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Abstract

We study spinning self-dual particles in two dimensions. They are obtained from the
chiral bosonie particle through the square root technique. We show that the resulting feld
theory can be either fermmionic or bosonic and that the associated self-dual ficld reveals its
Lorentz tensor structure which remains hidden in the usual formulations. We also calculate

the spinning self-dual particle propagators using the BFV' formalism.
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1. INTRODUCTION

Self-dual fields in two dimensions, also known as chiral bosons, play a fundamental
role in the formulation of the heterotic string [1). They ean be understood, through
bosonization, as solitonic excitations of a theory of Weyl fermions [2}. More generally, the
bosonization procedure can be extended to show that chiral bosons give rise to a class
of self-dual fields of higher spin [3.4]. They bave -lso been used to provide a systematic
construction of the Thirring field by using right and left moving fields [3].

The quantization of chiral bosons is plagued with difficulties. Siegel's formulation
{6] has a local symmetry and when quantized there appears an anomaly {71, It has been
claimed [8] that Siegel’s formulation is equivalent to the dimension zero field forimulation
of Floreanini and Jackiw [2]. However, as has been shown recently. this field is non-causal
{4. Another formulation proposed in ref.[2] makes use of a dimension one ficld with an
unusual commutation relation and a non-local Lagrangian. This unusual commutation
relation has its origin in a Dirac bracket structure because the non-local Lagrangian gives

rise to a second-class constraint [9].

In order to gain some more insight into the quantization of self-dual fields it was pro-
posed to reconsider the problem starting with a theory for a chiral bosonic particle, that is,
a left moving massless relativistic particle [10]. It wus shown that requiring reparametriza-
tion invariance (with respect to the proper-time) of the particle action it is possible to find
a consistent formulation for the theory. The basic constraint for the chiral particle is that
its energy and momentum are equal. Po = P). Since this constraint does not lead to a

reparametrization invariant action [10] the following constraint was considered
*

T = (P ~ P,)P; (1.1)
with 3 # 0 a real parameter. The BFV quantization of this theory leads to the same
propagators found in ref.[2] for the fields of dimension zero and one when y =1 and -1,
respectively. For general 4 it leads to the class of self-dual fields of reef.[3] but causality
(4] restricts 7 to be an integer lesser than 1. Since we also have ¥ # 0 we take from now

on = to be an integer lesser than 0, that is 9 = ~1,-2.... f.

i Our 7 is related to that of refs.[3.4] by Yeurs = 1 - 2
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Ou the other side one can consider the canonical quantization of (1.1). In this case
the constraint (1.1) must be imposed on the wave function ¢

(Po=P)Py=0 (1.2)

-

In a second quantized version we require that (1.2) should be obtained from an action

S= / &z 9Ty (1.3)

from which we find that the dimension (which has the same value as the spin) of the field
¥is J(1 — ). At first sight it seems that y bas only one componerit although it has spin
equal or greater than one (since v = —1,-2,...). In fact its Lorentz tensorial structure
is hidden in this formulation and, as we shall see later on, the spinning self-dual particle
makes it manifest.

A procedure to find the supersymmetric version of a bosonic thesry consists in taking
the square root of the bosonic constraints [11]. In other words it means that we introduce
a set of Grassmann variables §,(u =0,...,D — 1 where D is the dimension of the space-
time), with Poisson brackets

{0,,6,) = 2in,, (1.4)

and with them construct Grassmannian constraints S such that their Poisson brackets are
proportional to the bosonic constraints. For the relativistic particle this procedure gives
the spinning particle, a supersymmetric theory whose propagator is the Dirac propagator
[12}. The appearence of an unsuspected supersymmetry associated to the resulting theory

is characteristic of the square root technique.

In this paper we apply the square root technique to the constraint (1.1) to find the
supersymmetric version of the chiral bosonic particle. In section 2 we study the classi--
cal spinning self-dual particle formulation, discussing the Gra:smannian constraint, the
Lagrangian formulation and its local s&mmetries. In section 3 we consider the canonical
quantization showing how the Lorentz structure of the fields manifest themselves. We
also show that the square root technique does not always lead to fermion ficlds since for

4 = 1= 2n, n an even positive integer we get fermionic fields while for n an odd positive
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integer we get bosonic fields. In section 4 we apply the Batalin-Fradkin-Vilkovisky (BFV)
quantization formalisn obtaining the propagators and showing its full structure. Final

remacks are made in section .

2.CLASSICAL SPINNING SELF-DUAL PARTICLES

We start by considering the constraint (1.1) with 4 = —1,~2,... and trying to find a
Grassmannian constraint S such that it satisfies the Poisson bracket

{5,5) =aT (2.1)

with @ # 0 a real number. Using the Grassmann variables 8,,(p = 0, 1), satisfying (1.4), we
choose S to be a linear combination of them with coefficients depending on the P,’s. If we
also require that only integer powers of P,’s are allowed in these coefficients § we conclude
that 4 must be odd, so that T has an even power of P,'s. We can then easily find the
coefficients of the expansion of S in terms of 8,'s and with an appropriate normalization

S can be written as
_ip1_o, _Forprt i _B -1
=—gh(-2a= PR —10(1+2a- IR,  7=-1-3... (22)

The relative sign of the 8,’s terms is not fixed. It corresponds to a freedom allowed
by the discrete symmetry 6, — —6,, for each @, independently, which is present in (1.4).
For definiteness we take the same sign for both terms. The real number a also is not fixed.
It corresponds to a freedom allowell by the rigid continuous symmetry 84 — ad,,6.. —
a~16_,0; = 6, £ 8,, which is manifest when we rewrite (1.4) in light-cone components.
Since we did not find any natural value for a we shall keep it in all formulas. Of course,
the results we obtain are independent of a and the only restrictionon it is a # 0. |

We can now write the action

f’ . . . M .
= / drlP?X, + 566, + NT + 28] - 20*(r2)0,(n) (2.3)
14

t Since otherwise the canonical quantization for example would be troublesome involving

non-integer pc .ers of P,'s.



where N and ) are the Lagrange multipliers for the constraints T and S, respectively.
and 7 is the proper time of the spirning self-dual particle. A dot denotes derivation with
respec to r. The boundary term in (2.2) is needed in order to have only one boundary
condition on the Grassmann variables [12] # (r.) + 0,(m2) = 75, while for the X, we ha\‘e
two boundary conditions X,(r,) = X,(1), Xy(rs) = X,,(2).

Byeﬁminﬂing?,tbxu:;hiucqwiomofwion,

373 .\'2 . 2 VvV N
1‘_.'1
+altIxe -0 (—3\-)
-
P.=( \") [1+——l(0o+01) ( ‘;f) ] (2.4)

we get after some algebra that the action (2.3) can be rewriten as

S= /d-r[( )(r..-n)-r-avo

5 .\
—A(Oo + 0;) (.Yo ‘Yl) (—5,\',!) - *;'al(oo -&) (— %) ] +b.t.(2.5)

where b.t. are the boundary terms in 8 in eq.(2.3). Under reparametrizations
§X, =eX,, 6N =(V)
80, =¢l,, Er=(c\) (2.6)
with ¢(7) the 'pumnet& for reparametrizations, we can easily show that for $ = fdrL
§L = (eLy (2.7)

In order for the action to be invariant under reparametrizations we must have ¢(r,) =

¢(r3) = 0 as usual,



e find the local supersymmetry transformations by taking the Poisson bracket be-
tween S and X, oc §, and we get

= (6O +0)PT

6X, = g0 +O ) +1- (- D] IP"‘—a‘—tl«oo 6)p ¥

6 = 36(1 - 20~ Fl)P,“‘ |
50, = -éc(x +2 — %)P,’*‘ (28)

with P, given by (2.4), while for the Lagrange multipliers we have, according to the BFV
formalism (13}
EN=af), &r=§ (2.9)

where §(7) is the parameter for local supersymmetry. The supersymmetry transforma-
tions so obtained do not have the stand-rd form and look very complicated. While for the
spinaing particle case they can be seen as the transformations for one diinensional super-
gravity coupled to scalar fields Lere they do not have this interpretation or any other simple
interpretation. After inserting P, in (2.8) we find for the variation of the Lagrangian

d, 1 . Xo = ~ Xeo 5
6L=;[-§€(00+01)(Xo .\l)—( \.) +azE(0¢ 0,)(—7) ] (210

while the boundary terms give a contribution

.\.'0(2) w
- 020,00 = - SEH [ 1Ko(2) - Nuih (- N(2))

- e L0300 - i ) + 80

¥ -
-%[(—-’},—‘}(‘:—,’) + TR M2O(2) + 4(2) 5 1800) - B1(0)
—-(nemn) | (211)

Adding the two terms we find that in order for the action to be invariant we need §(r3) =
&(71) =0 as in the spinning particle case {12].
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‘The conditions on the parameters mean that when we quantize the theory we must
bave second order differential equations for them. This allows us to choose the proper time
pngﬁsﬂfocreparmnﬂrizalionsmd:\=0£otmpers3mmetry.

3.CANONICAL QUANTIZATION

To perform the canonical quantization we promote P, and X, to operators obeying
cancnscal comutation relations, 8, to operators v, that due to (1.4) obey the anticommu-
tation relations

{7..7.}'=' 29,0 (3.1)

and impose the constraint S (2.2) on the wave function ¢*. Of course, we have a representa-
tion for 7, in (3.1) as 2 x 2 Dirac matrices, which for definiteness we take ¢ = 0,13 = io2
and 75 = 79 7;. In this representation we have for S¢p = 0

24t 23t
0. h*-hh ' =0 32
(—',ZQPI+ 0 )'ﬂ- 32)

We now require that this equation should be obtained from an action
§= / L3Sy (3.3)

and from this we conclude that the dimension of ¥ is 1 — }(1 +1). Since v is odd and
negative we can writeitas y=1-2n,n = 1,2,... and we find that for n odd ¢ is a bosonic
field while for n even ¢ is a fermionic field. This is quite remarkable since in general the

square root of a bosonic theory produces a {ermionic theory.

For n = 1,9 = -1, ¢ has dimension 1 and it is a boson. We can not get much
information about the Lorentz tensorial structure of ¥ from (3.2) or (3.3) besides that it
must have at least one spinor index. Since in this case ¢’ has spin 1 we can take it to be in
the (1,1) symmetric representat.ion of the Lorentz group ¢ 3 = ¥3,. If we now introduce
the éhatge conjugation matrix C = ioz in order to upper and lower spinor indices we can
write

Va3 = A*(75C)ag + B(15C)op (3.4)
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since only 7,C and 43C arc symmetric. We do not necd the pseudo-sealar ficld B since
we are dealing with a spin one ficld and as we shall sre its field equation is actually trivial.
Using explicitly the representation for the Dirac matrices in (3.4) we find that (3.2) yelds

B(x) - % /Jm o= "!l)b(%-m) =B(z)=0

A) - 3 [dndes - i em) = A*(z) =0 (35)

where 4% = 4° + 4. Then B = A* = 0 and A~ is the minus light-cone component of a
vector self-dual field. Notice that the addition of a further index in y does not invalidate
(3.3) so we still have it as an action for the vector field.

If we now take n = 2,9 = ~3 and we have a fermionic field of spin ; We take y in
the (1,1, 1 1) totally symmetric representation of the Lorentz group

Casy = V2(1,C)oy + ¥5(1C)er + ¥2(1,C)os (36)
and (3.2) reduces to
( o - P.P,") (vm) 0 (3.7
~2aP; 0 V234
We then find the two equations

3 [dndmr-mantzam= fnda-n)} [ dm-aimtann =0 68

/ dy e(z1 — yr Wrgalze 1) = 0 (3.9)

From (3.9) we have 1) 3, = 0 and by using (3.6) we ﬁnd 9] = ¢¥7 = 0. And from (3.8) we
learn that v'; is a self-dual field. Therefore ¢, isa Weyl fermion with the plus light-cone

component zero and the minus light-cone component self-dual.
This procedure can be extended straightfowardly. For general n we have a field
Vo,..ons, totally symmetric describing spin 1(n + 1) with only one of its components

nonvanishing.



Notice that the case n = 0 can also be considered. It would give us a spinor field
isfying

(& - Q)2 =0
Air =0 (310)

which with appropriate boundary coaditions for v, describes a2 Weyl fermion. We only
disregard it because the bosonic theory which it came from involves a non-causal field [4).

4. BFV QUANTIZATION., -

The BFV quantization [13] is straightfoward. We Introduce for the constraint T two
pairs of fermionic ghosts 7,7, P, P satisfying

{nP} = (7P} = -1 (1)
and for the constraint S two pairs of bosonic ghosts b, | X satisfying
{8,c} = {b,e} = -1 (4.2)
Taking into account (2.1) the BRST chasge is given by
Q=1T+cS+NyP+Mb+ io-’P-c’ (14.3)

2

where [Ix and II, are the canonical momenta of the Lagrange multipliers V and . re-

spectively. The propagator is defined as

K(X(1),X(2),7,) =
/ DX, DP, D8, DN Dlly D) DI, DP D7 DP Dn Db D D5 De expiSey; (4.4)

where the effective action S, sy is given by
n , ;. . . . . =
Sesr = / dr[P"X, + ;',-0"0. +AyN+IMA-P-Pi+5+bé - {QF)] (4.5)
n



the propagator being independent of ¥ [13}. Accurding to the end of sectivn 2 we can
chonse the proper-time gauge N = 0 and A = 0. We can implement this by choosing the
gange fermion ¥ as
*=XP 4+l (4.6)

which impbes :
{Q.9) = ~NT + SA- 7P - W 4 iaPed (47)

The functional integral over the ghost fields gives rise to harmless determinant factors
that can be absorbed in an overall normalization constant. The integration over Il 4 means
that only the zero mode of A survives, call it c. and the functional integral over N reduces
to an ordinary integral over ¢. The range of integration for ¢ is taken to be from 0 to oo, as
usual. in order to integrate over only one classical trajectory {. ‘1 be functional integration
over 11, means that only the zero mode of A survives. call it Ay, and the functional integral
over A reduces to an ordinary Berexin integral over Aq.

‘Then (4.4) reduces to

K(X(1),X(2),7,) =
[' de / d)e / DX, DP, Dé, expi / ér(PX 4 20 +cT-Sk)  (43)

We now perform the change of variables X, = X,(1) + 232(r — ) 4 Y, where AX,, =
X,(2) - X,(1),Ar = 72 — 7, and with Y, satisfying the boundary conditions ¥,(71;) =
Y,(r;) = 0, and also 8, = }7, +§, with §, satisfying the boundery conditions §,(r;) =
,(72) = 0. Then. intc;rating over the remaining variables we get (up to numerical factors)

Ep_boli =20~ po/pr) + 11+ 20 = po/p)lEr o
(2=)? ) Po—p tie

K(X(1).X(2),7,) =

(4.9)
Using the representation for the Dirac matrices given before, (4.9) becomes in momentum
space (dropping out the i factors) :

K(X(1),X(2).7,) = / (—f;%ﬂ”x »)

{ See ref[14] for a detailed exposition on the BFV formalism applied to relativistic
particles.



2ap, 0
ro—m

L;_!
0
K(p)=( wm P ) (4.10)

In view of the results of section 3 we intecpret this propagator as the propagator for
the field ¥q.0;..a, so that the propagator A" has the general structure

. _[< ¢';a;..-o_ (z1)%"1a).0 (z2)> < 'i":a;»-an (n )"r""'l --af (z2) >
Rx(1), X)) = ( < l{’;m--.o. (£1)¥20;.0r,(72) > < 'L':m---o;('r‘ Wray...ay(22) > )

(£.11)
Thus, e.g., for 4 = —1 we have in momentum space, from (4.10) and (4.11),
—<ATAY > <At4r> af 0 +1
41— A— + 4 =3 =2 (4-12)
<A”AT> —<ATA™ > 2\ ;.5 0

which is precisely the propagator (up to numerical factors) for the light-cone components
of the A, field satisfying the field equations (3.5).

5. CONCLUSIONS

We have presented a theory for spinning self-dual particles which has the property
of describing either bosons or fermions. In fact, it reproduces all the propagators for the

bosonie chiral particle since from (4.10) the non-trivial components of the propagator is

h which for odd 4 gives p; to an integer power in the numerator. This is the same
result as for the bosonic chiral particle [10]. The advantadge of this formulation however is
that it makes the Lorentz tensor structure more transparent and it opens the possibility of
coupling covariantly chiral bosons to other fields, mainly to the gravitational field. Work

in this direction is in progress.
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