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ABSTRACT

The Casimir effect in a D-dimensional spacetime pr£

duced by a Hermitian massless scalar field in the presence of

a pair of perfectly reflecting parallel flat plates is dis-

cussed. The exponential cut-off regularization method is em-

ployed. The regularized vacuum energy and the Casimir energy

of this field are evaluated and a detailed analysis of the

divergent terms in the regularized vacuum energy is carried

out. The two-dimensional version of the Casimir effect is dis-

cussed by means of the same cut-off method. A comparison bet-

ween the above method and the zeta function regularization

procedure is presented in a way. which gives us the unification

between these two methods in the present case.

Key-words: Quantum Field 'Jheory; fecuum energy; Renormalization.

PACS NUMBER - 11.10 Gh
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I - INTRODUCTION

In recent years the problem of the infinite of the

vacuum energy of quantized fields hás been extensively studied.

One of the first successful approaches concerns Casimir*s

work. Since than, this problem has been studied for a variety

of geometries ' and topologies , and in different space-

time dimensions * '.

Following this trend we study the vacuum fluctuation

of a Hermitian massless scalar field defined in an arbitrary

higher dimensional (D 2 4) Minkowskian spacetimê. We calculate

the Casimir energy in this higher dimensional spaces between

parallel (D-2)-dimensional perfectly reflecting flat plates.

Our approach is similar to those used by Casimir , Fierz

and Boyer * ' .

Another method to obtain the Casimir energy deals

with the analytic regularization — the so called "zeta function

regularization method". Although apparently simpler, the phy-

sical meaning of this approach was left somewhat obscure in the

past. In this paper we present a connection between the zeta

function method and the cut-off method which intends to shed

some light on this subject. We .will show that the use of the

zeta function can be interpreted as a cut-off method and we

unificate this methods in D » 2.

The organization of this paper is as follows:

In Section II we obtain the expression of the Casimir

energy in a D-dimensional flat space time. In the first step

we evaluate the energy per unit area of the vacuum state of
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tbe field inside a perfectly reflecting box (Dirichlet's boun-

dary conditions) Which depends on the cut-off function employed.

We employ the standard definition of the Casimir energy, i.e.,

the energy per unit area of the configuration," which depends

on the finite distance between one of the pairs of plates, is

subtracted from the energy per unit area associated to a con-

figuration which does not depend on this finite distance. The

divergences that appear are canceled out using this

approach of Casimir generalized for the D-dimensional case.

In Section III we show that the zeta function regu-

larization can be understood in terms of the cut-off method.

Conclusions are given in Section IV. The evaluation of a certain

integrax in the complex plane (used in Section II) is carried

out in the Appendix.

II - QUANTIZATION OF A REAL MASSLESF SCALAR FIELD IN A D-DIMEN

SIONAL FLAT SPACETIME CONFINED IN A (D-l)-DIMENSIONAL BOX

A free Hermitian massless scalar field *(x ,x ,...,x * )

defined in a D-diroensional Minkowski spacetime must satisfy the

generalized Klein-Gordon equation (M • C » 1)

^2 I 2

If we restrict the field to the interior of a

(D-l)-dimensional box with lenghts (Lj x L J ^ . / ^ K - A ) , the

field should be expanded as
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• (x) = ' ) $ a +_ _ _ n.n-j...n_ . n.n~...n_. .n , ,n- , . . . ,n_ . 1 2 D-l 1 2 D-l

+ •* a+ „ , (2.2)
n n n n ^ ^

where

0 I l 2

• n i n 2 . . . n n . - f
n <x > L 5 1 1 1 ^ S Í n ( í 7

1 2 D-l n 1 n 2 . . . n D . 1 I- 1 2

* (2.3)
)-2

the n.'s are positive integers once we impose Dirichlet boun-

dary conditions.

The field modes (2.3) and their respective complex

conjugates form a complete orthonormal basis and a^ „ ,
+ . nln2"*nD-l

a' are interpreted in the standard way, i.e., as des-
"ln2"*nD-l
truction and creation operators of quanta of the field *(x) with

energy w , given by
"ln2"#nD-l

Wnln2"-nD-l * L L1 L2 + LD-2 + A

(2.4)

In this Fock representation, there must exist a par-

ticular yector |0>, called the vacuum or no-particle state. The

energy of this vacuum state is

1 r Vni* 2 "2* 2
ED ( Ll / L2"" LD-2 / A ) * 2 „ i I iLT"1 "*(L7") + "•

1' 2'***' D-l

^ 2 • ( 2 . 5 )
D-2 A -J
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Dsing the condition A « Li (i « l,2,...,D-2) the

expression (2.5) becomes

dkD-2

. (2.6)

The summation starts at n = 1 because the scalar field

does not include the modes for which one of the integers

n. «n^>• • • >n_._. vanishes.

The angular part of the integral over (D-2)-dimensional

k space is trivial, once we have:

f* D - 2 f38 n , (2TT (TT ,V
dk = dr ru"J da, d6,sin6o... sin

2Pr) 2 f CO

dr rD"3 . (2.7)

p-2

I . .
Using (2 .7) we obta in

D-2
E D ( L 1 / L 2" # " L D-2' A )

I fdrr0"3 f
n»l j 0 I

Defining a function F(D) by setting

^ i , ^ 2 r ( D 2 }

f d r r 0 " 3 f r 2
+ <£>2] . (2.8)

the energy per unit area can be written as
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1/2
F(D) I f dr rD"3[r2

+ &)
2

n»l '0 l A J
i ""* w (2.10)

The expression (2.10) clearly diverges. It is possible

to regularize such expression introducing a convergent factor,

a ultraviolet regulator function, e.g.,

exp[- X (r2 + (^f)2 j1 2 ] , (2.11)

ReX > 0

The regularized energy per unit area will be denoted

by e.D (A,A), thus

tD(».A).P(D) j

(2.12)

This expression is convergent provided ReX > 0. The

Casimir energy U_(A) (the vacuum energy per unit area) is

defined by

feD(X,A) + cnU,R-A) - en(»,nR)+eD(X,(l-_(A) - Xlm

with

o < n < i

In the end of this Section it will become clear why

this definition is adopted.

Let us evaluate en(X,A). We define a new variable X by:

w .22 1/2
^ (1 + M») . (2.14)
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It is straightforward then to show that in terms of

the new variable

D-i d0""1 r dx f xi 2l2§1

D ' dXD~l 'Xir/A X I M J eX-l
(2.15)

The expression (2.15) contains a power of the binomial

(1 - (j~) ). When D is even the power is an integer and the

simple use of the Newton's binomial theorem will give a very

direct way of evaluating eD(X,A). When D is odd the expansion

of ll - (jj)2 I 2 yields an infinite power series. Verscheld

et ai. W elude this problem by using a Laplace transformation

and integral representations of the cylindrical Bessel functions.

However, the use of the power series (finite or infinite) does

allow us to evaluate e_(A,A), with greater physical insight

concerning the nature of the infinities which appear in the

Casiroir effect as we will show now.

Using the notation

C2 . E i | 2 l l (2.16)

p ( p - l ) . . . ( p -
" p k l ' • •

a,

and setting p * ^rp-, the .expression (2.15). may be written as

CO D " * l f * *

k-0 p dX0"1 A h\/A X2k+1 ex-l *
. (2.17)
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Substituting - = — by its power serie expansion around X » 0 in
e -1

the expression (2.17) we get

dX 1

l« X 2 k + 1 eX-l

where

q! q-2k-l B2k+1 l n U

q

q*2k+l
(2.18)

Re u > 0

2* > |u| > 0 ,

Yj. is a constant and 8 are the Bernoulli numbers.

Substituting the identity (2.18) in the equation

(2.17) we get:

(-1) c TT 2k
725+iTT

Jo
• (- P(D) (2.19)

Our discussion will be greatly simplified if we study separatedly

the even and odd-dimensional cases:

A) - The even case

The first term in the expression (2.19) yields

(2.20)
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The second tern in (2.19) y i e l d s

1 1 , n . . ._ o . r # D-2 . A . . w.D/2 BD 1
T 7 7 iD-1} ( D - 2 ) F ( —>^ + (- I} ""T 772 iD-1} (D-2)F(—>^D + (- I} "D" (D-D! I ̂ T *

+ terns containing positive powers in X . (2.21)

The third term vanishes because the sum in k is fi-

nite (0 S k S * — . ) .

B) - The odd case

The f i r s t term in the expression (2.19) has the same

functional form as (2.20) .

The second term in the expression (2.19) give

1 it?? (D"1) (D-2>ri^> "1> + Positive powers in X . (2.22)
TT X - •

The contribution of the third term in this case does

not vanish and becomes (after the evaluation of the constant

to

D-l
4 (-1)D"1F(D) c 2 ;(D)(D-1)I ^ - T + positive powers in \ .
2 p (2A)0"1

(2.23)

Simple algebraic manipulation provides an unique ex-

pression for the energy ^er unit area, valid for both — even and

odd dimensional cases.
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1 -JTT Í0"1» <D-2> js "

- (4TT)~D/2r(D/2)Ç(D) - ~ - + g(D,X) , (2.24)
A

where lim g(D,X) « 0.

The first term in the expression (2.24) dominates the

behavior of e_(X,A) when X * 0, and gives rise to a total di-

vergent energy proportional to the volume between the plates.

So in order to obtain the value of the Casimir energy we have to

subtract the energy of isovolumetric configurations as it was

done previously in expression (2.13). Although the second term

does not dominate eD(X,A) when X -»• 0, it is a negative di-

vergence and gives rise to an infinite total energy proportional

to the surface of the plates. So, in order to eliminate this

divergence it is enough to subtract configurations with an equal

number of pairs of plates. The third term (which is the Casimir

energy) vanishes when A •*• ». In this way the auxiliary plates

must be infinitely separated in order that this auxiliary plates

do not give any measurable contribution to the renormalized energy.

Now, it's clear the convenience of the definition used

by Casimir for the renormalized vacuum energy presented in ex-

pression (2.13). It's important to stress that since we supposed

that L, >> A (i » l,2,...,D-2) the geometric parameters of the

configuration are the distance between the pair of plates not

infinitedly appart and the area of this pair of plates (which is

much greater than the total area of the remaining plates).

So we have two physical parameters for the configuration

and they appear in the divergent terms in expression (2.24).
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The use of the cut-off method in a two-dimensional

(D»3) box (L« = A) will give us divergent terms proportional

to the "volume", LjA and to the "surface" Lj+A of the box. In

the three dimensional box (L. = L- = A) wo will obtain three |

divergent terms proportional to the volume, area and perimeter

(L. + I»2 + A) of the box. And so forth for higher dimensional

boxes. In the (D-l) dimensional box (L. = L, * ... LD_2 ~
 A'

the divergent term of higher order must be proportional to the

volume of the box. Although the divergent term of lower order

in equation (2.24) does not give any contribution to the force

between the plates (which leads some authors to disregard it),

in the finite box the divergent terms of lower order do con-

tribute to the force between any parallel pair of plates of

the box. So these terms cannot be a priori disregarded.

Using the definition (2.13), the Casimir energy UD(A)

is given by:

UD(A) = -(4TT)"D/2 r<D/2K(D) - ^ . (2.25)
A

\

This energy per unit area is always negative, then the

force per unit area is attractive and given by

" Jk Ü D Í A ) " -ÍD-D(47r)"D/2r(D/2);(D) -^ .(2.26)

The result (2.25) can be obtained using two different

methods. One of them consists in the analysis of the behavior

of the vacuum stress-tensor. This technique is referred to as

19)
the Green function method' . The other one is based on the
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direct evaluation of an infinite series with an appropriate re-

gularization procedure. This second method can be implemented in

three differents ways. The first one is the cut-off method, the

second one is based oh the analytic continuation in the number

D of dimensions* . The third one is based on a sugestion given

.by Hawking ' and uses the analytic extension of a generalized

zeta-function<12'13). In the next section we will discuss the

zeta regularization method and its connection with the exponen-

tial cut-off method.

Ill - THE ZETA FUNCTION REGULARIZATION AS A CUT-OFF METHOD

The zeta function regularization method provides the

value of the Casimir energy almost automatically and with no

"aparent" need of infinite subtractions.
Í12ÍRuggiero et al. ' claim that the cut-off method can

be interpreted as a tool to obtain an analytic regularization

of the function I e . The poles (at A • 0) are subtracted
n»l

and taking the 3/3 A of this function at A - 0 we get the Casimir

energy. So it seems at a first sight that the cut-off method is

a particular form of the analytic regularization.

However, we will now show in this Section that, in a

flat spacetime the zeta function regularization method (an ana-

lytic regularization method "per excellentia") can be interpreted

as a cut-off method. This approach is valuable because it unifies

these two methods and reveals, in a simple way, the ultimate

physical reason for the result to be the same.
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The zeta function method evaluate the vacuum energy

inside a finite (D-l)-dimensional box by performing summation

in (D-l) indices. The exponential cut-off method employed in

Section II using the approximation A « L^ performs integration

over (D-2) indices and summation over only in one index. In order

to compare these two methods we will study the D « 2 case, when

for both methods we perform just only one summation. Note that

the expression (2.24) can not be applied in D « 2. The vacuum

energy in D • 2 is

A direct calculation using the exponential cut-off gives

A B0 * B2 2
E9(X,A) - •£- -£•- i -^ + 0(A

z) . (3.2)

Now we have only one divergence proportional to the

"volume" of the box. Subtracting isovolumetric configurations

we eliminate this divergence. So we can define

Ü,(A) « lim [E2(A,A) + E2(\,R-A) - E2(A,R)"1 . (3.3)

To study the zeta function regularization method it is

important to point out a very simple fact. Every analytic exten-

sion is done in connected domains. So it must be possible to

travel from one point (when the function is well behaved) to

another one (where we shall find our physical results, but in
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which car formula does not work) along a smooth path.

Now we inquire: Is the exponential cut-off used too

i wetuiei C U I - Q I I ivmciion «"

regularized energy becomes

much strong ? Let us try a weaker cut-off function co~ . The

«-°> - I (S, ^ _ i j . (3.4)

This cut-off works only if Re o >2. After some mani-

pulations we get

E2(O,A)

j x0"2 Zjíxídxl r (3.5)

where Z. (x) » ~ —
1 ex-l

So, when a •*- 2 , a SIR our cut-off choice fails.

Let us study the divergence in the "path". If in the
B B

first integral in (3.5) we make Z1(x) « (Z^x) - -£•) + -£• we get:

<• • 0—1 « r— r\ _ . B A

B2(o,A)

f X0"2 Zl(x)dx] • \ (f)
(3.6)

The last term in (3.6) has an isolated singularity

which is a first order pole. The divergence part (for o • 2)

of (3.6) is given by ^ f ̂ TJ- This divergence is proportional

to the "volume" of the box and vanishes if we make the Casimir-like
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regularizat ion, subtract ing isovolumetric configurations. So

l e t us define

Y2(0,A,R) » E2(o,A) + E2(o,R-A) - E2(o,R) , (3.7)

He note that Y2(o,A,R) so defined, as a function of o

can be aralyticaly extended to the whole complex plane, inclu-

ding 0 = 2

1 f A °**1 R-A °~1 R °~f [(£) + (SA) (£)Y 2 ( O , A , R ) ^ • »if» - » •jf

[ x°"2Z1(x)dx]

& w — * T) & w — A o v — A l i n
2 • fc) + t~̂ T") " t'ir) I "FT^TTT /,_-» • (3.8)

Going back (using (3.4) and (3.7)) we get

Y2(a,A,R) - f (§) + (SIA) -(f) k(a-l) (3.9)

The Casimir energy is given by

tr B20,(A) • lira Y,(orA,R) - - T - T • (3.10)

Now wo can unify both methods in order to exhibit the

link between them. Let us define a mixed cut-off regularized

energy»

I0
E2(o,A,A) « \ I «n «I

0 e n , (3.11)
n«l
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With

ReX > 0

Reo > 2

Then:

Y2(o,A,A,R) - E2(o,ArA) + E2(o,A,R-A) - E2(o,A,R) .

(3.12)

Y2 is defined in the region A 2 0, o 2 0. The fact

that the results obtained by the traditional cut-off method

and the zeta function regularization method yields the same re-

sult follows from a very simple fact: Y2 is continuous in the

domain and then the limits

lint Y.<0,A,A,R) * lim Y,(o,0,A,R) , (3.13)
A*0 a+0 *

must be the same.

IV - CONCLUSIONS

In this paper we derived two interesting results. In

Section II we extended in a straightforward way the approach

used by Casimir, Fierz and Boyer to calculate the vacuum renor-

malized energy to a higher dimensional flat spacetime. We have

stressed that, for the success of this method, we need to sub-

tract configurations not only isovolumetrie but also configu-

rations with the same area of plates.

In the Section III, using the insight achieved by the
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above observation, we proved that the zeta function regularized

method in D = 2 can be interpreted as a cut-off method, that

needs the same artificie: isovolumetric configurations sub-

traction. Based in this fact we proved that the exponential

cut-off and the zeta function methods are totally equivalent in

D « 2.
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APPENDIX
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The expression (2.19) i s

dX 1 " B q u q " 2 1 c " 1

17 * " I ! 2 k lu X e -
q#2k+l

where

f l ( x )
1

Re. u > 0

2ir > | u | > 0 .

We w i l l d e f i n e :

TK+IT ^
XZ K + 1 e - 1 q»0

B 2 k + 1mu + vk ,

(A.I)

27T. ( A . 2 )

The expression (A.2) is the integrand without i t s

polar parts around zero. Using (A.2) in (A.I) we get, i f k > 0

"S+T TT" - flu X e -1 'u
(x)dx - q-0 q

(A'3)

Using (A.3) in (A.I), k > 0 we get:

r
f-

Ju 2

(X)dX+
q-2k+2

(A.4)

When u * 0 the summation in (A.4) vanishes, but

because f<(X) is. even we get

Yfc « i f f.(X)dX . (A.5)
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In the complex plane the function f.(X) have poles

in X = 2mr (n ̂  0 , n 6 II ). Using the Cauchy theorem and the

path of integration - a semi circle with center in the origin

in the uper half plane when R = (n + i) we have:

00

Yk - iri I Res (f^X), 2imi) -

" "5" ^ 5 T Ç(2Jc+l) . (A.6)
Â (2iri)ZK
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