p(D(z"),
D{z)) € |[J{z1z2...zx)]| — | D(2)]| < € for every s > N and lim p(D(z'), D{z)) = 0.
=00

{5) Suppose z = z,z3... is & point of 3., {A). If the fimage of an end point
of D(x) is an interior point of f{D{z)}} = IXoa(z)}), then for i large enough there is an
end point of J{z;z3...7;} whose f~image is an interior point of J{z2%s...z;). Thisis a
contradiction, so f(0(D(z)) C 3{f(D{z}). On the other hand, an end point of D{24(z))
ia a litnit point of a sequence of end points of J{z2z3...x:), so that it is an f-image of a
limit point, which is an end point of D(z), of a sequence of end points of J{z z2...z,).

Hence 3(D(84(2))) = 2(f(D{x)) € F(2D(x))).

{6) Suppose z € ¥, (A) is a periodic point of 04 with pericd m. By (1) we
have f™(D(z)) = D(oT{z)) = D(z). Hence, if I}(z) is a singleton, then it is a periodic
point with period, say d. If d < m/2, then D{z) = f4D(z}} = [2¢(D(z)), so that
D(z) = D(od(z}) = D(c%¥(z)), where z,04{z) and ¢3%(z} are distinct, a contradiction
with (2). Hence, d > m/2. Suppose D(z) = [y,y'], where y < y’. It follows from
{(5) and f™(D(z)) = D(z) that either f™(y}) = y and F™(y') = ¢y or f™ = y' and
f™(¥) = y, so that in both cases we have f>"{y) = y and f>™(y') = y'. Hence y
and y' are periodic points of f with periods, say d and d4' respectively. We now prove
d,d’ > mf2. If not, suppose without loss of generality that d < m/2. In this case, the
intervals D(z), f*(D(z)) = D{od(z)) and f24(D(z)) = D{oZ¥(x)), which are non-trivial
by (5), have a common end point y. Hence, there are two among the three D(z), D(¢3%(z))
and D(o2%(z)} which have a common interior point, a contradiction with (2).

Lemma 4 is proved.

3. PROOF OF RESULTS

We need one more Lemma. (For proof see {31}

Lemma & Suppose f : ] — [ is continuous. Then f has a periodic point with odd
period > 1 if and only if there is a point z € I and an odd number n > 1 such that either

My sz < flz) or f(z) <z < f{z).
Proof of Theorem

Necessity If f has a periodic point with odd peried > 1, then by Lemma 2 for some
n > 0 f has a covering n X n matrix A = (a;;) such that the subshift g4 : 37 (4) — 3. (4)
of finite type satisfying the conditions (1), {2) and (3) in Lemma 2, and by Lemma 4 there
exists a correspondence D which, for each z of 3, (A), determines a closed subinterval
D(z) of I, satisfying the conditions (1)-{6) in Lemma 4.

Let P = {z € 5, (A)ID(=)] > 0} and Q = £,,(4) ~ U2 0% (P). By Lemuma
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4 (3) the set P is countable, so that the set U’_.";"'j'mz:rfq (P] is also countable, because o4 is

at most an n-to—one map. Hence, @ is the complement of a countable subset of 3 {A).
It is essy to see that Q is invariant with respect to 0 4. We have

Clalm 1 04]Q is topologically mixing.

To show this claim let I/ and V be two non—empty sets open in @, and let i
and ¥ be two sets open in 3..{A) such that TNQ=UandVNQ=V. Since 04 is
topologically mixing by Lemma 2 (3), there is N > 0 such that Hn V # ¢ for every
i > N. It follows from Theorem B that every non—empty open set of ¢, (A) is uncountable,
50 is the non—empty open set f~ (/) nV. Hence, fH{U) NV = f[({TYNV NQ #£ 0,
because Q is the complement of a countable subset. -

Let L = U,eqD(z). Recall that for each z € Q the interval D{z) is a singleton,
so that D can be regarded as a map from Q to L. Then, it follows from Lemma 4 the
following

Claim 23 (1) the map I?: @ — L is continuous and at most two-to—one.
{2} The subset L of I is invariant with respect to f, and

(8) Do (041Q) = (£1L) = D.

If 7 and V are two non-empty sets open in L, then by Claim 2(3) for each 7 > 0
we have

(eA1Q) (DY) N DY)y = DTH{SIL)HUYN V)

Hence (o4|@) (DY) N D~ (V) # ¢ implies (F|L)"*{U) NV # ¢. ¢4lQ is topological
mixing, 8o is f|L.

To complete the proof of necessity part it is sufficient to verify that the closed
subset K = L of I satisfies the conditions (1), (2} and (3) of Definition 3.

Obviously, K is invariant with respect to f. Since every non—empty set open in
K contains a non—empty set open in L and f|L is topologically mixing it follows that fiK
is topologically mixing.

We now claim that #D{z) N K # B for each = € 3_,{4). The reason is that if
z & @ then D(z) € L C K and if €@, then by Lemma 4(4) for a sequence {z'} of points
of @ such that lim z* = z the sequence {D{z)} has at least one limit point in 3(D{z))nK.

ol

By Lemma 4 (6) if z is a periodic point of ¢4 with period m then there exists a
periodic point of [ in 3(D(z)} N K with period > 2. Consequently, by Lemma 2 (2) the
periods of periodic points in K form an infinite set.
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Suppose y is a point of K. Given € > 0, there is y' € L such that |y —y'| <e/2.
Let 2 € @ such that D{z') = . By Lemma 2(1) and Lemma 4 (1 and 3} we can choose a
periodic point p of o4 such that |t — y| < ef2 for each t € D{p). There is a periodic point,
say g, of f in D(p} N K. Then, we have lg — y| < €. This shows that the set of periodic
points of f|K is dense in K.

Sufficiency Suppose f: I — I is strongly chaotic and K C I is a closed subset of I,
invariant with respect to f, satisfying the conditions (1), (2) and (3) in Definition 3. By
Definition 3 (2) K has infinitely many points, and by Definition 3(3) f|K is topologically
mixing. Let § be a countable subeet dense in K containing the maximum b and the
minimum ¥ of K and let {g;} be the sequence such that q; =~ 2¢ — 1 for every i > 0.
By Theorem B there is a point y of K with ¥ < y < b such that ‘!_1.1’130 SR {y) = b and

lim f*i(y) = ¥ for some two subsequences {k;} and {k!} of the sequence {¢;}. Since k;
1+ 00

and k{ are odd numbers it follows from Lemma 5 that f has a periodic peoint with odd
period > 1 in any case either y < f{y) or fly) < w.

Proof of Corollary 1 (1} = (2). By the above theorem and a theorem of Migiurewicz
mentioned in Sec. 1 (see [6])

(2) = (3) By Theorem B
{3} = (4) Obviously

(4) = (1) Suppose y; < ya < ya are three limit points of the sequence {f%'(x}}
for some z € I. Then there are i < f; < ta such that z; < 29 < 21, where z; = f2"(z),
j =0,1,2. Let ¢ = f2° and u = 2. Then, we have zp = g% {z0) < 2 < z; = 29 (=),
where £; = 217" — 1 and #; = 2"+~ - 1 are odd. By Lemma 5 g has a periodic point
with odd period > 1, so that f has a periodic peint with period which is not a power of 2.
Hence the topological entropy of f is positive (see [6]).

Proof of Corollary 2 Suppose [ has a periodi¢ point with period 2" - d, where d is
odd > 1, SBuppose {¢;} is an increasing sequence of positive integers. For each i let
g; = p;2™ + r;, where 0 < r; < 2™, Since r5 take finitely many values, the sequence {g:}
has a subsequence for which each element takes a constant r; = r. Hence, without loss
of generality, we suppose that ¢; = p;2” + r for each ¢ > 0. (If not, substitute a suitable
subsequence for the original sequence.)

In the case r = O this Corollary is an immediate consequence of the Theorem.
Hernce for the sequence {(p; + 1)2"} there is an uncountable subset C satisfying this
Corollary. If r # 0, then it is easy 1o see that the subset f2"~7(C) is required.
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