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ABSTRACT

For a large class of effectively closed surfaces, it is shown that the only divergences in
string scattering amplitudes at each order in perturbation theory arc those associated with the coinci-
dence of vertex operators and the boundary of moduli space. This class includes all closed surfaces
of fi nite genus, and infinite-genus surfaces which can be uniformizcd by a group of Schottky type.
While the computation is done explicitly for bosonic strings in their ground states, it can also be ex-
tended to excited states and to superstrings. The properties of these amplitudes lead to a definition
of the domain of perturbation theory as the set of effectively closed surfaces. The implications of
the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed.
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String scattering amplitudes can be calculated by summing over all possible histories
between initial and final states, with the world sheets swept out by the strings being R»e-
mann surfaces. There has been considerable interest in the properties of these surfaces that
are needed in the scattering amplitudes, because they are directly related to the duality
and the ultraviolet finiteness of string theory. Divergences do occur in the amplitudes,
of course, but their sources can also be understood within the context of Riemann sur-
face theory. First, there are physical singularities associated with coincidence of vertex
operators on the world sheet. Second, there are infrared divergences for bosonic strings
when taehyon and massless dilaton states propagate in long thin tubes, which arise from
pinching a surface at or between the handles, a process that corresponds to approaching
the boundary of moduli space. Recently, another potential divergence in string perturba-
tion theory has been revealed by introducing a genus-independent cut-off in moduli space.
Gross and Periwal ' find that even with this cut-off the series may stilt diverge, as the gth

order contribution to the boson ic string partition function grows as ceg\

Since the basis of string theory is the perturbative expansion of the S-matrix, infinities
are particularly important for the superstring models. In these models, the taehyon and
infrared divergences can be eliminated by a GSO projection, so that superstring amplitudes
are actually finite at each order in perturbation theory. It is possible that a divergence of
the type found by Gross and Periwal also occurs for superstrings, but the explicit compu-
tation, which would be of considerable interest, has yet to be done. Moreover, even though
it is widely believed that string theory requires a more complete formulation including non-
perturbative effects and a mechanism for selecting the correct ground state, this would not
ultimately diminish the significance of divergences in superstring amplitudes. A realistic
theory containing the standard model in the low-energy limit should allow for consistent
perturbative calculations, at least in the weak-coupling region. It would therefore be es-
sential to identify all sources of divergences in such a theory, and the aim of this paper is to
investigate a new class of string scattering amplitudes, which conceivably could introduce
a new set of infinities, but actually leads to the same types of divergences found in other
amplitudes.

The on-shell amplitudes derived from the Potyakov path integral involve an integration
of the positions of the vertex operators on world sheets of arbitrary topology. While the
sum over histories usually consists of evaluating diagrams with only a finite number of
handles, it could also be extended to surfaces of infinite genus, as Friedan and Shenker 3

proposed, for example, when they formulated string theory in terms of the geometry of
a universal moduli space. Indeed, it will be shown in this paper that there are several
reasons for including a certain class of infinite- genus surfaces in the sum over histories.
These are the surfaces that can be regarded as effectively closed and thus most resemble
the closed finite-genus surfaces occurring at finite orders in perturbation theory. Effectively
closed surfaces can be precisely characterized by their (ideal) boundaries, which must have
Hausdorff dimension less than one, and they have several distinctive properties that will be
investigated here. From an analysis of scattering amplitudes and physical considerations,
one is naturally led to the following conclusion: string perturbation theory gives rise to
a well-defined domain in the space of Riemann surfaces, and this domain is the set of



effectively closed surfaces.

Let us begin by recalling that the scattering amplitude for N closed bosonk string*
at finite order g in perturbation theory is given by an integral over a compact Riemann
surface of genus g

(1)/n
followed by an integral over moduli space M9

 9. When the strings are in their tachyonic
ground states, the vertex operators are Vi(«j) = ttpi'x^**\p1 = —8, and after normal
ordering, the integral (1) becomes

(2)

where

with G'vrn{zi,Zj) being the Green function for the scalar Laplacian, symmetrized with
respect to Zi,Zj

where d{zi,z[) is the distance between n and *,-. The subtraction in (4) is clearly deter-
mined by the metric in the neighborhood of z,, and under local rescalings of the metric,
the changes in the exponential terms in (2) are cancelled by those in the area elements,
so that the entire expression is confonnally invariant *. On any closed surface, it follows
from Stokes' theorem that the Green function for the scalar Laplacian does not exist when
there is a single delta function source. A solution can be obtained, however, when a second
source of the opposite strength is placed on the surface. Therefore, a Green function can
be defined, but it will depend on the position of three, and even four, points, if the value
at P is measured with respect to the value at some fixed point Q. Denoting the Green
function by GQS{P,R), one easily sees that

GQS.{PtR) = GQS{P,R) + GQS,(P,S)

by adding a negative charge at S and a positive charge at S' to the surface in Fig.l.
Equation (5) gives the dependence of th« symmetrised Green function on the position of the
positive charge. Upon substituting GQS{P,R) in (3), on« finds that G"*"* Is Independent
of S. Similarly, it is independent of Q, which is even more obvious, since the inclusion of
Q in the Green function is convenient but not necessary. As G*"1* depends only on P,R,
the integral (2) is well-defined.

It might appear that a single source would suffice on open surfaces. However, non-
existence of the Green function with a single source defines a class of manifolds customarily

denoted as Oa *, which includes not only all closed finite-genus surfaces, but also many
surfaces of infinite genus. They correspond precisely to the effectively closed manifolds with
boundaries of zero linear measure, which can be best characterized by the uniformization
theorem. Any surface of genus g > 2 has the unit disk U as a simply-connected covering
and is homeomorphic to [U-{limit points of G}|/G, where G is the uniformizing Fuchsian
group. If G is a Fuchsian group of the first kind, the fundamental domain has no border
arc on the unit circle, and the ideal boundary, which is the complement of the set of limit
points on the circle, factored by G, has zero linear measure.

Thus, for surfaces of type Oa, it is necessary to add a second source of opposite
strength to obtain a Green function. By a well-known theorem on Riemann surfaces *,
there always exists a function with the correct logarithmic behavior at the singularities
which is harmonic and square-integrable outside a neighborhood of these singularities. An
explicit formula for the Green function on compact surfaces can be given in terms of prime
forms. Alternatively, one can use the representation of the surface as D/F, where D is a
domain in the extended complex plane and F is a discontinuous subgroup of SL(2,C) leaving
D invariant T, and then apply the method of images. In addition to the uniformization by
Fuchsian groups, any closed surface of genus g can be uniformized by a Schottky group,
which is the free product of g infinite cyclic groups generated by linear transformations
TU...,TV. Let TKz ~ °;*ff i ,n = 1 g, and define the isometric circle of Tn to be
/ r . = {*€ C U coj \fnx + Sn\ = 1} '. The transformation T» maps the outside of 7T, to the
inside of IT~i and joins the two isometric circles to create a handle, provided the circles
{(Ir . , /r - i )* n = !>—.?} m disjoint. Since F maps any point outside the 2g circles to
points inside the circles, the exterior of the circles is taken to be the fundamental region of
r and is homeomorphic to the Riemann surface. The sources at R,S lie in the fundamental
region and their images under F are inside the circles. The Green function should be
invariant under F and it straightforward to show that *

GOs{P,R)

, a
- vnf>s)} (6)

where the V{ are arbitrary products of the generators Ti,..., Tt, with i labelling the elements
of I\ ( l n , (3n are the two fixed point! of TH, and £J"' represents the sum ovtr all Vt that
do not have T*1 at the right-hand end of the product. The first sum In (6) is the expected
contribution from the sources at R,S and their images, while the second term is required
to make the Green function single- valued.

While P,Q,R,S are bounded away from the isometric circles, both terms in (6) are finite
if the Poincare series £.•*/ \ii\~3 is convergent. The series has been proven to converge



when the parameter* of the transformation* Tn satisfy certain inequalities 10. It has also
been shown that the aeries does not converge for all Schottky groups. Even when the sums
in (6) are not finite, however the formula for the Green function in terms of prime forms
demonstrates its existence on all compact surfaces.

Now suppose that T has an infinite number of generators. The domain D is usually
taken to be the set of ordinary points of T, so that z e D if there is a neighborhood N, such
that Vtz & Nt for all Vj ̂  / . If this domain is disconnected, D/T may be the union of two
or more Riemann surfaces. To obtain a single surface, it sufficient that D be connected,
and this property will hold if the fundamental region is connected. The surface will have
infinite genus if the fundamental region has an infinite number of boundary components.
It is interesting to note here that there are examples of infinitely generated groups T for
which the isometric circles cover almost the entire complex plane, the fundamental region
has a finite number of boundary components, and DjT is a surface of finite genus ".
These are exceptional cases, however, and, in general, an infinitely generated group gives
rise to an infinite-genus surface. The precise requirement for D/T to be an infinite-genus
surface is that ^ > 1 + < for all n and some t with d* being the distance from the center
Jr. or IT-\ to any of the other circles, and rn being the radius of IT. >3< The simplest
example involves an extension of the Schottky group for which the isometric circles are
non-overlapping and can be joined pairwise to create a sphere with an infinite number
of handles. As the handles accumulate at some point on the sphere, this point must be
removed to obtain a manifold (Fig.2).

Since the surface can be represented as D/T, where T is infinitely generated, the
method of images can be used again to obtain the Green function. The finiteness of the
expression which depends on the convergence of the Poincare series £ 2 ^ ; | i; |~a . i* more
difficult to prove when T is infinitely generated. Let us first recall Burnside's proof of
convergence for Schottky groups with generators Ti,...,Tt. As the elements of the group
are products of the fundamental transformations, they may be classified according to the
number of factors in each product. Thus the first set consists of 2g elements, the second
set consists of 2g(2g-l) elements, and so on. The action of each Tn can be expressed in
terms of its two fixed points (in, &„

(7)

where Kn is the multiplier of the transformation. Burnside 10 showed that if the absolute
values of the multipliers, |A"i|,...,\Kg\, are sufficiently large, the ratio of |7(i+i)| to |-7(()|
is bounded below, where T(i)iT(i+i) refer to parameters af any transformation in the Ith

and (/ + 1)"" sets respectively. Suppose |2^±J1| > k and the lower bound for |7i|,...,h»l
is ft). Then it follows that

J f c * (8)

which is finite if *a > 2g - 1.

Although the argument cannot be applied directly when f = oo, it may be modified
to obtain a convergence proof in thi* case as well. Note that M " 1 ia the radius r, of the
isometric circle Iv, = {«€ C\ \n* + St\ = l } . The first term on the right-hand side of the
inequality in (8) thus represents the sum of the square of the radii of the isometric circles
{ I T . , / J - - ' } - NO distinction is made between these radii in Bumside's proof. However, if
one chooses rn -* 0 sufficiently fast as n -» oo (Fig. 3), the first term becomes finite. A
similar calculation for the higher-order terms leads to the following theorem.

Theorem 1. Let T be a discontinuous group acting on the complex sphere with an
infinite number of generators {Tn} that have non- overlapping isometric circles. If the
distance between the circlea Is bounded below and the distance between Jr. and / r - i is
bounded above for all n the Poincare series 5J,-,4/ \fi\~a converges if the radii rn decrease
to zero rapidly enough w n - t oo.

(7).
Proof. Let Kn, (lK, (}„ be the multiplier and fixed point* of Tn, From equation

4. = «=i
fan - fin " f*. - fl»

Suppose Vi is some product of the generators and K+i = TKV{. Then

(9)

f2n — fin + K~' fin — fin

so that

fin —

(10)

(11)

As T̂ "1 cannot be the leftmost member of Vi, and since the isometric circles are non-
overlapping,, Iv -1U IT, = 0. The point ^- lies at the center of Iv -1 and so it is not inside
ir , . The fixed points ( i n , f j n are in IT,,!^1 respectively and thus Ist — £in\ is bounded

below and |f3n - f m| is bounded above. Define c to be the lower bound for and

e' to be the upper bound for |£3f, - (ln\. If |JfB|i = cin*+e3 it is straightforward to show
that IT,,) > |fn* and R-*1 > cci»', provided e% > I + 1. The following bound can then
be placed on the Poincare series

which converges if e\ > £ YlT=t ^17 • I n terms of the radii of the isometric circles, the
sum is finite if rn falls off faster than -j^~—rn~*, with q > ^.



While convergence of the Poincare series implies that the first term on the right-hand
side of (6) is finite, the second term could lead to further conditions when g = oo. In
particular, the imaginary part of the period matrix, Imr, has an inverse if it is symmetric
and positive-definite, properties which follow from the period relations for finite-genus
surfaces '.

a

' • ~ jA*jB»\ <13>
where u,a are harmonic differentials and the cycles A*,£* represent a canonical homology
basts. These relations can be generalized to open manifolds l s , including infinite-genus
surfaces. While the generalized relations involve an extra boundary term, this vanishes
when the ideal boundary has xero linear measure, and the relations reduce to the usual
form (13) for surfaces in the class Oo- The next theorem is needed to show that D/T is
in OG-

Theorem 3. If F is a group of Schottky type, with either a finite or infinite number
of generators, whose isometric circles are non-overlapping, and D is the set of ordinary
points in the extended complex plane then D/T is a Riemann surface in the class OG-

Proof. Let us begin by recalling that If T is a finitely generated Schottky group with
non-overlapping isometric circles, then D/T is a closed finite-genus surface 14, which is
certainly in Oo- The theorem, then, only has to ba proven when F U infinitely generated.

The first step is to note that a better understanding of the classification type of a
Riemann surface can be achieved by passing to its universal covering rather than the in-
termediate Schottky covering. A surface is in O 0 if the uniformizing Fuchsian group acting
on the unit disk is of the first or second kind (Fig. 4), which in turn is equivalent to the di-
vergence or convergence of the associated Poincare series l s . Therfore, given the Schottky
uniformization of a Riemann surface, one would like to find the corresponding Fuchsian
unifonniiation to determine whether the surface is in OQ. TO obtain explicitly the parame-
ters characterizing both the Schottky and Fuchsian unifonniiation of a surface is a difficult
problem lfl, but it will now be Bhown that the existence of a Schottky uniformization is
sufficient to imply that the Poincare series for the Fuchsian group diverges.

Recall that if Ai,Bi,...,Aa,B9 represent a canonical homology basis on a finite-genus
Riemann surface, the Schottky group is F = {Bt,...,Ba) white the Fuchsian (or funda-
mental) group is G = (Au...tA,tBt B§\AtBtAitB;1...AgBtA;iBjl = 1). While
the fundamental group is not free for finite g, there is a natural projection from G to T
17 by mapping the generators Ai,...Ag to the identity, and it is clear that every word
T G F has an infinite number of preimages in G, {T<}. When g is infinite, F is again a free
group generated by transformations associated with the B-cycles. The representation of
the fundamental group given above also has an obvious generalization, but some care must
be taken with the denning relations among the generators, as they customarily involve
equating words of finite length with the identity. Nevertheless, the intuitive picture of the
fundamental group is supported by the following result about open surfaces: the funda-

-t'.^-m. %-rr,-

mental group of any subsurface, with compact closure, of a connected C™ open Riemann
surface is a free group generated by transformations corresponding to the A- and B-cycles
contained in the subset it. There is then a projection from this fundamental group to a
finitely-generated subgroup of the Schottky group which can presumably be extended to
a projection from G to F, although it will be sufficient to consider the finitely-generated
subgroups to prove the theorem.

Since the Riemann surface is homeomorphic to D/T =; D/G {D being the complement
of the set of limit points of G in the unit disk), given a coordinate neighborhood N of a point
z on the surface, there exist neighborhoods Ns of ts and Ny of zv in the fundamental
domains for T and G that are homeomorphic to N. Let •<> be the homeomorphism from
Nu to Ns and define tt to be the homeotnorphism from fjJVy to TJV>, so that ftzu =
# f ' • T • 4>o(*c) = *i-*1' ?*(*s)- This relates the action of the Fuchsian group on the unit
disk with the action of the Schottky group on the Schottky covering surface and also leads
to a relation between the Poincare series for the two groups. For a word T € F, a minimal
set of elements {T;} in G which project to T is obtained by adding to T transformations
corresponding to the A-cycles. It is clear that the preimages of words of finite length in V
form disjoint sets in G, so that the Poincare series for G can be written as

tea rer >

(Recall that £ T e r |r'(*a)| = E T C T \i*S + *l"3. Convergence of this series is equivalent
to convergence of the scriaa In Theorem 1 provided «s is bounded away from th« center*
of all of the isometric circles, which holds true when *$ lies in the fundamental domain
of the Schottky group.) We first wish to consider the summation over i in (14). Fix T to
be a word of length Ni and suppose that T,- is a word of length N% + JV3 which projects
to JV3, where N? is the number of generators corresponding to the A-cycles. As the limit
points of the Fuchsian group G lie on the unit circle, the neighborhood %Sv is near the
boundary and decreases in Euclidean size as Nj becomes large. It would seem then that
in the limit as Afj -» oo, f?(zv) - • 0 and the sum in (14) could converge. However, it
easy to show that a lower bound of ew'|T'(«s)|, c < 1, can be placed on the decrease of
fl[zu) with the length of the word. Moreover, the number of irreducible words of length

JVi + JVa in G which project to T is 2g(2g ~ 1 )* ' - ' ^ iJf .V- w h e r e * » t h e "umber of
A-cycle generators that have been added to T. The simplest way to define g Is to take the
smallest compact subset of the Riemann surface whose fundamental group projects to the
minima) subgroup of F containing T. This is not required, however, as the addition of an
arbitrary number of A-cycle generators to T gives a free subgroup of G. It is convenient
therefore, to choose g so that 2g — 1 > £. Since JVi > 1,

',=0

From (15), it is clear that regardless of whether the Poincare series for the Schottky
group F converges, the series for the corresponding Fuchsian group G will always diverge.
Consequently, the Riemann surface must be in OQ.
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From this theorem It follows that the period relation holds on D/T and the imaginary
part of the period matrix has an inverse. The finiteness of the second term in the right-
hand side of equation (6) can now be easily demonstrated. Let zp be a point on the
isometric circle IT, and ZQ = T\ip be the corresponding point on IT-i. Then

£ £ Rt{t>UTi*r)-v~[
m,n=l

Re{v,[za) - v,(zs)}
(16)

is finite since the Poincare series for the Schottky group converges. Now note that (16) is
of the form f^'r f{z)dt for some function f(t). If we take two paths from zP to T/Zp, the
result must be the same and given by (16). Then the integral fo f(z)dz over the contour
in Fig. 5 is zero and Morera's theorem implies that f(i) has no singularities in the domain
bounded by C. Since C can be an arbitrary contour connecting the points zp, T\zp, f(z)
has no singularities in the entire fundamental domain, and thus, for any two points zp, ZQ
in the region exterior to the isometric circles, the second term on the right-hand side of
equation (6) will be finite.

Having established the suitability of the series expansion for the Green function on
these infinite-genus surfaces, we would like to determine its behavior near the isometric
circles, particularly in the region where they accumulate at oo, because the amplitude (2)
involves an integration over the entire fundamental domain. While all the image charges
are inside the isometric circles, it is conceivable that they might lie arbitrarily close to the
circles so that G<js (/*,/() could diverge as Zp approaches these boundaries. In fact, this
possibility does not occur because of the following proposition.

Proposition. There are no limit points on the isometric circles.

Proof. Suppose that there is a limit point «o on the isometric circles IT.- Then
there is an infinite sequence of elements V, such that iimi^.CBViz = ZQ for some z in the
fundamental domain (Fig. 6). The points V{Z must approach zo from the interior of Jr.
because they cannot exist in the fundamental domain and the isometric circles are non-
overlapping. It follows that Vi must have the form T~lVf for all i. So limi-^BT~1V!z =
ZQ => iimi^aaVft = Tnzo which lies on Ir-i. Since V! cannot have Tn as its left-
most member, Vfz must be in any isometric circle except IT-i. The points {VJ} cannot
accumulate at TnZo, and so {V^z} cannot accumulate at ZQ.

It is obvious that if there are no limit points on the isometric circles, then the image
charges cannot lie arbitrarily dose to circles of finite radius. One may also recall that the
size of the circles has been allowed to decrease to zero, and in this case, the image charges
inside the isometric circles are arbitrarily close to the fundamental domain as the circles

0

approach the accumulation point. In this limit, however, the positive and negative charges
cancel and the Green function remains finite.

Let us now consider the amplitude for the scattering of four closed bosonic strings
in their tachyonic ground state. Recall from equation (1) that the amplitude is supposed
to obtained by integrating over the positions of the four vertex operators followed by an
integral over 3g-3 modular parameters. However, the SL(2,C) invariance of the Schottky
parametrization can be alternatively be used to fix the positions of the vertex operators at
zj, z°, z§, for example °. Denoting the fundamental domain by A, the amplitude becomes

where

• (similar factors with z\ -* *$,*J, pi -» Pi. pa)

indicates that the product is restricted to one of each pair (V;,^"1) and

II ' 4
4 - *? -

(18)

Sir

Finiteness of the integral (17) in the neighborhood of *J, z%, 4 requires that pt • p<( pj •
P*, Ps-p* < 4. Momentum conservation then implies that pi -pt +pa • p4 > A. In terms of
the Mandelstam variables, the allowed range is -16 < s,t,u < — 8,s+ f ,a+ «,( + « > -16.
The existence of some range of momenta for which the integral is finite is necessary for
analytic continuation of the amplitude to physical values of s, t, u. Since the Green function
GQS(P,R) only has singularities at ZR,ZS the integral (17) is similarly well-behaved and
can be written as

\zt - (19)

where t[^,St) is regular throughout the fundamental region 19. Dividing A into three
disks of radius A about z°, z%, z% and the remainder of the fundamental domain, the

10



integral (IS) is

m,-m*]<k

1=0 m=0

+ (jtmilar ttrms with *J -» *a,«°, pi -+ Pi,p>) + finite

~
'%£* + 2n + 2 (n!)a

+ (jtmifar terms witfc *J -• *5,*S, pi - • P3,ps) + finite
(20)

from (20), we see that poles in the amplitude occur at s, t, u=8(n-l) , n=0,l,2,... corre-
sponding to the tachyon and the excited states.

As mentioned earlier, the full scattering amplitude also involves an integration over
moduli apace. Although a precise characterisation of the moduli space at infinite genus
has not yet been obtained, it is useful to note that the Polyakov measure can be expressed
completely in terms of the Schottky parametrization. The N-tachyon g-loop amplitude is

f A r*ii - Km\*

|1 - Jirr* I I I1 - K\-**{det Imr)-

rii
(21)

where [].• is the product over all primitive elements of the Schottky group and K is the
string coupling constant 30. Equation (21) leads to a natural generalization of the Polyakov
measure for surfaces that can be uniformized by infinitely generated groups of Schottky
type. The moduli space integral would then be infinite-dimensional, of course, and a
regularization procedure would have to be developed so that it can be properly defined.
One of the most obvious features of the formula for the amplitude given in (21) is the
singularity in the coupling constant factor as g —t co. The elimination of this singularity
should constrain the type of regularization that can be used. The regularization is also
intimately connected with the divergence found by Gross and Periwal. The cut-off near
the boundary of moduli space that they introduce excludes very small handles. However,
the size of the handles must decrease sufficiently fast to zero to place an infinite number on
the sphere. It follows that their cut-off leads to a large-genus cut-off in the perturbation
series, which is significant since the bosonic string partition function is expected to grow

11

as g\. This analysis is based, of course, on the construction of infinite-genus surfaces by the
placement of an infinite number of handles, accumulating at a point, on a sphere of finite
size. By Theorem 2 these manifolds are in the class Oc, which has also been denned in this
paper as the set of effectively closed surfaces. Conversely, all effectively closed surfaces can
probably be obtained by placing handles on spheres, although this remains to be proven.
The point that is being emphasized here, however, is that the restriction of the domain
of perturbation theory to the effectively closed surfaces may be of crucial importance in
making the perturbative expansion of the S-matrix well-defined.

To conclude, the path integral approach to calculating string scattering amplitudes
involves summing over all possible histories between initial and final states, with the join-
ing and splitting of strings in the interaction region describing handles on a Riernann
surface. Since the interactions take place in a region of finite size, one is interested in
Bumming over those surfaces which can be placed in a finite box. It is clear that certain
types of infinite-genus surfaces, such as spheres with an infinite number of handles may
be put in such a box, and they can be naturally included in the perturbative expansion
of the S-matrix. This intuitive picture has been confirmed here by the explicit calculation
of a bosonic string scattering amplitude, which has revealed no new types of divergences
arising from the integration of the positions of the vertex operators over these surfaces.
On the other hand, there are other surfaces which do not appear to be part of the pertur-
bation series, because they have an ideal boundary with positive linear measure. If this
boundary is not confined within the finite interaction region, then it will be observed as
an extra string. Thus, although we may begin by describing the scattering of »i strings
into f*a strings, the diagrams containing surfaces with a boundaries of positive linear mea-
sure would correspond to the scattering of ni strings into n3 -f 1 strings. Whether these
diagrams should be associated with non-perturbative effects, along the lines suggested by
Friedan and Shenker, has yet to be demonstrated, but they cannot be included in the
perturbative expansion of the S-matrix which maps ni initial states into nj final states.
The discussion above motivates the problem of precisely defining string perturbation the-
ory. From the computations done in this paper and general physical considerations, one
is led to conjecture that non-compact infinite-genus surfaces, as well as closed finite-genus
surfaces, should be included in the series, but the domain of string perturbation theory
must be restricted to surfaces that are effectively closed, identified here as belonging to the
class OQ. Not only does this definition have impact on the the behavior of the series, both
for bosonic strings and superstrings, but it also provides a starting point for going beyond
the perturbation expansion to obtain a more complete formulation of these theories.

12
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Figure Caption*

Fig. 1: Sources of opposite strength at R and S on a closed surface of finite genus.

Fig. 2: A sphere with an infinite number of handles with size decreasing to zero. The
accumulation point of the handles is removed from the sphere.

Fig. 3: Fundamental region for a Schottky group is the exterior of the isometric
circles.

Fig. 4: Fundamental regions of Fnchsian groups of the fint and second kinds have
border arcs of zero measure and positive measure on the unit disk respectively.

Fig. 5: When the integral of a function around the contour C vanishes, it has no
singularities in the shaded domain bounded by C.

Fig. 6: There cannot be any limit points of the Schottky group lying on the isometric
circles.
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Figure 5

Figure 6
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