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Abstract

We study spinning self-dual particles in two dimensions. They are obtained from the

chiral bosonic particle through the square root technique. We show that the resulting field

theory can be either ferrcionic or bosonic and that the associated self-dual field reveals its

Lorentz tensor structure which remains hidden in the usual formulations. We also calculate

the spinning ^elf-dual particle propagators using the BFY formalism.
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1. INTRODUCTION

Sclf-«lual fields in two dimensions, also known as chiral bosons, play a fundamental

role in the formulation of the he»erotic string | lj . They can be understood, through

bosonization, as solitouic excitations of a theory of Weyl fennions [2]. More generally, the

bojonization procedure can be extended to show that chiral bosons give rise to a class

of self-dual fields of higher spin [3,4]. They have also been used to provide a systematic

construction of the Thirring field by using right aad left moving fields [5].

The quantization of chiral bosons is plagued with difficulties. SiegeFs formulation

[C] ha.-: a local symmetry and when quantized there appears an anomaly [7]. It has been

claimed [S] that Siegel's (bnnulation is equivalent to the dimension zero field formulation

of Floreaiiini and Jackiw [2]. However, as has been shown recently, this field is non-causal

[4*. Another formulation proposed in ref.[2] makes use of a dimension one field with an

unusual commutation relation and a non-local Lagrangian. This unusual commutation

relation has its origin in a Dirac bracket structure because the non-local Lagrangian gives

rise to a second-class constraint (9j.

In order to gain some more insight into the quantization of self-dual fields it was pro-

posed to reconsider the problem starting with a theory for a chiral bosonic particle, that is,

a left moving massless rclativistic particle [10]. It wuá shown that requiring reparametriza-

tion invariance (with respect to the proper-time) of the particle action it is possible to find

a consistent formulation for the theory. The basic constraint for the chiral particle is that

its energy and momentum are equal. Po =• P\. Since this constraint does not lead to a

reparametrization invariant action [10] the following constraint was considered

with -j JÉ 0 a real parameter. The BFV quantization of this theory leads to the same

propagators found in rcf.[2] for the fields of dimension zero and one when 7 = 1 and —1,

respectively. For general 7 it leads to the class of self-dual fields of reef.[3] but causality

[4] restricts ; to be an integer lesser than 1. Since we also have 7 ^ 0 we take Uom now

on *• to be an integtrr lesser than 0, that is 7 = —1, —2.. . . f.

f Our 7 is related to that of refs.[3.4] by 7#Bf, = 1 - £j
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On the other side one can consider the canonical quantization of (1.1). In this case

the constraint (1.1) must be imposed on the wave function if/

(1.2)

1B a second quantized version we require that (1.2) should be obtained from an action

(1.3)

from which we find that the dimension (which has the same value as the spin) of the field

$ is | ( 1 — 7). At first sight it seems that 0 has only one component although it has spin

equal or greater than one (since 7 — —1,-2, . . . ) . In fact its Lorentz tensorial structure

is hidden in this formulation and, as we shall see later cm, the spinning self-dual particle

makes it manifest.

A procedure to find the supersymmetric version of a bosonic theory consists in taking

the square root of the bosonic constraints [11]. In other words it means that we introduce

a set of Grassmann variables O,,(ft = 0 , . . . , D — 1 where D is the dimension of the space-

time), with Poisson brackets

{**,M=2i?,r (1.4)

and with them construct Grassmannian constraints S such that their Poisson brackets are

proportional to the bosonic constraints. For the relativistic particle this procedure gives

the spinning particle, a supersymmetric theory* whose propagator is the Dirac propagator

[12]. The appearence of an unsuspected supersymmetry associated to the resulting theory

is characteristic of the square root technique.

In this paper we apply the square root technique to the constraint (1.1) to find the

supersymmetric version of the chiral bosonic particle. In section 2 we study the classi-

cal spinning self-dual particle formulation, discussing the Grassmannian constraint, the

Lagrangmn formulation and its local symmetries. In section 3 we consider the canonical

quantization showing how the Lorentz structure of the fields manifest themselves. We

ftlso show that the square root technique does not always lead to fermion fields since for

7 =» 1 — 2n, n an even positive integer we get fermionic fields while for n an odd positive



integer we get bosonic fields. In section 4 we apply the Batalin-Fradkin-Vilkovisky (BFV)

quantization formalism obtaining the propagators «nd showing its full structure. Final

remarks are made in section 4.

2.CLASSICAL SPINNING SELF-DUAL PARTICLES

We start by considering the constraint (1.1) with 7 = —1, -2 , . . . and trying to find m.

Grassmannian constraint S such that it satisfies the Poissoo bracket

{$,£} = or (2.1)

with a y? 0 a real number. Using the Grassmiuui variables 0p(/i = 0,1), satisfying (1-4), we

choose S to be a linear combination of them with coefficients depending on the P/s. If we

also require that only integer powers of P/s are allowed in these coefficients f we conclude

that 7 must be odd, so that T has an even power of P/s. We can then easily find the

coefficients of the expansion of S in terms of Bjs and with an appropriate normalization

S can be writ tea as

S = - JMI" 2° - y)P^ - J*id +2a - ^)P^, 7 - -1,-3, . . . (2.2)

The relative sign of the 6/s terms is not fixed. It corresponds to a freedom allowed

by the discrete symmetry S0 -» -$p, for each $p independently, which is present in (1.4).

For definiteness we take the same sign for both terms. The real number a also is not fixed.

It corresponds to a freedom allowed by the rigid continuous symmetry 0+ —* ãê+,0-. —»

â~10-,0± = $o ± $i, which is manifest when we rewrite (1.4) in light-cone components.

Since we did not find any natural value for a we shall keep it in all formulas. Of course,

the results we obtain are independent of a and the only restriction on it is o jí 0.

We can now write the action

5 = I*dr[P>X0 + V*,, + NT + \$] - V f o ^ i r , ) (2.3)

t Since otherwise the canonical quantization for example would be troublesome involving

non-integer pi ers of P0's.



where N and A are the Lagrange multiplier» for the constraints T and 5 , respectively,

and r is the proper time of the spinning self-dual particle. A dot denotes derivation with

respec to r. The boundary term in (2.2) b needed in order to hav-e only one boundary

condition on the Grassmann variables [12} #»(rt) + f»(r*) = ?„, while for the A',, we have

two boundary conditions A%(r,) = A"F(1), A',(r,) = X,(2).

By eliminating Pm through its equations of motion,

i , . » x

-'4(4)
*

we get after some algebra that the action (2.3) can be rewriten as

where b.t. are the boundary terms in 9 in eq.(2.3). Under reparametrizations

6X, » eX,, é.X = (í.V)'

Mp = tè» ÍA=(eA)T (2.6)

with <(r) the parameter for reparametrizations, we can easily show that for 5 = fdrL

hi = itL) (2.7)

In order for the action to be invariant under reparametrizations we must have <(rj) =

e(rj) = 0 aa usual.



We find the local supersymmetry transformations by taking the Poisson bracket be-

tween 5 and .Yp or 9r and we get

^ ^ (2.8)

with Pp given by (2.4)T while for the Lagraage multipliers we have, according to the BFV

formalism (13]

fS»o£A, 6\ = ( (2.9)

where ((r) is the parameter for local supersymmetry. The supersymmetry transforma»

tions so obtained do not have the standard form and look very complicated. While for the

spinning particle case they can be seen as the transformations for one dimensional super-

gravity coupled to scalar fields here they do not have this interpretation or any other simple

interpretation. After inserting P0 in (2.S) we find for the variation of the Lagrangian

while the boundary terms give a contribution

-*"-«jV(2)

lV iV(2) / 87

(2.11)

Adding the t-wo terms we find that in order for the action to be invariant we need

{(r t) = 0 as in the spinning particle case (12).



The conditions on the parameters mean that when we quantize the theory we must

have second order differential equations for them. This allows us to choose the proper time

fpnfe N * 0 for reparametrizations and Â =r 0 for supersyrametry.

3.CAKONICAL QUANTIZATION

To perfoiin the canonical quantization we promote Pm and X0 to operators obeying

canonical comntation relation», 9r to operators 7^, thai due to (1-4) obey the antkommu-

tation iriations

' 2 i f » » (3.1)

the constraint S (2.2) on the wave function f. Of course, we have a representa-

tlon for fm in (3.1) as 2 x 2 Dirac matrices, which for definiteness we take 70

and 7s * 7»7i- In this representation we have for Sifr » 0

0 ) ( 3 2 )

We now require that this equation should be obtained from an action

5 = j#x$S1> (3.3)

and from this we conclude that the dimension of ty is 1 — ^(7 + 1). Since 7 is odd and

negative we can write it as 7 = 1 —2n, n = 1,2,. . . and we find that for n odd V' is a bosonic

field while for n even tHs a fermionic field. This is quite remarkable since in general the

square root of a bosonic theory produces a fermionic theory.

For n = l , 7 = - l , t f has dimension 1 and it is a boson. We can not get much

information about the Lorentz tensorial structure of <£> from (3.2) or (3.3) besides that it

must have at least one spinor index. Since in this case ^ has spin 1 we can take it to be in

the (J, | ) symmetric representation of the Lorentz group ^o^ = ^ a . If we now introduce

the charge conjugation matrix C = ioj in order to upper and lower spinor indices we can

write

)ttí,+/7(7sCW (3.4)
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since only jmC and i%C are symmetric. We do not need the pseudo-scalar field B since

we are Healing with a spin one field and as wr shall srr its field equation is actually trivial.

Using explicitly the representation for the Dine matrices in (3.4) wr find that (3.2) yekb

B(x) --Jéyt c(*, -y,)£(*i,yi) = B(x) » 0

« 0

where .4* = .4° ± .41. Then B = A* = 0 and A~ is the minus light-cone component of a

vector self-dual field. Notice that the addition of a further index in if does not invalidate

(3.3) so we still have it as an action for the vector field.

If we now take n = 2,7 = —3 and we have a iermionic field of spin | . We take v in

the ( | , | , | ) totally symmetric representation of the Lorentz group

5 **(~,,C)a9 (3.6)

and (3.2) reduces to

/ 0 V-ft^V^^-O Í3 71
U ^ r 1 o ;U/»J"° (37)

We then find the two equations

- J rfyi <(X| -yi)ih?y{*9,Vt)- j / rfyi «{»i - ^ ) j / <fe|
«I

rfy «(*, - y( Wi*,(*t, yi) = 0 (3.9)

From (3.9) we have t v 7 = 0 and by using (3.6) we find ^ = ^ J = 0. And from (3.8) we
9

learn that tj is a self-dual field. Therefore ^ is a Weyl fermion with the plus light-cone

component zero and the minus light-cone component self-dual.

This procedure can be extended straightibwardly. For general n we have a field

0»i...o.+i totally symmetric describing spin £(n + 1) with only one of its components

nonvanishing.



Notice that the case n m 0 can abo be considered. It would give us a spinor fsrld

satisfying

0 (3.10)

whkh with appropriate boundary coaditioos for vi describes a Weyl fcnnkm. We only

disregard it because the bosonic theory which it came firom involves a non-causal field [4j.

4. BFV QUANTIZATION. •

The BFV quantization [13J is straightfoward. We Introduce for the constraint 7 two

pairs of fermionic ghosts 17,7, V,V satisfying

- ! (4.1)

and for the constraint S two pairs of bosonic ghosts i>t5,e,c satisfying

{S,c} = {M} = - l (4-2)

Taking into account (2.1) the BRST charge is given by

Q = rfr+cs + n.vP+nA* + ^ c 1 (4.3)

where Us and FI* are the canonical momenta of the Lagrange multipliers ;V and X, re-

spectively. The propagator is defined as

/DX, DP, D9PDNDUN DX DUxDVDnDVDnDbDcDlDc expt5,// (4.4)

where the effective action S,// is given by

St// = I dr[P-X,. + -9*9, + n.viV + nAA - Vf\ - Pii + K + 6c - {(?, *}) (4.5)
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the propagator being independent of • [13]. According to the end of section 2 we can

chowe the proper-time gauge A'cO and Ã K O . We can implement this by choosing the

gauge frrmion • as

• »iV?+rf (4.$)

which implies

lQ,*) = -NT + S\-r?-* + i*&cX (4.7)

The functional integral over the ghost fields give* rise to harmless determinant factors

that can be absorbed in an overall normalization constant. The integration over Us i

that only the zero mode of Ar survives, call it c. and the functional integral over N reduces

to an ordinary integral over c. The range of integration for c b taken to be finom 0 to oo, as

usual, in order to integrate over only one classical trajectory f. l h e functional integration

over Ux means that only the zero mode of X survives, call it A», and the functional integral

over X reduces to an ordinary Berexin integral over X%.

Then (4.4) reduces to

1"dc IrfA, JDXWDP,D#,expi jdr{PX + J## + cT-SA.) (4*)

We now perform the change of variables X , » Jf,(l) + ^ » ( r - r,) + K, where A.Y, -

A',(2) - A',(l), Ar = T3 - T, and with ) , satisfying the boundary conditm» l^(r,) =

Y,{T2) m 0, and also #, = \-jm + 9m with 9W satisfying the boundary conditions f , (r,) -

#J(TJ) B 0. Then, integrating over the remahaDg variable» we get (up to numerical factors)

7
(4.9)

Using the representation for the Dirac matrices given before, (4.9) become» in momentum

space (dropping out the it factors)

A(JT(1),A(2).7I.)

f See ref.[14] for a detailed exposition oo the BFV formalism applied to relatimtic

particle*.



À ( p ) = l ^ i J (4.10)

In view of the results of section 3 we interpret this propagator as the propagator for

the field ̂ a,at...aH so that the propagator À* has the general structure

.()

Thus, e.g., for 7 = — 1 we have in momentum space, from (4.10) and (4.11),

-<A-A+> <A*A*> \ af 0 - 1 \

< .4-.4- > - < .4^.4- > ; - 2 {£5? o ; i*-1-)
which is precisely the propagator (up to numerical factors) for the light-cone components

of the An field satisfying the field equations (3.5).

5. CONCLUSIONS

We have presented a theory for spinning self-dual particles which has the property

of describing either bosons or fermions. In fact, it reproduces all the propagators for the

bosonie chiral particle since from (4.10) the non-trivial components of the propagator is

fj which for odd f gives p\ to an integer power in the numerator. This is the same

result as for the bosonic chiral particle [10]. The advantadge of this formulation however is

that it makes the Lorentz tensor structure more transparent and it opens the possibility of

coupling covariantly chiral bosons to other fields, mainly to the gravitational field. Work

in this direction is in progress.

Acknowledgments

We would like to thank M.Gomes for a critical reading of the manuscript. J.G. also

acknowledges finantial support from CAPES.

10



REFERENCES

[I] D.J.Gross, J.A.Harvey, E.Martinec and R.Rohm, Phys.Rev.Lett. 54 (1985) 502,

Nucl.Phys.B 256 (1985) 253 and B 267 (1986) 75

[2] R.Floreanini and RJackiw, Phys.Rev.Lett. 59 (1987) 1873

[3] H.O.Girotti, M.Gomes, V.Kurak, V.O.Rivellcs and A J.da Silva, Phys. Rev. Lett.

60 (19SS) 1913

[4] H.O.Girotti, M.Gomes, V.O.Rivelles and A.J.da Silva, preprint IFUSP/P-765

(1959)

[5] M.Gomes, V.Kurak, V.O.Rivelles and A.J.da Silva, Phys.Rev.D 38 (1988) 1344

[6] V/.Siegel, Nucl.Phys.B 238 (1984) 307

[7] C.Imbimbo and A.Schwimmer, Phys.Lett. 193B (1987) 435;

J.M.F.Labastida and M.Pernici, Nucl.Phys.B 297 (1988) 557

[8] J.Sonnenschein, Phys.Rev.Lett. 60 (19S8) 1772

(9] M.E.V.Costa and H.Girotti, Phys.Rev.Lett. 60 (1988) 1771

[10] M.Gomes, V.O.Rivelles and A.J.da Silva, Phys.Lett.B, to appear

[II] C.Tcitelboim, Phys.Rev.Lett. 38 (1977) 1106;

R.Tabensky and C.Teitelboim, Phys.Lett.B 69 (1977) 453

[12] M.Henneaux and C.Teitelboim, Ann.Phys.(N.Y.) 143 (1982) 143

[13] E.S.Fradkin and G.Vilkovisky, Phys.Lett. 55B (1975) 224;

I.A.Batalin and G.Vilkovisky, Phys.Lett. 69B (1977) 309

[14] J.Gamboa and V.O.Rivelles, in preparation

11


