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Abstract 

The effects of energetic particles on MHD type modes are studied by 
analytical theories and the nonvariational kinetic-MHD stability code 
(NOVA-K). In particular we address the problems of (1) the stabilization of 
ideal MHD internal kink modes and the excitation of resonant "fishbone" 
internal modes and (2) the alpha particle destabilization of toroidicity-
induced Alfven eigenmodes (TAE) via transit resonances. Analytical 
theories are presented to help explaining the NOVA-K resufts. For 
energetic trapped particles generated by neutral-beam injection (NBI) or 
ion cyclotron resonant heating (ICRH), a stability window for the n*1 
internal kink mode in the hot particle beta space exists even in the absence 
of core ion finite Larmor radius effect (finite to.i). On the other hand, the 
trapped alpha particles are found to resonantly excite instability of the 
n«1 internal mode and can lower the critical beta threshold. The 
circulating alpha particles can strongly destabilize TAE modes via inverse 
Landau damping associated with the spatial gradient of the alpha particlo 
pressure. 
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1. Introduction 

With the introduction and increased use of powerful auxiliary heating 
techniques such as ion cyclotron resonant heating (ICRH) and neutral-beam 
injection (NBI), present-day tokamak experiments and future fusion 
reactors will involve significant amount of energetic particles. The 
energetic particles can significantly affect the MHD stability because 
some of the basic assumptions of MHD theory become invalid for energetic 
particles. In tokamaks, particle dynamics typically satisfy the condition 
cot , wt> » tod (oid is the energetic particle magnetic drift frequency, a>tthe 
circulating particle transit frequency, and ©b the trapped particle bounce 
frequency). For the low frequency MHD modes with o > « o>d. the energetic 
particle dynamics are no longer governed by the (Ex B ) / B 2 drift, but rather 
by the magnetic (VB and curvature) drifts. The trapped particies precess 

very rapidly across B field, and their motions become very rigid with 
respect to the MHD perturbations. Since trapped particles tend to move on 
constant-B surfaces, the trapped particle pressure is approximately a 
function of B, P±n= POJT(B). The perturbed perpendicular energetic trapped 
particle pressure is given by §p±h= OPih/dB) 5B|| - ph(co*/«B)h B 5 0 I I - where COB 
is the VB drift frequency. From the perpendicular force balance equation 
we have V x 8p c = - Vj.[(1+ phaW2<0Bh) BSB|(]t where 5p c is the perturbed core 
plasma pressure. This means that if (COJCOB) > 0, it requires an extra 

restoring force from Vj.5p 0 to maintain the force balance. Therefore, the 
effect of the energetic trapped particles is stabilizing, and the 
corresponding potential energy 8W|< is positive. If the MHD wave has a real 
frequency such that a> = a>d, then the energetic trapped particle motion is no 
longer rigid with respect to the MHD perturbation and wave particle 
resonance can occur. Magnetic drift resonant "MHD" instabilities can be 
excited by tapping free energy from the energetic particle pressure 
nonuniformity. For the high frequency shear Alfven waves with co = <at , tob. 
the ideal MHD stable global Alfven modes can be driven unstable by the 
circulating energetic particles resonanting with the background waves via 
inverse Landau damping. 

In the high-power, nearly perpendicular neutral-beam injection 
experiments, bursts of large amplitude m=n=1 (m is the poloidal mode 
number and n is the toroidal mode number) MHD fluctuations, dubbed 
"fishbones" were observed in the Mirnov coil and x-ray signals[t-3]. These 
fishbone bursts are believed to be resonant internal kink modes and are 
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found to be correlated with the reductions of neutron emissivity which 
correspond to significant losses of energetic beam ions, and thus play an 
important role in limiting tho p-values of tokamak devices. On the other 
hand, ICRH heated plasmas with an energetic minority ion component on 
JET[4,5] seemed to have demonstrated a sawtooth-free domain of tokamak 
operation. The JET experiments are interpreted as the energetic particle 
stabilization of both the resistive internal kink mode and the fishbone 
mode. In future tokamak reactors, alpha particles may destabilize the 
toroidicity-induced shear Alfven eigenmodes (TAE)[6] through circulating 
particle resonance by taping the free energy associated with the a-particle 
pressure nonuniformity. The TAE modes have theoretically been shown to 
cause very serious a-particle loss[7]. 

In the following, we first briefly describe in Sec. 2 the formulation 
of the kinetic-MHD eigenmode equations for our nonvariational treatment. 
In Sec. 3 we study the effects of neutral beam injection (NBI) and a -
particles on the stability of the internal mode and the excitation of 
resonant fishbone modes. We first derive and studty an analytical 
dispersion relation. For the NBI case, comparisons with numerical results 
involving analytical approximations indicate that the critical values of the 
energetic trapped particle beta for the stabilization of the ideal MHD 
internal kink and the destabilization of the resonant fishbone mode can be 
an order of magnitude different from those computed by the "non-
approximated" NOVA-K code. In addition, a necessary condition for the 
excitation of fishbone mode is found that the total plasma beta must be in 
the domain of the unstable ideal MHD internal kink modes. This is contrary 
to the analytical results of no total beta threshold. For trapped a -
particles, the resonant internal mode can lower the total beta threshold 
for instability. In Sec. 4, we present the NOVA-K results of the a-particle 
destabilization of TAE modes via transit resonances. The summaries and 
discussion are given in Sec. 5. 

2. Kinetic-MHD Model and NOVA-K Code 

We will consider an axisymmetric toroidal plasma consisting of the 
core isotropic and the hot anisotropic components with n^ « n c and Th » T c 

so that Ph < Pc- In terms of the flux coordinate system (y,e,i;), the 
equilibrium magnetic field with nested flux surfaces can be written as 
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B - V£ x Vy + q(y) Vy x Vfl, (1) 

where 2n\[ is the poloidal flux within a magnetic surface, q(y) is the 
safety factor, e is the generalized poloidal angle varying between 0 and 2JI, 
and C, is the generalized toroidal angle varying between 0 and 2JI. Summing 
the collisionless equations of motion for each species, we obtain the 
linear momentum equation 

c^p i = V5pc + V»8P h + bx ( V x B ) + B x ( V x b) , (2) 

where % is the usual fluid displacement vector, b is the perturbed 
magnetic field, 5p 0 is the perturbed core plasma pressure, Spf, is the 
perturbed hot plasma pressure tensor, and p is the total plasma mass 
density. The ideal MHD description is adopted for the core plasma and the 
following ideal MHD relations hold 

Spc + S»VP C + r 5 P c V» 5 = 0 , (3) 

b = V x (5 j .x B) , (4) 
and 

SE = j © % x B , (5) 

where 5E j S the perturbed electric field, r s = 5/3 is the ratio of specific 
heat, and Pc is the core plasma pressure. 

The drift kinetic description neglecting the Finite-Larmor-radius 
correction is employed for the hot particle dynamics. The drift kinetic 
equation can be solved by the method of characteristics with the total 
perturbed particle distribution given by 

Sf = - ^ . V F - iLJl EL + g , 
B a*i ( 6) 

where the nonadiabatic particle distribution is given by 
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g= i *[-*f)[Z-*Z i Vd * SEj, M^xbn 

a 
(7) 

co=-0"at/Mh)3lnF/3e, co*T = - i (T/Mh(i)c) ( b x VlnF » V ) only perates on the 

perturbed quantities, v d = (b/a>c) x [ V(u-B) + K V ( (

2 ] is the magnetic drift 
velocity, c is the speed of light, T is the average temperature of the hot 
particle, coc is the hot particle cyclotron frequency, F(e,u.,\|/g) is the 
guiding-center particle distribution. The time integration in Eq. (7) is 
along the unperturbed guiding-center trajectory. 8Ph can be expressed as 

5p h = - S x » V P + t»n f—I + S p x I + (8p | | -8p ± )bb , 
\9B/v (8) 

where SPj and 5Pj. are given by 

6p 
f7.. » n 

h(v.e) 
dAg 

hVl-A/h 

2 ( E - U B ) 

uB 

(9) 
A = |iB 0/e is the pitch angle, B 0 is the vacuum magnetic field at X - R, and h 
- B 0/B(y,e). On a flux surface, circulating particles correspond to 0 < A <, 
hmin(v). and trapped particles to hm j n(Y) s A < h at a given e, where hm i n(^) = 
Min [h(y,e)] on the y surface. 

In terms of the dependent variables, £ v = % • V\\r, 5pi = 5p c+ b • I , £ s = 

% • (B x v>/|V\|/|2), and V«£, Eqs. (2) - (9) can be cast into a set of non-
Hermitian integro-differential eigenmcde equations which are soived by a 
nonvariational kinetic-MHD stability code (NOVA-K)[8]. In general, a flux 
coordinate (y,9,£) system with an arbitrary Jacobian, the NOVA-K code 
employs Fourier expansion in the poloidal angle 9 direction, and cubic B-
spline finite elements in the radial v direction. An arbitrary nonuniform 
y-mesh can be set up to provide the option of zoning the mesh to allow 
more finite elements near rational surfaces, the plasma edge, and the 
magnetic axis. The boundary condition at the magnetic axis is ^ = 0. For 
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fixed boundary modes the boundary condition is ijy = 0 at the plasma-wall 
interface. In general, the boundary condition at the plasma-vacuum 
interface is given by b v • V\y - B • V^ v , where b v is the perturbed vacuum 
magnetic field which must be solved from the divergence-free equation V • 
by = 0 with proper wall boundary condition. 

3.1 Quadratic Form 

^* 
By taking an inner product of Eq. (2) with % and integrating over the 

all plasma volume with the assumption of a fixed conducting boundary, we 
obtain a quadratic form 

D«D) = SW, + 8 W k - 8 K = 0 , ( 1 0 ) 

where the inertial energy is given by 

5K = to dx pk , 
!jV*p|if 

(11) 

the total fluid potential energy due to both the core and hot components is 

- i 2 

i— i 2 
2 

5W f= I d'x { r s P c j V . ^ | +|bJJ" + |V^ J.+ 2 K . ^ 

+ p l (bx§).?± ^ ( K . J J J J X B ) . ^ } , 
I B / (12) 

and in the limit <a « (Ob. the the energetic particle potential energy is 
mainly contributed by the trapped particles and is given by 

7/2 - " " - - " h ' 
5W k « - 2 M: l B J cty I de e I dA K b 

• 'o • ' h m i n 
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(»-W) V »•/ » / ( 1 3 ) 

where Kb = Vi/2Tb. Tbis the trapped particle bounce period and is a function 

of e and A, and co. = (-i/(oc) (b x VlnF • V ). In the low-frequency limit w « 
cod, to*, the sign of the trapped particle potential energy is proportional to 

(co/cod) a r | d t n e energetic trapped particles have a stabilizing effect if 

((0,/wd) > 0 and vice versa. On the other hand, if a> - cod the energetic trapped 
particle can excite a resonant instability. Similarly, the nonadiabatic 
contributions of energetic circulating particles on the potential energy can 
be obtained and is too complicated to be presented here. Note that in 
deriving the quadratic form we have neglected the pressure anisotropy 
terms, i.e., the (P j . - P||)h terms. The quadratic form is useful in providing 
the stability properties of the system in certain limits. 

3. Energetic Trapped Particle Effects on the n=1 
Internal Mode 

The previous analytical theories [9-13] of energetic particle effects 
on the n-1 internal kink mode were performed for large aspect ratio 
tokamak plasmas with circular, concentric magnetic surfaces, and the 
radial plasma displacement %r was taken as the cylindrical solution of the 
m - n - 1 mode with %< - constant for q < 1 (or r £ rs), and ^ r - 0, otherwise. 
Other approximations made in calculating energetic particle contributions 
to 8Wk involve setting 1-q(r)=0, assuming (a)./<cod>) > 0 for the whole 
minor radius, and neglecting toroidal couplings of neighboring poloidal 
harmonics. These approximations led to the cancellation of the hot 
particle contributions from SWf with part of SWfc so that 6Wk is 
proportional to o>. This cancellation has prevented the previous theories 
from predicting a stability window in 0n for the stabilization of both the 
internal kink and the fishbone mode. In addition, those approximations also 
failed to give quantitative predictions of the critical ph's for both the 
stabilization of the internal kink and the excitation of the fishbone mode. 
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Since the behavior of MHD modes depends strongly on both the energetic 
particle distributions and the plasma equilibria, it is important to have a 
numerical code (e.g., NOVA-K code) that computes the stability of low-n 
MHD modes for realistic energetic particle distributions and plasma 
equilibria. 

In Section 3.1, we will first derive and study an analytic dispersion 
relation that does not cancel the hot particle contributions from 5Wf with 
SWk so that SWk is not proportional to co. Then in Section 3.2, we will 
present numerical studies of the effects of energetic particles on the n-1 
internal kink mode by using the NOVA-K code for NBI energetic trapped 
particles with singular pitch angle distribution. The effects of alpha 
particles with uniform pitch angle distribution on the n-1 internal kink 
mode is presented in Sec. 3.3. 

3.1 Analytic Dispersion Relation for the n=1 Interna! 
Kink Mode 

To derive the analytic dispersion relation for the n=1 internal kink 
mode including energetic trapped particle contributions we consider the 
large aspect ratio orderings with the small parameter e 0=a/R « 1. We will 
limit the consideration to the parameter range of the first stability 
boundary of the internal kink mode, and we order p p c » 0(1), pPh ~ 0 (e 0 ) , 
where p p is the poloidal beta. The relative temperatures of the core and 
hot components is T c / T h ^ 0(e 0

2 ) , which implies n h / n c ~ 0(e 0

3 ) and overall 
charge neutrality may be assumed. The usual internal kink ordering of 
(CO/COA) ~ (<(0(J>/COA) ~ 0(e0

2) is also assumed. With the present ordering we 
find from Eqs. (10)-(13) that 5K/5Wf_ 8 W k / 8 W f „ 0(e 0

2 ) - We note that the 
contribution of 5K is significant only in a singular layer of a width A, 
which has the ordering (A/a) „ (CO/COA) ~ 0 (e 0

2 ) , but the contribution of SWK 
is mainly from outside the singular layer. Therefore, outside the singular 
layer the contribution to the dispersion is D 0 » SW f + 5W it and inside the 
singular layer the contribution to the dispersion is Di = 5 W f - 5 K . Since 
SWjand 8K are self-adjoint, they can be variational^ minimized to 0 (£ 0

2 ) 
by constructing an appropriate trial function. For the case of circular 
cross sections, the minimization of 5Wf outside the singular layer is 
nontrivial and can be done by using the trial function given by Bussac et al. 
[14], and we have 
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5 W f - i^L^iiiy! Y B + o(ej . 
a A (14) 

where YB contains the contribution from both the core and the hot 
particles, and near the first stability boundary it is proportional to [ p p

2 -
(Ppcrit)2]. where ppcrh is the critical p p for the ideal MHD internal kink. By 
choosing the radial plasma displacement £ r as the cylindrical solution of 
the m - n - 1 mode with £ r - constant for q £ 1 (or r s r s), and %T «• 0. 
otherwise, the hot trapped particle kinetic contribution is 

5 w k . 2 * R B ° r ^ N 5 w k + d4 
w« (15) 

where only m = n = 1 contribution is kept and 

8 W K = 2 

K 2 = 

3 / 2 2 i. i+e f 
2 n M6i A /.r. f ° f 

M d r B l d A l 
R 2 B o r s q s

J o JI-K0 JQ 

I d9cos(e)exp[i(l-q)e] 
I Vl-A/h 

• ' - S T 

dee 
5/2 IK, 

Kh 

3F <n\ 
0) + CO. 

ae 
{m^-a j 

(16) 

(17) 

From Eqs. (14) and (15) the total contribution of the dispersion relation 
from outside the singular layer is 

D 0 = 

2 2 ' l I 2 

2% R B 0 r s q s U 
COa 

( T B - 8 W k ) + 0( ej 
(18) 

Inside the singular layer, D i = 8 W f - 8 K is variational and can be 

minimized. We should note that V»% * 0 so that compressibility is finite in 
the singular layer. The minimizing %t, that satisfies the Euler-Lagrange 



10 

equation obtained by varying Dj with rospeci to l r and matches to tin* 
outside solution, is given by 

$r = * , 9 w A 
V A / <is; 

where the singular layer width is 

2 
A = 

CO 

(q s»J 

COT 

2 2| 
( 0 - 0 ) , 

- 1 

ax<a) s > e 0 - » 0 

-co ( l + 2q 2 ) 

(qs©J 
(20) 

Then D; becomes 

D i = 2* RB 0 r s g s | g ( j ( o ) 

co. 

-.1/2 
2 

C0 T 

+ 1 

(21) 

where 

coT = 
T S P C B 2 K J 

pjv v | 
' r s p e \ 

U > B V / 
to . = 

\PJ' (22) 

and <•••> means surface average at the q = 1 surface. Finally, combining 
Eqs. (18) and (21), we arrive at the dispersion relation 

- i to 

-.1/2 

1 + 
0 ) , = (YB-SWJ 

(23) 

If we consider neutral-beam-injected (NBI) plasmas, the equilibrium 
hot particle distribution Fh is taken as a slowing-down distribution in 

energy and a delta function in pitch angle, i.e., Fh(e,A,y) = n h(y) S(A-A 0) / 
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3/2 3/2 
(e c +e ) for e £ f t , and Fn(e,A,\|/) = 0 otherwise, where £b is the neutral 
beam injection energy, and £ c is the cutoff energy where the beam ions 
lo^e an amount of energy to the core ions equal to that lost to electrons. 
For simplicity, we take £ 0 - 0 and assume |co| « a>s, then the dispersion 
relation takes the form 

where the hot trapped particle terms are voiume averaged, and the detailed 
forms are not important in determing the qualitative Stability properties. 
For 0 < Re(co) < cod, we set c • 0 for lm(a)) > 0, o - 1 for lm(<o) * 0, and c»2 
for lm(G>) < 0. to. and ©d are the typical hot particle diamagnetic drift 
frequency and the bounce-averaged magnetic drift frequency, respectively. 
y B is the MHD growth race including the contribution from hot particles, 

and Ph is proportional to the hot particle beta. We should reiterate here 
that the first (to./cod) term in Eq. (24) does not cancei with the hot particle 
contribution to yB, Equation (24) predicts that if y B > 0, the ideal branch 

will be stabilized for Ph>Phi, where phi - (Ye^d/tOA©*)- At P h » PM, co - 0. 

The resonant fishbone branch will be destabilized for Pt, > Ph2, where Pre -

a)d/[7ro)A(ffl«/©d - 1}]- At Ph - Ph2. *> is purely real. Figure 1(a) shows the 

growth rate and Fig. 1(b) shows the real frequency versus Phfor the fixed 

parameter on/cod - 10. Several values of coc=cod/Ya a r e used. The curves 

labeled co cs 3 correspond to the ideal branch. We see that for (co./yB) £ 

7r(m„/ci>d - 1) (i.e., PM 2 Pie), Jhe internal kink is unstable for all ph. For Phi 

<Ph2, there is a stability window for Ph 1 <$u< Ph2- It is important to note 

that previous studies [9-13] have concluded that Phi - Ph2 so that there is 
no stability window. The erroneous conclusion is mainly due to the 
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mistake of making exact cancellation of the first (oo./<fld) term in Eq. (24) 
with the hot particle contribution to yB, 

3.2 Effects of Neutral-Beam-Injected Particles on the n=1 
Internal Kink Mode 

For p c » Pn. the equilibrium is approximately isotropic. We first 
consider an equilibrium with circular plasma surface with the profiles 

P(y) = P o ( i - / j . 9<y> = q(0) + y{q(i)-q(0) + [q ' ( l ) -q( l ) + q(0) ] ( l -y s ) (y - i ) / (y -y s ) } , 
where y s - [q'(1) - q{1) + q(0)]/{q'(0) + q'(1) - 2[q(1) - q(0)]}, y - (y - V o ) / A V , 
A\|r - yum - vo. ¥iim is evaluated at the limiter, and ipo is evaluated at the 
magnetic axis. The parameters for the "PDX05" equilibrium are Po - 0.018, 
* = 2, |i = 2, Ay - 0.061, p « 2 <P>/<B2> - 0.625%, R - 1.43, R/a - 3.4, q(0) -
0.8, q(1) - 2.85, q'(0) - 13.82 and q'(1) - 106.6, and pp 0 t - 2 <P>/<B p o i 2> -
0.4278. Note that for a given pitch angle A 0 , <m> and hence (co*/<a>d>) may 
change from being negative to positive as r changes. If the trapped 
particles are destabilizing to a certain MHD mode for (co*/<o)Cj>) > 0 in p. 
certain radial region, the trapped particles in the radial region with 
(cW<cud>) < 0 would be stabilizing. Since both ca. and <a>d> are proportional 

to £b, we will introduce an energy scaling factor CT in a>. and <cod>. If CT -
0, <a*h - «»d> - 0 and the quardatic form, Eq. (10), corresponds to the 
Kruskal-Oberman energy principle[15]. For CT = —, Eq. (10) corresponds to 
the case studied by Rosenbluth et al.[16]. For simplicity we let £ c = 0. 
nh(v)£b - oihPcCv). a r | d v a r y a h to change the hot particle pressure. The 
other fixed parameters for the energetic particles are £b/T c(0) = 10, 
R/ph(0) = 100, Mh/Mc = 1, A 0 = 1.1, where M c and Mh are the core and hot ion 
mass, respectively. ph(0) is the hot ion gyroradius at the magnetic axis. 
For this equilibrium, the volume-averaged hot particle beta, Ph = 2 
<Ph>/<B2>, is related to the total volume-averaged beta by 3n = 1.38 ahP. In 
the absence of energetic particles (oth=0), the n = 1 fixed boundary internal 
kink mode is unstable with the growth rate Y/OOA = 1.195 x 10"2. In varying 
Ph (or txh) the total p is fixed so that as Ph is increased, the core plasma p c 

is decreased by the same amount. 
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In Figs. 4(a) and 4(b), the growth rates and the negative real 
frequencies, respectively, versus ah are plotted for several values of the 
hot particle injection energy scaling factor CT. For Cj < 0.4, the hot 
particle pressure is stabilizing for small values of ah, but becomes 
destabilizing as ah becomes larger ( ah > 0.036). The destablizing effect is 
accompanied by an increase in |o r | and is associated with co - <coa> = 0 
resonance. However, when CT becomes larger with CT = 1. the ideal branch 
is stabilized for ah > ahi - 0.036 (for CT=»1). But the resonant fishbone 
branch is destabilized for ah > ah2 - 0.06 for CT - 1. For larger CT, atii is 
smaller, but ah2 becomes larger. 

The results presented in Figs. 4(a) and 4(b) are qualitatively similar 
to Figs. 1(a) and 1(b) obtained from the analytical dispersion relation given 
by Eq. (24;. Figure 1(a) clearly shows these behaviors through the 
variations in o>d with o)*/o)d being held fixed. We should note that the real 
frequency shown in Fig. 1(b) is somewhat different from Fig. 4(b) for the 
resonant branch in the limit ah < ah2- This is because the analytical 
dispersion, Eq. (24), does not describe the MHD continuous spectrum that is 
contained in the NOVA-K code. The abovs comparison clearly demonstrates 
that the NOVA-K code gives correct results of the energetic particle 
effects on the n-1 internal kink mode. 

Next, we examine the validity of the approximations made in the 
analytical dispersion, Eq. (24). Our calculations show that although the 
analytical dispersion gives qualitatively correct results, it fails to 
provide the correct values of the critical hot particle betas for both the 
stabilization of the ideal branch and the destabilization of the resonant 
fishbone branch. To make comparisons on the values of critical (Jh, we 
impose similar approximations in computing the perturbed hot particle 
pressures 5Ph by retaining only the m=1 poloidal harmonics and taking 1-
q(r) = 0 in the nonadiabatic hot particle contribution. We find that the 
approximations have produced smaller values of phi and Ph2 by roughly a 
factor of 4 in this particular example. The difference is mainly due to the 
omission of the m-2,3 harmonics which are not negligible outside the q=1 
surface and have opposite contributions to stability from the m=l 
harmonic. 

Another important conclusion from the calculations of the NOVA-K 
code, that is different from that of the analytical theory, is that when the 
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ideal MHD internal kink is stable, the resonant fishbone mode is also 
stable. Our conclusion is derived by computing the stabilities of several 
equilibria with different p. As p is closer to the ideal MHD critical betas, 
Pi,2, the growth rates of both the ideal branch and the resonant fishbone 
branch also decrease to zero. For p s pi and p s p2, no instabilities are 
found by the NOVA-K code. On the other hand, it can be easily seen from 
the analytical dispersion relation, Eq. (24), that the critical Ph2 for the 
resonant fishbone branch is independent of y B , and there te no constraint on 
the total plasma p. The breakdown of the analytical analysis for both the 
ideal and resonant fishbone branches in the ideally stable p domain is that 
the eigenfunction becomes singular near q-1 surface and the analytical 
dispersion is invalid. Finally, the effects of the neutral beam injection or 
ICRH heatings on the n-1 internal kink mode can be summarized 
schematically by the stability window in the p-ph space shown in Fig. 5. 
This stability window provides an explanation of the experimental 
observations of the stabilization of sawtooth in JET[4,5]. Here, we 
emphasize that unlike the previous analysis [9-13] the stability window 
exists even in the absence of core ion finite Larmor radius v9ffect (finite 
Ol.i). 

3.3 Alpha Particle Effects on the n=1 Internal Mode 

The stabilization of the internal kink mode by trapped a-particles 
had been reported by several authors[10,17] who studied the analytic 
dispersion relations by employing large aspect ratio tokamak equilibria. 
However, this conclusion can not be applicable to finite aspect ratio 
tokamaks because the analytical studies failed to take ino account the 
pitch angle variations cf the bounce-averaged magnetic drift frequency 
<G)d> and the contributions from m=2 and 3 poloidal harmonics. In fact, the 
numerical studies using the NOVA-K code indicated that the trapped a-
particles can excite the resonant internal mode and lower the critical beta 
threshold of the n=1 internal mode. 

In the NOVA-K code, we will employ the slowing-down distribution 
with 8 C = 0 for a-particles, but with uniform pitch angle distribution. We 
will study ignition type tokamak equilibria which have noncircular plasma 
surfaces defined by X = R + a cos [ 8 + 5 sin(e) ], Z = K a sin(e). The fixed 
parameters are the elliticity K = 2, the triangularity 5 = 0.4, a = 0.65, and R = 
2.1. The total pressure and q-profiles have the parameters: X = 1.05, n = 2, 
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q(1) - 3.2, q'(0) - 0.25, and q'(1) - 7, and p p 0 | - 2 <P>/<Bp0|2> . 1.0376. P 0 

and q(0) are varied to find stability boundary in the (p,q(0)) space. Note 
that for a radial position, <cod> and hence(co*/«Bd>) may change from being 
negative to positive as A decreases. Thus, the net effect of the trapped a -
particles must be integrated over the entire trapped a-particle population 
with proper weightings of different poloidal harmonics. The parameters 
for the a-particles are £ a /T c(0) - 100, R/pa(0) - 100, M a /M c * 4, where MC 

and M a are the core and alpha mass, respectively, and p a(0) is the a -
particle gyroradius at the magnetic axis. The a-particle pressure is taken 
to be Pa(\|0 - a h P 0 [P( r ) /P 0 ] 7 ' 2 . For P 0 - 1.0 and q(0) - 0.8, the volume-
averaged a-particle beta, p a = 2 <P a>/<B 2>, is related to the total volume-
averaged beta by p a - 0.6214 ahP where P - 4.0159%. In varying p f t (or an) 
we will keep the total p fixed so that as p a is increased, the core plasma p c 

is decreased by the same amount. Figure 4 shows the stability boundaries 
in the (p,q(0)) space for the n-1 internal mode obtained by varying P 0 and 
q(0). From the ideal MHD stability boundary curve, the critical beta has a 
sharp transition as q(0) approaches 1. For q(0) < 0.95 the solution behaves 
like an internal kink mode, for 0.95 < q(0) < 1 the solution becomes more 
localized near q=1 surface and is a quasi-interchange type, and for q(0) > 1 
the solution resembles the infernal mode. The lower stability boundary 
curve is obtained with ah » 0.1 and is determined by the stability of the 
resonant internal instabilities driven by a-particles. 

4. Alpha Particle Destabilization of Toroidicity-
Induced Alfven Eigenmodes 

High frequency shear Alfven instabilities could be excited in a 
burning plasma by the expansion free energy associated with the spatial 
gradient of the alpha particle pressure through the alpha particle 
diamagnetic drift frequency co*a. For typical ignition parameters the alpha 
particle velocity V a = (e a /M a }1/2 = 9 x 10 8 cm/sec for an energy e a of 3.5 
MeV is comparable to the Alfven speed V A = B/(NjMi) 1 / 2 . Thus, the 
transiting alpha particles could destabilize shear Alfven waves via inverse 
Landau damping through the co - cot wave-particle resonance. To satisfy the 
resonance condition, it requires that V a > VA. TO overcome the Landau 
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damping by the inverse Landau damping associated with co»a, it requires 
that o>*a > ©A » VA/qR. 

Briefly, let us describe the various types of shear Alfven waves in a 
tokamak plasma. The kinetic Alfven wave associated with the shear 
Alfven resonance condition has a nonsingular radial structure when 
electron parallel dynamics and ion finite Larmor radius effects are 
included. Its mode structure is fairly localized, and hence it experiences 
strong electron Landau damping(18]. There are two global types of shear 
Alfven waves that have radially extended mode structure. Both types have 
low mode numbers n and m. The first type of global shear Alfven wave is a 
regular, spatially nonresonant wave whose frequency lies just below the 
minimum of the continuum, i.e. to < knVA and kn - (m-nq)/qR * o. This 
wave is called the Global Alfven Eigenmode (GAE)[19]. When finite 
toroidicity is included, GAE modes with different poloidal mode numbers 
will become coupled. Such toroidal mode coupling tends to stabilize the 
GAE modes completely[6,20]. Another type of global shear Alfven wave, 
one that exists only in toroidal geometry. Its frequency lies within "gaps" 
in the shear Alfven continuum that are created due to toroidal coupling. 
The existence of this so-called Toroidicity-lnduced Alfven Eigenmode 
(TAE) was previously shown in the ideal MHD limit without alpha 
particles[21,22]. In this section, we show that this TAE mode can be 
strongly destabilized by alpha particles in a burning tokamak plasma. 

The TAE mode exists inside gaps, due to toroidal coupling, in the 
shear Alfven continuum spectrum. For example, modes (n,m) and (n,m+1) 
couple at radial location r0, where q(r0) * (m + 1/2)/n, to form a gap. For 
n=m=1, this gap is bounded by 

2 2 / r s P B 2 K j \ 2 (r \ 

\ N / ( 2 5 ) 
where o> 0

2 =• ( V A / 2 q R ) 2 at r = r0, A(r) is the Shafranov shift of the 
nonconcentric flux surfaces and A' > 0. The pressure and q- profiles of the 
"EC42.3D" equilibrium have the parameters: P0= 0.45, \ = 2, u. = 2, q(0) = 1.05, 
q(1) = 2.3, q'(0) = 0.75, and q'(1) = 3, p « 1.893%, a= 0.25, R = 1. The real 
frequency of the P^'I fixed boundary TAE mode is cor/<oA = - 0.739, which 
lies within the continuum gap, 1.25 > (CO/<»A)Z S 0.53, formed by the toroidal 
coupling of the m=1 Alfven mode and m=2 Alfven mode at q=1.5. As (3 
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increases, the frequency of the discrete TAE mode may move downward 
into the continuum and suffer Landau dampings through wave-particle 
resonances. Similar results of the finite p effect on the exitence of the 
TAE modes has also been found in the high-n limit[23]. 

The alpha particle perturbed pressure tensor 6p a in the momentum 
balance equation contains both transit and bounce resonance effects. Core 
plasma kinetic effects on this mode are neglected here. The alpha particle 
equilibrium distribution function was taken to be isotropic in pitch angle A 
and slowing down in energy £. Figure 5 shows the growth rate computed 
from the NOVA-K code for the n=1 fixed boundary TAE mode[6] as a function 
of the alpha particle diamagnetic drift frequency <a*a (evaluated at r - 0.5 
and for m=1) normaiized to COA - V,4(0)/q(a)fi, for the "EC42.3D" equilibrium 
with p a = 0.4%. Here e a is the alpha particle birth energy and is taken 
to b e l 0 0 T c ( 0 ) , and n(\\r) is proportional to the alpha particle density, 
which was taken to be functionally related as n(\y) « [P (v ) ] 7 / 2 to the total 
plasma pressure P(v). The wave functions for the m=1 and m=2 poloidal 
harmonics show that these modes peak near r - 0.5; hence (o* a is a good 
measure of the alpha particle free energy that can be tapped via inverse 
Landau damping. Figure 5 shows that co*a is large enough to overcome the 
usual Landau damping when GWCOA > 1 -5 and that beyond this threshold the 
growth rate is approximately linearly proportional to <»*<,. For typical 
ignition parameters, the growth rate of the n=1 TAE mode can be of the 
order of 10- 2 of the real frequency. 

The numerical results can be interpretated from the quadratic form, 
Eq.(10). For the mode frequency, we write to » cor + iy and assume that the 
growth rate is small ( |y| « |cor| ). Then Eq. (10) yields 

2 5W, 

8K (26) 

and 

Y = -sign(cof) I dydA 

/ • 

/ 2 
9 X T t P(l|/) 

4 SK 



18 

<ft.g(m)tftr

2 \ Re {(qnY,pft*<Glm,pfr) 

f(p-nq) cat] I f(p-nq) «J 

where G(m,p,8) depends on the pitch angle, the equilibrium ^-variation and 
the mode amplitude, cot and Tt are the alpha particle transit frequency and 
transit time, respectively, and <G(m,p,6)> is the transit average of 
G(m,p,9). The transit harmonic number is p, where p values close to m 
contribute the most. We define a>*a(m) * mo)*a, where, as before, cô a is the 
diamagnetic frequency for m=1. Equation (27) shows that the instability 
condition is <o*a(m) > » r ; here the alpha particle free energy drive 
overcomes usual Landau damping. This marginal stability condition agrees 
with the numerical result, shown in Fig. 5, from which co+a/coA = 15 is 
marginal. Above this threshold, Eq. (27) indicates that the growth rate y 
will tend to scale linearly with <»*a which again agrees with Fig. 5. 

It should be noted that if the edge plasma density value is reduced, 
the toroidicity-induced mode may possibly resonate with the shear Alfven 
continuum near the plasma periphery, an effect which could be stabilizing 
and should be investigated in the future. 

5. Summary and Conclusion 

Employing the NOVA-K code, we have studied the problems of 
energetic trapped particle stabilization of the n-1 internal kink mode and 
ths excitation of the resonant fishbone mode by resonating with the 
energetic trapped particle magnetic drifts. An analytical dispersion 
relation involving large aspect ratio orderings was derived and studied to 
help understanding the numerical results of the NOVA-K code. Comparisons 
with the results of the analytical dispersion for energetic trapped 
particles with singular pitch angle distribution, such as in the cases of NBI 
and ICRH heatings, showed that the analytical results are qualitatively 
similar to the NOVA-K results which indicate the existence of a stability 
window in the ph space even in the absence of core ion finite Larmor radius 
efiect (finite <D.J). Imposing analytical approximations on the NOVA-K 
code would give incorrect values of critical Ph, which can be an order of 

I 
m",m,p=-
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magnitude different from the correct values. In addition, the results of 
the NOVA-K code indicate that a necessary condition to excite the resonant 
fishbone mode is P2 > p > Pi . where Pi,2 are the ideal MHD critical total 
betas for the n»1 internal kink. This necessary condition is not predicted 
by the analytical dispersion relation. For the trapped a-particles with a 
uniform pitch angle distribution, the numerical results of the NOVA-K code 
are different from the case of energetic particles with singular pitch 
angle distribution, and we found that the trapped a-particle driven, 
resonant instabilities of the n-1 internal mode can lower the critical beta. 

We have also studied the transit a-particle destabilization of the 
toroidicity-induced shear Alfven eigenmodes {TAE) via inverse Landau 
damping associated with the spatial gradient of the a-particle pressure. 
The TAE modes are shown to be strongly unstable with the growth rate 
being approximately linearly proportional to co*a and typically of the order 
of 10"2 coA. Other types of global Alfven waves are stable in ignition 
tokamaks due to toroidal coupling effects. Therefore, primary attention -
especially experimental • should be focused on the toroidicity-induced 
shear Alfven eigenmodes (TAE), which can be strongly destabilized by 
alpha particles. 

Finally, we believe that the tokamak fusion research has evolved into 
a new era that the global plasma behaviors will be greatly affected by 
energetic particles. The kinetic-MHD models, such as the one presented in 
this paper, will eventually replace the MHD model for understanding the 
global plasma behaviors. Therefore, the nonvariational kinetic-MHD 
stability codes would become indispensable tools for studying the global 
plasma behaviors. In the NOVA-K code we have layed out the groundwork 
for implementing energetic particle physics hto a fluid MHD code. The 
energetic particle physics included in the present version of the NOVA-K 
code can still be improved. Some important energetic particle physics that 
need to be included in the future are finite banana width, pressure 
anisotropy, finite particle density, and more realistic particle distribution 
functions generated from Fokker-Planck code. On the other hand, the core 
plasma non-ideal MHD effects such as finite core ion FLR, electron and ion 
Landau resonances, and plasma resistivity, should also be considered for 
certain prob'ems. 
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Figure Captions 

1 (a) The growth rates y/y B computed from the analytical dispersion 

expression, Eq. (24), versus Ph for several values of <£>£ = <ad>/yQ. 
The curve labelled with coo s 3 represents the ideal branch, (b) 

The corresponding real frequencies (rar/yB) versus Ph. 

2 (a) The growth rates, (Y/<BA). ° f t n e n - 1 mode versus ah for 
several values of CT for the "PDX05" equilibrium with average 
beta p - 0.625%, q(0) - 0.8, q(1) - 2.85, R/a - 3.4, R = 1.43. The 

hot particle parameters are A 0 - 1.1, £b/T c * 10, R/pn(0) = 100, 
Mh/Mc - 1, and thus the volume-averaged Ph - 1.38cthP. (b) The 
corresponding negative real frequencies, -(o)r/o)A), versus ah. 

3 The schematic stability window in the p-ph space.which exists 
even in the absence of core ion finite Larmor radius effect (finite 
co.j), due to the NBI or ICRH heated energetic trapped particles on 
the n-1 internal kink mode . 

4 The stability boundaries in (P,q(0)) space for the n-1 fixed 
boundary intrenal modes. The lower stability boundary is due to 
trapped alpha particles. 

5 Growth rate y for the n-1 toroidicity-induced Alfven eigenmode 
(TAE) as a function of the alpha particle diamagnetic drift 
frequency co*a (normalized to the shear Alfven frequency COA) for 
the "EC42.3D" equilibrium. 
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