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ABSTRACT

The Casimir effect in a D-dimensional spacetime pro
duced by a Hermitian massless scalar fielé in the presence of
a pair of perfectly reflecting parallel flat platés is dis-
cussed. The exponential cut-off regularization method is em-
ployed. The regularized vacuum energy and the Casimir energy
of this field are evaluated and a detailed analysis of the
divergent'termé in the regularized vacuum energy is carried
out. The two-dimensional version of the Casimir effect is dis-
cussed by means of ‘the same cut-off method. A comparison bet-
ween the above method and the zéta function regularization
procedure is presented in a way which gives us the unification
between these two methods in the present case.

Key-words: Quantum Field ‘Theory; Vacuum energy; Renormalization. .

PACS NUMBER - 11.10 Gh
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I = INTRODUCTION

In recent years the problem of the infinite of the
vacuum energy of quantized fields has been extensively studied.
One of the first successful approaches concerns Casimir's(l)

work. Since than, this‘problem has been studied for a variety
(2,3) (4)

time dimensions(S).

of geometries and topologies » and in different space-

Following this trend we study the vacuum fluctuation
of a Hermitian massless scalar field defined in an arbitrary
higher dimensional (ﬁ i 4) Minkowskian spacetime. We calculate
the Casimir energy in this higher dimensional spaces between '
parallel (D-2)-dimensional perfectly reflecting flat plates.
Ouf approach is similar to those used by Casimir(l), Pierz(s)
and Boyer(7). '

Another method to obtain the Casimif energy deals
with the analytic regularization — the so called "zeta function
regularization method”. Although apparently simpler, the phy-
sical meaning of this approach was left somewhat obscure in the
past. In this paper we present a connection between the zeta
function method and the cut-off method which intends to shed
some light on this subject. We .will show that the use of the
zeta function can be interpreted as a cut-off method and we
unificate this methods in D = 2.

The organization of this paper is as follows:

In Section II we obtain the expression of the Casimir

energy in a D-dimensional flat spacetime. 1In the first step

we evaluate the energy per unit area of the vacuﬁm state of
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the field inside a perfectly rgfleéting box (Dirichlet's b&un-
dary conditions) which depends on the cut-off function employed.
We employ the standard definition of the Casimir energy, i.e.,
the energy per unit area of the configuration,” wvhich depends |
on the finite distance between one of the pairs of plates, is
subtracted from the energy per unit area associated to a con-
tiguratioﬁ which does not dépehd on this finiée distance. The
divergences that appear are canceled out using this

approach of Casimir genefalized for the D~dimensional case.

.In Section III we sho; that the zeta function regu-
lérization can be understood in terms of the cut-off method.
Conclusions are'given‘in Section 1IV. The_évaluation of a certain
integrai in the complex plane (used in Section II) is carried

out in the Appendix. .

I1 - QUANTIZATION OF A REAL MASSLESS SCALAR FIELD IN A D-DIMEN
SIONAL FLAT SPACETIME CONFINED IN A (D-1)-DIMENSIONAL BOX

A free Hermitian massless scalar field Q(xo,xl,..,,xn'l)

defined in a D-dimensional Minkowski spacetime must satisfy the

generalized Klein-Gordon equation ( = C = 1)

D-1 » '
3 .2 3 .2 |
292 - =) ]Nx) -0 . (2.1)
[ax° jz1 %3 o

If we restrict the field tb the interior of av',
(D~1)-dimensional box with lehghts (L, x de?;}.“LD:é:x"Ai, the

‘e
h

field should be expanded as
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$(x) = D) ) ¢ a N
nl'nz'....“D-l nlnz...nD-l nlnz...nD-l

+ ¢ al (2.2)
nyn,...ny nyN,e..np g '
where
0 s LA 1
¢ = f (x) Eun(-—) sin(=—— X.) ...
n,N,e..0N L L 2
172 D-1 nynye..np 1 2
n
, D-2"
cee 81n(i;:;— 2) sin( Xp.. l{] (2.3)

- the pj's are positive integers once we impose Dirichlet boun-

dary conditions.
The field modes (2.3) and their respective complex

conjugates'form a complete orthonormal basis and a

NaN,eseN
+ 172

’
D-1
a' are interpreted in the standard way, i.e., as des-
nlnzl ® .nD-l . M
truction and creation operators of quanta of the field %(x) with

energy w , given by
nyNy.eefp_y
. 1/2
n,m LT SR ST D LT
“ning...ng_y T [‘rL’z i e RN s i "‘D‘f"’z] -
1°2°°°""D=1 1l 2 D-2
(2.4)

In this Fock representation, there must exist a par-
ticular vector |0>, called the vacuum or no-particle state. The
energy of this vacuum state is

w m

' n n
E(L ,L ’lcoL_ ,A) 'l z (1 )2+(2)2+".
p'M1r2 D-2 z2 n IR P
R TRRRRL, 31

fe T aml/2 -
)€ + (._.__D;'l )2] . : . {2.5)
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Using the condition A << Li (i =1,2,...,D-2) the

expression (2.5) becomes

1 D=2 1 - @ [ )
Ep(LysLysees L A) =5 (0 L) Idk...fdk_ ¥
1'720° ¥ p=2’ 2 ', i - D-2 o 1 o D-2 n=1

2 2
[k1 + kz + ..o k + (—-) ] . {(2.6)

The summation starts at n = 1 because the scalar field
does not include the modes for which one of the integers
RysDyeeecslp 4 vanishes.

The angular part of the integral over (D-2)-dimensional

k space is trivial, once we have:

w D=2 (= 27 v m -
J dk = j{'dr £P-3 [ a3, f d6,sins,. .. f sinP™%5_ _ae
o ik

0 0 0 0 D-3" D=3
D-2
2 [
F( D=2, Jy -

Using (2.7) we obtain

Ep (L, /L L A)-(DRZL) 1 _1 l__

’ g0 @0 f -

1°52 D~2 o 1 P [ RE) ST
© @® 1/2
¥ I ar ¢°-3 [rz + (n”)z) . (2.8)
n=l ‘0

Defining a function F(D) by setting

1 1 1 |
T PR O - @

the energy per unit area can be written as .




Cl!lﬂﬂb*ﬂﬂlé!

(L 'L [ N ) - 'A) ’
it Ul M= = e (A) = F(D) Z I ar r
nL, n=1’0

1/2
oa[t ‘”T’Z] ",

(2.10)

The expression (2.10) clearly diverges. It is possible
to reqularize such expression introducing a convergent factor,

a ultraviolet regulator function, e.g.,
1/2
exp[ A [r + (‘:)2] ] , (2.11)
Re) >0 .

‘The regularized energy per unit area will be denoted
" by € (A,A), thus

' © o 1/2 /2
€y (2,A)=F (D) ) I ar P [r + (BT ) ] exp[ [r 4-(’}\")2)1 ] .
. 0o

n=1
(2.12)

This expression is convergent provided Rel > 0. The
Casimir energy UD(A) (the vacuum energy per unit area) is

defined by

U (A) = lim [}D(A,A) + eD(A,R-A) - eD(A,nR)+eD(A,(1-n)R{] ’
A+0 . (2.13)
R+w : ’

with | s -

0<n <1 .

"In the end of this Section it will become clear why
this definition is adopted. ﬂ

Let us evaluate eD(A,A). We define a new variable X by:

2 1/2 :
x = AL (14 ) . (2.14)

A r
n°n
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It is straightforward then to show that in terms of
the new variable

D-4

| D-1 (=
- p-1 a ax An 2] 2 1
€,(0,A) = (-1)P7'F(D) E—— I ax [ - ]
C A aD-1 Jyg/a X e*-1

(2.15)

The expression (2.15) contains a power of the binomial

a- @dhd.

When D is even the power is an integer and’the
simple use of the Newton's binomial theorem will give a very
direct way of evaluating eD(A,A). When D is odd the expansion
of |1 - (——)2:] yields an infinite power seriés. Verscheld
et al.(8) elude this problem by using a Laplace transformatio;
and integral representations of the cylindrical Bessel functions.
' Howéver, the use of'the power series (finite or infinite) does
allow us to -evaluate eD(l,A{, with greater physicai insight
concerning the nature of the infinities whichiéppear in the

" Casimir effect as we will show now.

Using the notation

0
p
cl’;---ill

cg 2—‘-5——1 - (2.16)

k -1 o0 0 -k+1
Cp ' ’
lnd setting p = 231, the expression (2.15). may be written as
D-1 © - |
D-1 4 An, 2k dx 1

tnf(l,A)=(=-1) F(D) (-1) C — (=) J .
p'hr kzo P dlD 1A TA/A x§E+1 ng "
. 17)
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Substitutin : around X = 0 in
e -1
the expression (2.17) we get
- © B_ _g-2k+l |
—ax 1 _ _ qu______ _ 1
j x 2K+l X_) q£° Q! g-2k=1 ~ @K+I)T Bak+1 M U+ Yk o
q#2k+1 » (2.18)
where
Reu > 0

2n > ju} >0 ,

Yk is a constant and Bq are the Bernoulli numbers.

Substituting the identity (2.18) in the equation
(2.17) we get:

@ B D-1
D-1 ., k k "2k+1 4 AT, 2K AT
e (A,A) = -(-1) F(D)y | (-1t ¢ — 5 LS
p'hr k=g | p (2k+1)1 4,D-1 A
. oo @ B D~1 q..l
D-1 v : k k_g_ 1 4 AT
- (-1 F(D - o +
-LTEO) L qEO (=17 €5 57 T9%-T dAD'l )
q¢2k+1 .
< p-1
D-1 k., 4 AT, 2k
+ (-1) POy § (-nF¥ s Y% ST B . (2.19)
k=0 Pk gD-1 TA

Our discussion will be greatly simplified if we study separatedly

the even and odd~dimensional cases:

A) -~ The even case ‘-

The first term in the expression (2.19) yields

(D-2)!1 1
b-1 °

1 1 ‘ ,

© D=2 "D=2 ., D-2 (2.20)
2 -3—'F(-7-’ A

n
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The second term in (2.19) yields

B
1 1 D-2, A 1.,D/2 "D 1 1
Tz PVE-DTER G+ 7" 5 T 1t
+ terns containing positive powers in A . (2.21)

The third term vanishes because the sum in k is fi-

-nite (0 £ k S 2%1).

B} - The odd case

The first term in the expression (2.19) has the same

functional form as (2.20).
The second term in the expression (2.19) give
1

% D/3 (D'l)(D-Z)F(Q%E) J% + positive powers in A . (2.22)
n A i .

The contribution of the third term in this case does
not vanish and becomes (after the evalvation of the constant
YD-I’ equal to

D~-1

% (-I)D-IF(D) o 2 ¢ (D) (D-1)! ———lB:T + positive powers in A .,

’ 2 (2.23)

Simple algebraic manipulation provides an unigue ex-
pression for the energy ,er unit area, valid for bnth — even and

odd dimensional cases.
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1 “9%?’ 1 1
€pldA) = 3 =575~ (D=1 (D-2) 5 - 57 p=3. . p-2. -1 '
" P\ 2 (—T). (—2‘——) A
n
- um ™ 2rp/200) 47 + g0, (2.24)
A

where 1lim g(D,)A) = 0.
A+0

The first term in the expression (2.24) dominates the
behavior of ED(A,A) when A > 0, and gives rise to a total di-
_vergent energy proportional to the volume between the plates.
So in order to obtain the value of the Casimir energy we have to
subtract the energy of isovoitmetric configurations as it was
doné previously in expression (2.13). Although the second term
does not domiﬁate _eD(X,A) when A + 0, it is a negative di-
vergence and gives rice to an infinite total enrergy préportional
to the surface of the plates. So, in order to eliminate this
divergence it is enough to subtract configurations with an equal
number of pairs of plates. The third term (which is the Casiqir
energy) vanishes when A + @, In this way the auxiliary plates
must be infinitely -separated in order that this auxiliary plates
do not give any measurable cont ribution to the renormalized energy.

Now, it's clear the convenience of the definition used
Sy Casimir for the renormalized vacuum energy presented in ex-
pression (2.13). It's important to stress thatvsince we supposed'
that L, » A(i=}1,2,...,D-2) the geometric parameters of the
configuration are the distance between the pair of plates not
infinitedly appart and the area of this pair of plates (which is
much gteater than the total area oflthe remaining plates).

So we have two phyéical parameters for the céngiguration

and they appear in the divergent terms in expression (2.24).
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The use of the cut-off method in a two~-dimensional
(0-3) box (L1 x A} will give us divergent terms proportional
to the "volume”, L,A  and to the "surface” L,+A of the box. In
the three dimensional box (L1 =L, = A) we will obtain three
divergent éerms proportional to the volume, area and perimeter
(L1 + L, + A) of the box. And so forth for higher dimensional
boxes. In the (D-1) dimensional box (L; = L, = ... Lp.p = A)
the divergent term of higher order must be proportional to the
volume of the box. Although the divergent term of lower order
in'equation (2.24) doéé not give any contribution to the force
between the plates (which leads some authors- to disregard it),'
in the finite box the divergent terms of lower order do con-
triﬁute to the force between any parailel pair of plates of
the box. So ‘these terms cannot be a priori disregaraed.

Using the definition (2.13), the Casimir energy UD(AI

is given by:

= - -D/2 .
UD(A) (47m) r(p/2)z (D) AD'I . (2.25)
This energy per unit area is always negative, then the

force per unit area is attractive and given by

._ 0 -D/2 -1
- 3R UD(A) = =(D~1) (47) r(p/2)g (D) ;5 .(2.26)

The result (2.25) can be obtained using two different
methods. One of them consists in the analysis of the behavior
of the vacuum stress-tensor. This technique is referred to as

the Green function method‘g). The other one is based on the

Fl
’
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direct evaluation of an infinite series with an appropriate re-
gularization procedure. This second method can be implemented in
three differents ways. The first one is the cut-off method, the
second one is based on the analytic continuation in.the number
D of dimensibns(IO). The third one is based on a sugestion given
(7)

by Hawking and uses the analytic extension of a generalized

(12'13). In the next section we will discuss the
zeta regularization method and its connection with the exponen-

tial cut-off method.

III - THE ZETA FUNCTION REGULARIZATION AS A CUT-OFF METHOD

The zeta function regularizatiop method provides the
value of the Casimir energy almost automatically and with no
*aparent” need of infinite subtractions.

(12)

Ruggiero et al. claim that the cut-off method can

be interpreted as a tool to obtain an analytic regularization

® =AW
of the function 21 e . The poles (at A = 0) are subtracted
n=

and taking the 9/3A of this functibn at A = 0 we get the Casimir
energy. So it seems at a first sight that the cut-off method is
a particular form of the analytic regularization.

However, we will now show in this Section that, in a
flat spacetime the zeta function regularization method (an ana-
lytic regularization method "per excellenéia")' can be interpreted
as a cut-off method. This approach is valuable because it unifies
these two methods and reveals, in a simple way,'the ultimate

physical reason for the result éo be the same.
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The zeta function method evaluate the vacuum energy
inside a finite (D-1)~-dimensional box by performing summation
in (D-1) indices. The exponential cut-off method employed in
Section II using the approximation A << Ly performs integration
over (D-2) indices and summation over only in one index. In order
to compare these two methods we will study the D = 2 case, when
for both methods we perform just only one summation. Note that

the expression (2.24) can not be appliéd in D = 2, The vacuum
energy in D = 2 is

B, =3 o =31 72T (3.1)

A direct calculation using the exponential cut-off gives

B, B
A "0 L

7> 2 2+vo00%) . (3.2)

a
Nowvwo have only one divergence proportional to the
_ "volume” of the box. Subtracting isovolumetric configurations

'we eliminate this divergence. So we can define

A+0

R+
To study the zeta function regularization method it is
" important to point out a very simple fact. Every analytic exten-
sion is done in conpected domains. 8o it must be possible ‘to

travel from one point (when the function is well behaved) to

another one (where we shall find our éhysical results, but in
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which car formula does not work) along a smooth path.

Now we inquire: Is the exponential cut-off used too
much strong ? Let us try a weaker cut-off function m;c’. The
regularized enérgy becomes

1 o-1

Y (1-0) 1 A P |
B,(0,A) = 5 w = = (3) ~ . (3.4)
2'! 2 nzl n 2 'n n-zsl n® 1

This cut-off works only if Reo > 2, After some mani-

pulations we get

o-1 o

1
1 1 -2
E,(0,A) = 5 (J) Tlo=1) [Jo x~ "Z;(x)dx +

J x9~2 zl(x)d{l , (3.5)
1 .

1
vhere Z,(x) = .
1 e*-1

So, when ¢ -+ 2+, oER our cut-off choice fails.

Let us study the divergence in the 'path';. If in the
B B
0

first integral in ¢(3.5) we make zl(x) = (zi(x) - ?0) + - we get:

o-1 B

1
1 A 1 o=-2 0
Ey(0,A) = 5 (?) Tlo-17 [IO x (zl(x) - x)ax +

® _0-2 1 490 _1 B

LA (346)

The last term in (3.6) has an isolated singularity
which is a first order pole. The divergence part (for 'o'v- 2)
of (3.6) is given by % % 2%. 'This divergence is proportional
to the"volume” of the box and vanishes if wé make the Cas’imir-like
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regularization, subtracting isovolumetric configurations. So

let us define

We note that Yz(o,A,R) so defined, as a function of o
can be aralyticaly extended to the whole complex plane, inclu-

ding ¢ = 2

. o o-1 o-1
Y,(0,A,R) = 3 [(%) + (B -

X
2 w w

o-l]

1 B o
1 0-2 0 . 0=-2
* Tlo-17 [Jo x “(Zy(x) - T)dx + Il x zl(x)da +

1 (.a.01 R-a.0-1 g o-1 1 B
*2 [‘?’ P ER - A e - 6w

Going back (using (3.4) and (3.7)) we get

o~-1 o-1 o-1
Y,(0,A,R) = 3 [(%) + &Rl -

The Casimii}energy is inen by

U,(A) = 1im Y,.(0,A,R) = =~ L 33 ' 4(3 10)
? Roveo 2% §n : *
o-+0

. Now we can unify both methods in order to exhibit the
link between them. Let us define a mixed cut-off regularized

energy:

E,0,AA) =3 [ w we , C(3.11)
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with

Rel > 0

Rec > 2 .
Then:

Yz(olAlAlR) = Ez(olAlA) + Ez(olAlR-A) - Ez(olAlR) .
(3.12)

Y, is defined in the region A 2 0, 0 2 0. The fact
that the results obtained by the traditional cut-off method
- and the zeta function regulariiation method yields the same re-
sult follows from a very simple fact: Y2 is continuous in the

domain and then the limits

lim YZ(O,A,A,R) = lim Yz(o,o,A,R) R {3.13)
A=+0 . - o+0 ’

must be the same.

IV - CONCLUSIONS

In this paper we derived two interesting results. In
Section 1I we extended in a straightforward way the approach
used by Casimir, Fierz and Boyer to calculate the vacuum-renor-
malized energy to a higher gimensional flgt spacetime. We have
stressed that, for the success of this method, we need to sub-
tract configurations not only isovolumetric but also configu-
rations with the same area of plates. |

In the Section III, using the insight achieved by the
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above observation, we éroved that the zeta function regularized
method in D = 2 can be interpreted as a cut-off method, that
needs the same artificie: isovolumetric configurations sub-
traction. Based in this fact we proved that the exponential

cut-off and the zeta function methods are totally equivalent in

D = 2.
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APPENDIX

The expression (2.19) is

ol © B_  qg-2k-1
I ‘%%ii“i}"' -1 gt u-2k-1 - (2k11)l Bok+r1nu + Yy o
u X e’ -1 q=0 9 q
q¥2k+1 . (A.1)
where
Re. u>290

2n > Ju] > 0.
We will define:

1 1 2k+1

B, . ...
800 = T X T 2, . @2
e - ,

gm0 ¥
The expression (A.2) is the integrand without its

polar parts around zero. Using (A.2) in (A.1l) we get, if k > O

® 2k

® B_ .g-2k-1.
ax 1 I g u

—_—t., = £, (X)ax - § e . (A.3)

Lu x2k+1 eX-1 u 1 q=0 q! g=2k-1
Using (A.3) in (A.1), k > 0 we get:
© © B q-2k-1

Y, = I gLxax s J A (A.4)
ko gy qu2k+2 q', q-2k ,

When u - 0 the summation in (A.4) vanishes, but

because fl(*) is even we get

1 (* | |
Y * 3 I-wfl (X) dx . | - (A.S)
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In the complex plane the function fl(X) have poles
inX=2n71 (n#0,n€ N). Using the Cauchy theorem and the
path of integration - a semi circle with center in the origin

in the uper half plane when R = (n + %) ~we have:

Y, = ®i. ] Res (f,(X), 2wni) =
k ne1 1

%——’}-ﬁ;(zkﬂ) . | (A.6)
(2n1)
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